On builds made with Xcode 11+ the current OpenGL context wasn't being
properly configured anymore, resulting in shader compilation errors and
a red screen.
Explicitly calling makeCurrentContext fixes this.
Keep focus on the panel list when changing settings / tools panels.
Fixed Windows combo box flickering when changing panels.
Suppress Alt+F4 on Windows in fullscreen mode.
* added (primary-monitor only) fullscreen support for macOS
* improved settings windows a bit
* correct Program::focused() move from Video::exclusive()->fullScreen()
* provide actual display device names in ruby::Video::hasMonitors()
* macOS: fixed LineEdit::onChange (fixes state manager state naming)
* macOS: fixed RadioLabel height to not clip off bottom of radio icons
* macOS: fixed RadioLabel initial check states (fixed input settings
focus mode options)
* macOS: fixed TableViewItem::setSelected (fixes initial selection on
settings/tools windows)
* macOS: fixed TextEdit geometry (fixed manifest viewer)
* macOS: don't allow multiple TableViewItems to be selected in
single-selection mode
** (fixes settings/tools windows selecting multiple items via menubar
options)
* added CPU and SA1 overclocking support
* added fast forward speed limiting
* added option to mute during fast forwarding and rewinding
* lowered volume when not muting during FF/rewind
* reformatted settings/tools windows from tabs to lists
* moved focus settings to input settings panel
* redesigned input and hotkey settings panels to be easier to use
* fixed offscreen placement issue with path settings panel
* added hotkey combinational logic option (AND / OR mode setting)
* added search support to file browser dialog
* fixed --fullscreen command-line option
byuu says:
- bsnes: added video filters from bsnes v082
- bsnes: added ZSNES snow effect option when games paused or unloaded
(no, I'm not joking)
- bsnes: added 7-zip support (LZMA 19.00 SDK)
[Recent higan WIPs have also mentioned bsnes changes, although the higan code
no longer includes the bsnes code. These changes include:
- higan, bsnes: added EXLOROM, EXLOROM-RAM, EXHIROM mappings
- higan, bsnes: focus the viewport after leaving fullscreen exclusive
mode
- bsnes: re-added mightymo's cheat code database
- bsnes: improved make install rules for the game and cheat code
databases
- bsnes: delayed construction of hiro::Window objects to properly show
bsnes window icons
- Ed.]
byuu says:
First 32 instructions implemented in the TLCS900H disassembler. Only 992
to go!
I removed the use of anonymous namespaces in nall. It was something I
rarely used, because it rarely did what I wanted.
I updated all nested namespaces to use C++17-style namespace Foo::Bar {}
syntax instead of classic C++-style namespace Foo { namespace Bar {}}.
I updated ruby::Video::acquire() to return a struct, so we can use C++17
structured bindings. Long term, I want to get away from all functions
that take references for output only. Even though C++ botched structured
bindings by not allowing you to bind to existing variables, it's even
worse to have function calls that take arguments by reference and then
write to them. From the caller side, you can't tell the value is being
written, nor that the value passed in doesn't matter, which is terrible.
byuu says:
Changelog:
- moved to GCC 8.2 and C++17
- fixed compilation under FreeBSD 12.0
- don't read beyond the file size in
SuperFamicom::Cartridge::loadMemory
- add missing I/O cycle HuC6280::instructionImmediate
- serialize Mega Drive's Game Genie state
- serialize SPC7110::Thread information
- enable 30-bit color depth support under the GLX/OpenGL 2.0 driver
(doesn't work with OpenGL 3.2 yet)
The 30-bit color depth option isn't super useful, but why not? I need to
update ruby to detect that the display is actually capable of it before
exposing an option that can result in the driver failing to initialize,
however.
byuu says:
Changelog:
- sfc/cx4: added missing instructions [info from Overload]
- sfc/cx4: added instruction cache emulation [info from ikari]
- sfc/sa1: don't let CPU access SA1-only I/O registers, and vice versa
- sfc/sa1: fixed IRQs that were broken from the recent WIP
- sfc/sa1: significantly improved bus conflict emulation
- all tests match hardware now, other than HDMA ROM↔ROM, which
is 0.5 - 0.8% too fast
- sfc/cpu: fixed a bug with DMA→CPU alignment timing
- sfc/cpu: removed the DMA pipe; performs writes on the same cycles as
reads [info from nocash]
- sfc/memory: fix a crashing bug due to not clearing Memory size field
[hex_usr]
- bsnes/gb: use .rtc for real-time clock file extensions on the Game
Boy [hex_usr]
- ruby/cgl: compilation fix [Sintendo]
Now let's see if I can accept being off by ~0.65% on one of twelve SA1
timing tests for the time being and prioritize much more important
things or not.
byuu says:
Changelog:
- fixed bug in Emulator::Game::Memory::operator bool()
- nall: renamed view<string> back to `string_view`
- nall:: implemented `array_view`
- Game Boy: split cartridge-specific input mappings (rumble,
accelerometer) to their own separate ports
- Game Boy: fixed MBC7 accelerometer x-axis
- icarus: Game Boy, Super Famicom, Mega Drive cores output internal
header game titles to heuristics manifests
- higan, icarus, hiro/gtk: improve viewport geometry configuration;
fixed higan crashing bug with XShm driver
- higan: connect Video::poll(),update() functionality
- hiro, ruby: several compilation / bugfixes, should get the macOS
port compiling again, hopefully [Sintendo]
- ruby/video/xshm: fix crashing bug on window resize
- a bit hacky; it's throwing BadAccess Xlib warnings, but they're
not fatal, so I am catching and ignoring them
- bsnes: removed Application::Windows::onModalChange hook that's no
longer needed [Screwtape]
byuu says:
The main thing I worked on today was emulating the MBC7 EEPROM.
And... I have many things to say about that, but not here, and not now...
The missing EEPROM support is why the accelerometer was broken. Although
it's not evidently clear that I'm emulating the actual values
incorrectly. I'll think about it and get it fixed, though.
bsnes went from ~308fps to ~328fps, and I don't even know why. Probably
something somewhere in the 140KB of changes to other things made in this
WIP.
byuu says:
This release fixes the XAudio 2.1 and WASAPI drivers on Windows, and
extends XAudio to support device selection (eg headphones, speakers,
monitor, etc.) It also adds DRC to XAudio, however it's not currently
working.
The code is courtesy of Talarubi, I just botched it somewhere upon
porting it to the newer version of ruby.
byuu says:
I fixed all outstanding bugs that I'm aware of, including all of the
errata I listed yesterday.
And now it's time for lots of regression testing.
After that, I need to add Talarubi's XAudio2 DRC code, and then get a
new public bsnes WIP out for final testing.
New errata: when setting an icon (nall::image) larger than a Canvas on
Windows, it's not centering the image, so you end up seeing the overscan
area in the state manager previews, and the bottom of the image gets cut
off. I also need to forcefully disable the Xlib screensaver disable
support. I think I'll remove the GUI option to bypass it as well, and
just force screensaver disable always on with Windows. I'll improve it
in the future to toggle the effect between emulator pauses.
byuu says:
Everything *should* be working again, but of course that won't
actually be the case. Here's where things stand:
- bsnes, higan, icarus, and genius compile and run fine on FreeBSD
with GTK
- ruby video and audio drivers are untested on Windows, macOS, and
Linux
- hiro is untested on macOS
- bsnes' status bar is not showing up properly with hiro/qt
- bsnes and higan's about screen is not showing up properly with
hiro/qt (1x1 window size)
- bsnes on Windows crashes often when saving states, and I'm not sure
why ... it happens inside Encode::RLE
- bsnes on Windows crashes with ruby.input.windows (unsure why)
- bsnes on Windows fails to show the verified emblem on the status bar
properly
- hiro on Windows flickers when changing tabs
To build the Windows bsnes and higan ports, use
ruby="video.gdi audio.directsound"
Compilation error logs for Linux will help me fix the inevitable list of
typos there. I can fix the typos on other platforms, I just haven't
gotten to it yet.
byuu says:
Okay, so the WIPs-within-WIPs thing wasn't achieving its desired effect,
and it ended up causing me to have to redo some work on hiro since my
last local snapshot was of r52. So, heck it. I'll just do mostly
non-functional WIPs for a bit, and worry about the fallout years later
when I'm trying to find an emulation regression and cursing that the
WIPs aren't compiling.
I ported all of the ruby input drivers to the new syntax, as well as the
OpenAL driver. If you patch the ruby drivers for Linux with this in
mind, bsnes should compile and run there again.
Also, the bsnes program icon has returned, now that the new hiro layout
code is mature enough and I can simply add and remove the icon as a
Canvas instead of having to try and render into a viewport. The icon
shows up instantly with the main window.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
byuu says:
These WIPs-within-WIPs are getting more and more broken ... this isn't
going the way I wanted.
But ... this time around, I've revamped the entire ruby API again, to
solve a bunch of tough problems that have always made using ruby really
clunky.
But there are *so many* ruby drivers that it's going to take a long
time to work through them all. This WIP is only going to run bsnes, and
only on FreeBSD, and only with some drivers.
hiro's Application::initialize() now calls hiro::initialize(), which you
define inside of your hiro apps. This lets you call
Application::setName(...) before anything else in hiro runs. This is
essential on Xorg to set program icons, for instance.
With the ruby rewrite and the change to hiro, I can get away from the
need to make everything in bsnes/higan pointers to objects, and can now
just declare them as regular objects.
byuu wrote:
Sigh ...
asio.hpp needs #include <nall/windows/registry.hpp>
[Since the last WIP, byuu also posted the following message. -Ed.]
ruby drivers have all been updated (but not tested outside of BSD), and
I redesigned the settings window. The driver functionality all exists on
a new "Drivers" panel, the emulator/hack settings go to a
"Configuration" panel, and the video/audio panels lose driver settings.
As does the settings menu and its synchronize options.
I want to start pushing toward a v107 release. Critically, I will need
DirectSound and ALSA to support dynamic rate control. I'd also like to
eliminate the other system manifest.bml files. I need to update the
cheat code database format, and bundle at least a few quark shaders --
although I still need to default to Direct3D on Windows.
Turbo keys would be nice, if it's not too much effort. Aside from
netplay, it's the last significant feature I'm missing.
I think for v107, higan is going to be a bit rough around the edges
compared to bsnes. And I don't think it's practical to finish the bsnes
localization support.
I'm thinking we probably want another WIP to iron out any critical
issues, but this time there should be a feature freeze with the next
WIP.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
byuu says:
Changelog:
- ruby/video: implement onUpdate() callback to signal when redraws are
necessary
- ruby/video/GLX,GLX2,XVideo,XShm: implement onUpdate() support
- bsnes: implement Video::onUpdate() support to redraw Viewport icon
as needed
- bsnes: save RAM before ruby driver changes
- sfc/sa1: clip signed multiplication to 32-bit [Jonas Quinn]
- sfc/sa1: handle negative dividends in division [Jonas Quinn]
- hiro/gtk3: a few improvements
- bsnes: added empty stub video and audio settings panels
- bsnes: restructured advanced settings panel
- bsnes: experiment: input/hotkeys name column bolded and colored for
increased visual distinction
- bsnes: added save button to state manager
byuu says:
Changelog:
- hiro: added Qt5 support
- hiro: added GTK3 support (currently runs very poorly)
- bsnes: number of recent games and quick state slots can be changed
programmatically now
- I may expose this as a configuration file setting, but probably
not within the GUI
- nall: use -Wno-everything when compiling with Clang
- sorry, Clang's meaningless warning messages are just endless ...
byuu says:
Changelog:
- nall/GNUmakefile: fixed findstring parameter arguments [Screwtape]
- nall/Windows: always include -mthreads -lpthread for all
applications
- nall/memory: code restructuring
I really wanted to work on the new PPU today, but I thought I'd spend a
few minutes making some minor improvements to nall::memory, that was
five and a half hours ago. Now I have a 67KiB diff of changes. Sigh.
byuu says:
Changelog:
- nall: merged Path::config() and Path::local() to Path::userData()
- ~/.local/share or %appdata or ~/Library/ApplicationSupport
- higan, bsnes: render main window icon onto viewport instead of
canvas
- should hopefully fix a brief flickering glitch that appears on
Windows
- icarus: improved Super Famicom heuristics for Starfox / Starwing RAM
- ruby/Direct3D: handle viewport size changes in lock() instead of
output()
- fixes icon disappearing when resizing main window
- hiro/Windows: remove WS_DISABLED from StatusBar to fix window
resize grip
- this is experimental: I initially used WS_DISABLED to work
around a focus bug
- yet trying things now, said bug seems(?) to have gone away at
some point ...
- bsnes: added advanced settings panel with real-time driver change
support
I'd like feedback on the real-time driver change, for possible
consideration into adding this to higan as well.
Some drivers just crash, it's a fact of life. The ASIO driver in
particular likes to crash inside the driver itself, without any error
messages ever returned to try and catch.
When you try to change a driver with a game loaded, it gives you a scary
warning, asking if you want to proceed.
When you change a driver, it sets a crash flag, and if the driver
crashes while initializing, then restarting bsnes will disable the
errant driver. If it fails in a recoverable way, then it sets the driver
to “None” and warns you that the driver cannot be used.
What I'm thinking of further adding is to call emulator→save() to
write out the save RAM contents beforehand (although the periodic
auto-saving RAM will handle this anyway when it's enabled), and possibly
it might be wise to capture an emulator save state, although those can't
be taken without advancing the emulator to the next frame, so that might
not be a good idea.
I'm also thinking we should show some kind of message somewhere when a
driver is set to “None”. The status bar can be hidden, so perhaps on the
title bar? Or maybe just a warning on startup that a driver is set to
“None”.
byuu says:
Changelog:
- nall: added -static-libgcc -static-libstdc++ to Windows/GCC link
flags
- bsnes, higan: added program icons to main window when game isn't
loaded
- bsnes: improved recent games menu sorting
- bsnes: fixed multi-game recent game loading on Windows
- bsnes: completed path override support
- bsnes, higan: added screensaver suppression on Windows
- icarus: add 32K volatile RAM to SuperFX boards that report no RAM
(fixes Starfox)
- bsnes, higan: added automatic dependency generation [Talarubi]
- hiro/GTK: appending actions to menus restores enabled() state
- higan: use board node inside manifest.bml if it exists
- bsnes: added blur emulation and color emulation options to view menu
- ruby: upgraded input.sdl to SDL 2.0 (though it makes no functional
difference sadly)
- ruby: removed video.sdl (due to deprecating SDL 1.2)
- nall, ruby: improvements to HID class (generic vendor and product
IDs)
Errata:
- bsnes, higan: on Windows, Application::Windows::onScreenSaver needs
`[&]` lambda capture, not `[]`
- find it in presentation/presentation.cpp
byuu says:
Changelog:
- Emulator::Interface::videoResolution() -\> VideoResolution renamed
to videoInformation() -\> VideoInformation
- added double VideoInformation::refreshRate
- higan: added `binary := (application|library)` — set this to
`library` to produce a dynamic link library
- higan: removed `-march=native` for macOS application builds; and for
all library builds
- higan: removed `console` build flag; uncomment `link += -mwindows`
instead
- nall/GNUmakefile: `macosx` platform renamed `macos`
- still need to do this for nall/intrinsics.hpp
- Game Gear: return region=NTSC as the only option, so that the system
frequency is always set correctly
- hiro/cocoa: fixed typo [Sintendo]
- hiro/Windows: removed GetDpiForMonitor, as it's Windows 8+ only; DPI
is no longer per-monitor aware
- icarus: core Icarus class now has virtual functions for
directory::create, <file::exists>, <file::copy>, <file::write>
- icarus: Sufami Turbo can import save RAM files now
- icarus: setting `ICARUS_LIBRARY` define will compile icarus without
main(), GUI components
- ruby/video/Direct3D: choose the current monitor instead of top-left
monitor for fullscreen exclusive [Cydrak]
- ruby/video/Direct3D: do not set `WS_EX_TOPMOST` on fullscreen
exclusive window [Cydrak]
- this isn't necessary for exclusive mode, and it just makes
getting out of the application more difficult
byuu says:
Changelog:
- hiro/windows: set dpiAware=false, fixes icarus window sizes relative
to higan window sizes
- higan, icarus, hiro, ruby: add support for high resolution displays
on macOS [ncbncb]
- processor/lr35902-legacy: removed
- processor/arm7tdmi: new processor core started; intended to one day
be a replacement for processor/arm
It will probably take several WIPs to get the new ARM core up and
running. It's the last processor rewrite. After this, all processor
cores will be up to date with all my current programming conventions.
byuu says:
Changelog:
- gb/cpu: force STAT mode to 0 when LCD is disabled (fixes Pokemon
Pinball, etc)
- gb/ppu: when LCD is disabled, require at least one-frame wait to
re-enable, display white during this time
- todo: should step by a scanline at a time: worst-case is an
extra 99% of a frame to enable again
- gba/ppu: cache tilemap lookups and attribute parsing
- it's more accurate because the GBA wouldn't read this for every
pixel
- but unfortunately, this didn't provide any speedup at all ...
sigh
- ruby/audio/alsa: fixed const issue with free()
- ruby/video/cgl: removed `glDisable(GL_ALPHA_TEST)` [deprecated]
- ruby/video/cgl: removed `glEnable(GL_TEXTURE_2D)` [unnecessary as
we use shaders]
- processor/lr35902: started rewrite¹
¹: so, the Game Boy and Game Boy Color cores will be completely
broken for at least the next two or three WIPs.
The old LR35902 was complete garbage, written in early 2011. So I'm
rewriting it to provide a massive cleanup and consistency with other
processor cores, especially the Z80 core.
I've got about 85% of the main instructions implemented, and then I have
to do the CB instructions. The CB instructions are easier because
they're mostly just a small number of opcodes in many small variations,
but it'll still be tedious.
byuu says:
Changelog:
- gb/mbc6: mapper is now functional, but Net de Get has some text
corruption¹
- gb/mbc7: mapper is now functional²
- gb/cpu: HDMA syncs other components after each byte transfer now
- gb/ppu: LY,LX forced to zero when LCDC.d7 is lowered (eg disabled),
not when it's raised (eg enabled)
- gb/ppu: the LCD does not run at all when LCDC.d7 is clear³
- fixes graphical corruption between scene transitions in Legend
of Zelda - Oracle of Ages
- thanks to Cydrak, Shonumi, gekkio for their input on the cause
of this issue
- md/controller: renamed "Gamepad" to "Control Pad" per official
terminology
- md/controller: added "Fighting Pad" (6-button controller) emulation
[hex\_usr]
- processor/m68k: fixed TAS to set data.d7 when
EA.mode==DataRegisterDirect; fixes Asterix
- hiro/windows: removed carriage returns from mouse.cpp and
desktop.cpp
- ruby/audio/alsa: added device driver selection [SuperMikeMan]
- ruby/audio/ao: set format.matrix=nullptr to prevent a crash on some
systems [SuperMikeMan]
- ruby/video/cgl: rename term() to terminate() to fix a crash on macOS
[Sintendo]
¹: The observation that this mapper split $4000-7fff into two banks
came from MAME's implementation. But their implementation was quite
broken and incomplete, so I didn't actually use any of it. The
observation that this mapper split $a000-bfff into two banks came from
Tauwasser, and I did directly use that information, plus the knowledge
that $0400/$0800 are the RAM bank select registers.
The text corruption is due to a race condition with timing. The game is
transferring font letters via HDMA, but the game code ends up setting
the bank# with the font a bit too late after the HDMA has already
occurred. I'm not sure how to fix this ... as a whole, I assumed my Game
Boy timing was pretty good, but apparently it's not that good.
²: The entire design of this mapper comes from endrift's notes.
endrift gets full credit for higan being able to emulate this mapper.
Note that the accelerometer implementation is still not tested, and
probably won't work right until I tweak the sensitivity a lot.
³: So the fun part of this is ... it breaks the strict 60fps rate of
the Game Boy. This was always inevitable: certain timing conditions can
stretch frames, too. But this is pretty much an absolute deal breaker
for something like Vsync timing. This pretty much requires adaptive sync
to run well without audio stuttering during the transition.
There's currently one very important detail missing: when the LCD is
turned off, presumably the image on the screen fades to white. I do not
know how long this process takes, or how to really go about emulating
it. Right now as an incomplete patch, I'm simply leaving the last
displayed image on the screen until the LCD is turned on again. But I
will have to output white, as well as add code to break out of the
emulation loop periodically when the LCD is left off eg indefinitely, or
bad things would happen. I'll work something out and then implement.
Another detail is I'm not sure how long it takes for the LCD to start
rendering again once enabled. Right now, it's immediate. I've heard it's
as long as 1/60th of a second, but that really seems incredibly
excessive? I'd like to know at least a reasonably well-supported
estimate before I implement that.
byuu says:
Changelog:
- gb: added accelerometer X-axis, Y-Axis inputs¹
- gb: added rumble input¹
- gb/mbc5: added rumble support²
- gb/mbc6: added skeleton driver, but it doesn't boot Net de Get
- gb/mbc7: added mostly complete driver (only missing EEPROM), but it
doesn't boot Kirby Tilt 'n' Tumble
- gb/tama: added leap year assignment
- tomoko: fixed macOS compilation [MerryMage]
- hiro/cocoa: fix table cell redrawing on updates and automatic column
resizing [ncbncb]
- hiro/cocoa: fix some weird issue with clicking table view checkboxes
on Retina displays [ncbncb]
- icarus: enhance Game Boy heuristics³
- nall: fix three missing return statements [Jonas Quinn]
- ruby: hopefully fixed all compilation errors reported by Screwtape
et al⁴
¹: because there's no concept of a controller for cartridge inputs,
I'm attaching to the base platform for now. An idea I had was to make
separate ports for each cartridge type ... but this would duplicate the
rumble input between MBC5 and MBC7. And would also be less discoverable.
But it would be more clean in that users wouldn't think the Game Boy
hardware had this functionality. I'll think about it.
²: it probably won't work yet. Rumble isn't documented anywhere, but
I dug through an emulator named GEST and discovered that it seems to use
bit 3 of the RAM bank select to be rumble. I don't know if it sets the
bit for rumbling, then clears when finished, or if it sets it and then
after a few milliseconds it stops rumbling. I couldn't test on my
FreeBSD box because SDL 1.2 doesn't support rumble, udev doesn't exist
on FreeBSD, and nobody has ever posted any working code for how to use
evdev (or whatever it's called) on FreeBSD.
³: I'm still thinking about specifying the MBC7 RAM as EEPROM, since
it's not really static RAM.
⁴: if possible, please test all drivers if you can. I want to ensure
they're all working. Especially let me know if the following work:
macOS: input.carbon Linux: audio.pulseaudiosimple, audio.ao (libao)
If I can confirm these are working, I'm going to then remove them from
being included with stock higan builds.
I'm also considering dropping SDL video on Linux/BSD. XShm is much
faster and supports blurring. I may also drop SDL input on Linux, since
udev works better. That will free a dependency on SDL 1.2 for building
higan. FreeBSD is still going to need it for joypad support, however.
byuu says:
Changelog:
- ruby/audio/xaudio2: ported to new ruby API
- ruby/video/cgl: ported to new ruby API (untested, won't compile)
- ruby/video/directdraw: ported to new ruby API
- ruby/video/gdi: ported to new ruby API
- ruby/video/glx: ported to new ruby API
- ruby/video/wgl: ported to new ruby API
- ruby/video/opengl: code cleanups
The macOS CGL driver is sure to have compilation errors. If someone will
post the compilation error log, I can hopefully fix it in one or two
iterations of WIPs.
I am unable to test the Xorg GLX driver, because my FreeBSD desktop
video card drivers do not support OpenGL 3.2. If the driver doesn't
work, I'm going to need help tracking down what broke from the older
releases.
The real fun is still yet to come ... all the Linux-only drivers, where
I don't have a single Linux machine to test with.
Todo:
- libco/fiber
- libco/ucontext (I should really just delete this)
- tomoko: hide main UI window when in exclusive fullscreen mode
byuu says:
Changelog:
- tomoko: Application::onMain assigned at end of Program::Program()
[Screwtape]¹
- libco: add `#define _XOPEN_SOURCE 500` to fix compilation of sjlj.c
[Screwtape]
- ruby/audio/openal: fixed device driver string list enumeration
- ruby/audio/wasapi: changing device re-initializes the driver now
- ruby/audio/wasapi: probably a pointless change, but don't fill the
buffer beyond the queue size with silence
- ruby/video/xvideo: renamed from ruby/video/xv
- ruby/video/xvideo: check to see if `XV_AUTOPAINT_COLORKEY` exists
before setting it [SuperMikeMan]
- ruby/video/xvideo: align buffer sizes to be evenly divisible by four
[SuperMikeMan]
- ruby/video/xvideo: fail nicely without crashing (hopefully)
- ruby/video/xvideo: add support for YV12 and I420 12-bit planar YUV
formats²
¹: prevents crashes when drivers fail to initialize from running the
main loop that polls input drivers before the input driver is
initialized (or fails to initialize itself.) Some drivers still don't
block their main functions when initialization fails, so they will still
crash, but I'll work to fix them.
²: this was a **major** pain in the ass, heh. You only get one chroma
sample for every four luma samples, so the color reproduction is even
worse than UYVY and YUYV (which is two to four chroma to luma.) Further,
the planar format took forever to figure out. Apparently it doesn't care
what portion of the image you specify in XvShmPutImage, it expects you
to use the buffer dimensions to locate the U and V portions of the data.
This is probably the most thorough X-Video driver in existence now.
Notes:
- forgot to rename the configuration settings dialog window title to
just "Settings"
byuu says:
Changelog:
- tomoko: improved handling of changing audio devices on the audio
settings panel
- ruby/audio/wasapi: added device enumeration and selection support¹
- ruby/audio/wasapi: release property store handle from audio device
- ruby/audio/wasapi: fix exclusive mode buffer filling
- ruby/video/glx2: ported to new API -- tested and confirmed working
great²
- ruby/video/sdl: fixed initialization -- tested and confirmed working
on FreeBSD now³
- ruby/video/xv: ported to new API -- tested and mostly working great,
sans fullscreen mode⁴
Errata:
- accidentally changed "Driver Settings" label to "Driver" on the
audio settings tab because I deleted the line and forgot the
"Settings" part
- need to use "return initialize();" from setDevice() in the WASAPI
driver, instead of "return true;", so device selection is currently
not functioning in this WIP for said driver
¹: for now, this will likely end up selecting the first available
endpoint device, which is probably wrong. I need to come up with a
system to expose good 'default values' when selecting new audio drivers,
or changing audio device settings.
²: glx2 is a fallback driver for system with only OpenGL 2.0 and no
OpenGL 3.2 drivers, such as FreeBSD 10.1 with AMD graphics cards.
³: although I really should track down why InputManager::poll() is
crashing the emulator when Video::ready() returns false ...
⁴: really bizarrely, when entering fullscreen mode, it looks like the
image was a triangle strip, and the bottom right triange is missing, and
the top left triangle skews the entire image into it. I'm suspecting
this is a Radeon driver bug when trying to create a 2560x1600 X-Video
surface. The glitch persists when exiting fullscreen, too.
If anyone can test the X-Video driver on their Linux/BSD system, it'd be
appreciated. If it's just my video card, I'll ignore it. If not,
hopefully someone can find the cause of the issue :|
byuu says:
Changelog:
- tomoko: re-hid the video sync option¹
- tomoko: removed " Settings" duplication on all the individual
settings tab options
- ruby/audio/wasapi: finished port to new syntax; adapted to an
event-driven model; support 32-bit integral audio²
- ruby/video/sdl: ported to new syntax; disabled driver on FreeBSD³
¹: still contemplating a synchronize submenu of {none, video, audio},
but ... the fact that video can't work on PAL, WonderSwan games is a
real limitation for it
²: this driver actually received a ton of work. There's also a new
ring-buffer queue, and I added special handling for when exclusive mode
fails because the latency requested is lower than the hardware can
support. It'll pick the closest latency to the minimum that is possible
in this case.
On my Audigy Rx, the results for non-exclusive mode are the same. For
exclusive mode, the framerate drops from 60fps to ~50fps for smaller
buffers, and ~55fps for larger buffers (no matter how big, it never hits
60fps.) This is a lot better than before where it was hitting ~15fps,
but unfortunately it's the best I can do.
The event system used by WASAPI is really stupid. It just uses SetEvent
at some arbitrary time, and you have to query to see how many samples
it's waiting on. This makes it unknowable how many samples we should
buffer before calling `WaitForSingleObject(INFINITE)`, and it's also
unclear how we should handle cases where there's more samples available
than our queue has: either we can fill it with zeroes, or we can write
less samples. The former should prevent audio looping effects when
running too slowly, whereas the latter could potentially be too
ambitious when the audio could've recovered from a minor stall.
It's shocking to me how there's as many ways to send audio to a sound
card as there are sound card APIs, when all that's needed is a simple
double buffer and a callback event from another thread to do it right.
It's also terrifying how unbelievably shitty nearly all sound card
drivers apparently are.
Also, I don't know if cards can output an actual 24-bit mode with three
byte audio samples, or if they always just take 32-bit samples and
ignore the lower 8-bits. Whatever, it's all nonsense for the final
output to be >16-bits anyway (hi, `double[]` input from ruby.)
³: unfortunately, this driver always crashes on FreeBSD (even before
the rewrite), so I'll need someone on Linux to test it and make sure it
actually works. I'll also need testing for a lot of the other drivers as
well, once they're ported over (I don't have X-video, PulseAudio, ALSA,
or udev.)
Note that I forgot to set `_ready=true` at the end of `initialize()`,
and `_ready=false` in `terminate()`, but it shouldn't actually matter
beyond showing you a false warning message on startup about it failing
to initialize.
byuu says:
Changelog:
- ruby: rewrote the API interfaces for Video, Audio, Input
- ruby/audio: can now select the number of output channels (not useful
to higan, sorry)
- ruby/asio: various improvements
- tomoko: audio settings panel can now select separate audio devices
(for ASIO, OSS so far)
- tomoko: audio settings panel frequency and latency lists are
dynamically populated now
Note: due to the ruby API rewrite, most drivers will not compile. Right
now, the following work:
- video: Direct3D, XShm
- audio: ASIO, OSS
- input: Windows, SDL, Xlib
It takes a really long time to rewrite these (six hours to do the
above), so it's going to be a while before we're back at 100%
functionality again.
Errata:
- ASIO needs device(), setDevice()
- need to call setDevice() at program startup to populate
frequency/latency settings properly
- changing the device and/or frequency needs to update the emulator
resampler rates
The really hard part is going to be the last one: the only way to change
the emulator frequency is to flush all the audio streams and then
recompute all the coefficients for the resamplers. If this is called
during emulation, all audio streams will be erased and thus no sound
will be output. I'll most likely be forced to simply ignore
device/frequency changes until the user loads another game. It is at
least possible to toggle the latency dynamically.
byuu says:
Changelog:
- ruby/video: cleaned up Direct3D9 driver and fixed catastrophic
memory leak
- ruby/video: added fullscreen exclusive mode support to the Direct3D9
driver¹
- ruby/video: minor cosmetic code cleanups to various drivers
- tomoko: added support to always allow input when in fullscreen
exclusive mode
- tomoko: fixed window to not remove resizability flag when exiting
fullscreen mode
¹: I am assuming that exclusive mode will try to capture the primary
monitor. I don't know what will happen in multi-monitor setups, however,
as I don't use such a setup here.
Also, I am using `D3DPRESENT_DISCARD` instead of `D3DPRESENT_FLIP`. I'm
not sure if this will prove better or worse, but I've heard it will
waste less memory, and having a BackBufferCount of 1 should still result
in page flipping anyway. The difference is supposedly just that you
can't rely on the back buffer being a valid copy of the previous frame
like you can with FLIP.
Lastly, if you want Vsync, you can edit the configuration file to enable
that, and then turn off audio sync.
Errata: "pause emulation when focus is lost" is not working with
exclusive mode. I need to add a check to never auto-pause when in
exclusive mode. Thanks to bun for catching that one.
byuu says:
Note: add `#undef OUT` to the top of higan/gba/ppu/ppu.hpp to compile on
Windows (ugh ...) Now to await posts about this in four more threads
again ;)
Changelog:
- GBA: rewrote PPU from a scanline-based renderer to a pixel-based
renderer
- ruby: fixed video/gdi bugs
Note that there's an approximately 21% speed penalty compared to v102r18
for the pixel-based renderer.
Also, horizontal mosaic effects are not yet implemented. But they should
be prior to v103. This one is a little tricky as it currently works on
fully rendered scanlines. I need to roll the mosaic into the background
renderers, and then for sprites, well ... see below.
The trickiest part by far of this new renderer is the object (sprite)
system. Unlike every other system I emulate, the GBA supports affine
rendering of its sprites. Or in other words, rotation effects. And it
also has a very complex priority system.
Right now, I can't see any way that the GBA PPU could render pixels in
real-time like this. My belief is that there's a 240-entry buffer that
fills up the next scanline's row of pixels. Which means it probably also
runs on the last scanline of Vblank so that the first scanline has
sprite data.
However, I didn't design my object renderer like this just yet. For now,
it creates a buffer of all 240 pixels right away at the start of the
scanline. I know\!\! That's technically scanline-based. But it's only
for fetching object tiledata, and it's only temporary.
What needs to happen is I need a way to run something like a "mini libco
thread" inside of the main thread, so that the object renderer can run
in parallel with the rest of the PPU, yet not be a hideous abomination
of a state machine, yet also not be horrendously slow as a full libco
thread would be.
I'm envisioning some kind of stackless yielding coroutine. But I'll need
to think through how to design that, given the absence of coroutines
even in C++17.
byuu says:
This WIP fixes all the critical pending issues I had open. I'm sure
there's many more that simply didn't make their way into said list. So
by all means, please report important issues you're aware of so they can
get fixed.
Changelog:
- ruby: add variable texture support to GDI video driver [bug
reported by Cydrak]
- ruby: minor cleanups to XShm video driver
- ruby: fix handling of up+down, left+right hat cases for XInput
driver [bug reported by Cydrak]
- nall: fixed vector class so that compilation with GCC 7.1 should
succeed [SuperMikeMan]
- sfc: initialize most DSP registers to random values to fix Magical
Drop [Jonas Quinn]
- sfc: lower PPU brightness when luma=0 from 50% scale to 25% scale;
helps scenes like Final Fantasy III's intro
byuu says:
higan has finally reached v100!
I feel it's important to stress right away that this is not "version
1.00", nor is it a major milestone release. Rather than arbitrary version
numbers, all of my software simply bumps version numbers by one for each
official release. As such, higan v100 is simply higan's 100th release.
That said, the primary focus of this release has been code
clean-ups. These are always somewhat dangerous in that regressions are
possible. We've tested through sixteen WIP revisions, one of which was
open to the public, to try and minimize any regressions. But all the same,
please report any regressions if you discover any.
Changelog (since v099):
FC: render during pixels 1-256 instead of 0-255 [hex_usr]
FC: rewrote controller emulation code
SFC: 8% speedup over the previous release thanks to PPU optimizations
SFC: fixed nasty DB address wrapping regression from v099
SFC: USART developer controller removed; superseded by 21fx
SFC: Super Multitap option removed from controller port 1; ports
renamed 2-5
SFC: hidden option to experiment with 128KB VRAM (strictly for novelty)
higan: audio volume no longer divided by number of audio streams
higan: updated controller polling code to fix possible future mapping
issues
higan: replaced nall/stream with nall/vfs for file-loading subsystem
tomoko: can now load multi-slotted games via command-line
tomoko: synchronize video removed from UI; still available in the
settings file
tomoko, icarus: can navigate to root drive selection on Windows
all: major code cleanups and refactoring (~1MB diff against v099)
Note 1: the audio volume change means that SGB and MSU1 games won't
lose half the volume on the SNES sounds anymore. However, if one goes
overboard and drives the sound all the way to max volume with the MSU1,
clamping may occur. The obvious solution is not to drive volume that high
(it will vastly overpower the SNES audio, which usually never exceeds
25% volume.) Another option is to lower the volume in the audio settings
panel to 50%. In general, neither is likely to ever be necessary.
Note 2: the synchronize video option was hidden from the UI because it
is no longer useful. With the advent of compositors, the loss of the
complicated timing settings panel, support for the WonderSwan and its
75hz display, the need to emulate variable refresh rate behaviors in the
Game Boy, the unfortunate latency spike and audio distortion caused by
long Vsync pauses, and the arrival of adaptive sync technology ... it
no longer makes sense to present this option. However, as stated, you
can edit settings.bml to enable this option anyway if you insist and
understand the aforementioned risks.
Changelog (since v099r16 open beta):
- fixed MSU1 audio sign extension
- fixed compilation with SGB support disabled
- icarus can now navigate to root directory
- fixed compilation issues with OS X port
- (hopefully) fixed label height issue with hiro that affected icarus
import dialog
- (mostly) fixed BS Memory, Sufami Turbo slot loading
Errata:
- forgot to remove the " - Slot A", " - Slot B" suffixes for Sufami
Turbo slot loading
- this means you have to navigate up one folder and then into Sufami
Turbo/ to load games for this system
- moving WonderSwan orientation controls to the device slot is causing
some nastiness
- can now select orientation from the main menu, but it doesn't rotate
the display
byuu says:
Changelog:
- nall::lstring -> nall::string_vector
- added IntegerBitField<type, lo, hi> -- hopefully it works correctly...
- Multitap 1-4 -> Super Multitap 2-5
- fixed SFC PPU CGRAM read regression
- huge amounts of SFC PPU IO register cleanups -- .bits really is lovely
- re-added the read/write(VRAM,OAM,CGRAM) helpers for the SFC PPU
- but they're now optimized to the realities of the PPU (16-bit data
sizes / no address parameter / where appropriate)
- basically used to get the active-display overrides in a unified place;
but also reduces duplicate code in (read,write)IO
byuu says:
Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
- toInteger, toNatural, toReal for parsing strings to numbers
- fromInteger, fromNatural, fromReal for creating strings from numbers
- (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
left unchanged
- template<typename T> numeral(T value, long padding, char padchar)
-> string for print() formatting
- deduces integer,natural,real based on T ... cast the value if you
want to override
- there still exists binary,octal,hex,pointer for explicit print()
formatting
- lstring -> string_vector [but using lstring = string_vector; is
declared]
- would be nice to remove the using lstring eventually ... but that'd
probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
Natural<sizeof(uint)*8>; declared
- for consistency with boolean. These three are meant for creating
zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
(status,registers); now
- still some CPU::Status status values ... they didn't really fit into
IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
- the raw uint8[544] array is gone. OAM::read() constructs values from
the OAM::Object[512] table now
- this avoids having to determine how we want to sub-divide the two
OAM memory sections
- this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting
The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
byuu says:
Changelog:
- nall/vector rewritten from scratch
- higan/audio uses nall/vector instead of raw pointers
- higan/sfc/coprocessor/sdd1 updated with new research information
- ruby/video/glx and ruby/video/glx2: fuck salt glXSwapIntervalEXT!
The big change here is definitely nall/vector. The Windows, OS X and Qt
ports won't compile until you change some first/last strings to
left/right, but GTK will compile.
I'd be really grateful if anyone could stress-test nall/vector. Pretty
much everything I do relies on this class. If we introduce a bug, the
worst case scenario is my entire SFC game dump database gets corrupted,
or the byuu.org server gets compromised. So it's really critical that we
test the hell out of this right now.
The S-DD1 changes mean you need to update your installation of icarus
again. Also, even though the Lunar FMV never really worked on the
accuracy core anyway (it didn't initialize the PPU properly), it really
won't work now that we emulate the hard-limit of 16MiB for S-DD1 games.
byuu says:
Changelog:
- fixed SNES sprite priority regression from r17
- added nall/windows/guard.hpp to guard against global namespace
pollution (similar to nall/xorg/guard.hpp)
- almost fixed Windows compilation (still accuracy profile only, sorry)
- finished porting all of gba/ppu's registers over to the new .bit,.bits
format ... all GBA registers.cpp files gone now
- the "processors :=" line in the target-$(ui)/GNUmakefile is no longer
required
- processors += added to each emulator core
- duplicates are removed using the new nall/GNUmakefile's $(unique)
function
- SFC core can be compiled without the GB core now
- "-DSFC_SUPERGAMEBOY" is required to build in SGB support now (it's
set in target-tomoko/GNUmakefile)
- started once again on loki (higan/target-loki/) [as before, loki is
Linux/BSD only on account of needing hiro::Console]
loki shouldn't be too horrendous ... I hope. I just have the base
skeleton ready for now. But the code from v094r08 should be mostly
copyable over to it. It's just that it's about 50KiB of incredibly
tricky code that has to be just perfect, so it's not going to be quick.
But at least with the skeleton, it'll be a lot easier to pick away at it
as I want.
Windows compilation fix: move hiro/windows/header.hpp line 18 (header
guard) to line 16 instead.