bsnes/higan/processor/z80/instructions.cpp

948 lines
15 KiB
C++
Raw Normal View History

//legend:
// a = register A
// c = condition
// e = relative operand
// in = (operand)
// inn = (operand-word)
// irr = (register-word)
// o = opcode bits
// n = operand
// nn = operand-word
// r = register
auto Z80::ADD(uint8 x, uint8 y, bool c) -> uint8 {
uint9 z = x + y + c;
CF = z.bit(8);
NF = 0;
VF = ~(x ^ y) & (x ^ z) & 0x80;
XF = z.bit(3);
HF = (x ^ y ^ z) & 0x10;
YF = z.bit(5);
ZF = (uint8)z == 0;
SF = z.bit(7);
return z;
}
auto Z80::AND(uint8 x, uint8 y) -> uint8 {
uint8 z = x & y;
CF = 0;
NF = 0;
PF = parity(z);
XF = z.bit(3);
HF = 1;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
auto Z80::BIT(uint3 bit, uint8 x) -> void {
NF = 0;
HF = 1;
ZF = (x & 1 << bit) == 0;
}
auto Z80::DEC(uint8 x) -> uint8 {
uint8 z = x - 1;
NF = 1;
VF = z == 0x7f;
XF = z.bit(3);
HF = z.bits(0,3) == 0x0f;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
auto Z80::INC(uint8 x) -> uint8 {
uint8 z = x + 1;
NF = 0;
VF = z == 0x80;
XF = z.bit(3);
HF = z.bits(0,3) == 0x00;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
auto Z80::OR(uint8 x, uint8 y) -> uint8 {
uint8 z = x | y;
CF = 0;
NF = 0;
PF = parity(z);
XF = z.bit(3);
HF = 0;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
auto Z80::RES(uint3 bit, uint8 x) -> uint8 {
x &= ~(1 << bit);
return x;
}
auto Z80::RL(uint8 x) -> uint8 {
bool c = x.bit(7);
x = x << 1 | CF;
CF = c;
NF = 0;
PF = parity(x);
XF = x.bit(3);
HF = 0;
YF = x.bit(5);
ZF = x == 0;
SF = x.bit(7);
return x;
}
auto Z80::RLC(uint8 x) -> uint8 {
x = x << 1 | x >> 7;
CF = x.bit(0);
NF = 0;
PF = parity(x);
XF = x.bit(3);
HF = 0;
YF = x.bit(5);
ZF = x == 0;
SF = x.bit(7);
return x;
}
auto Z80::RR(uint8 x) -> uint8 {
bool c = x.bit(0);
x = x >> 1 | CF << 7;
CF = c;
NF = 0;
PF = parity(x);
XF = x.bit(3);
HF = 0;
YF = x.bit(5);
ZF = x == 0;
SF = x.bit(7);
return x;
}
auto Z80::RRC(uint8 x) -> uint8 {
x = x >> 1 | x << 7;
CF = x.bit(7);
NF = 0;
PF = parity(x);
XF = x.bit(3);
HF = 0;
YF = x.bit(5);
ZF = x == 0;
SF = x.bit(7);
return x;
}
auto Z80::SET(uint3 bit, uint8 x) -> uint8 {
x |= (1 << bit);
return x;
}
auto Z80::SLA(uint8 x) -> uint8 {
bool c = x.bit(7);
x = x << 1;
CF = c;
NF = 0;
PF = parity(x);
XF = x.bit(3);
HF = 0;
YF = x.bit(5);
ZF = x == 0;
SF = x.bit(7);
return x;
}
auto Z80::SLL(uint8 x) -> uint8 {
bool c = x.bit(7);
x = x << 1 | 1;
CF = c;
NF = 0;
PF = parity(x);
XF = x.bit(3);
HF = 0;
YF = x.bit(5);
ZF = x == 0;
SF = x.bit(7);
return x;
}
auto Z80::SRA(uint8 x) -> uint8 {
bool c = x.bit(0);
x = (int8)x >> 1;
CF = c;
NF = 0;
PF = parity(x);
XF = x.bit(3);
HF = 0;
YF = x.bit(5);
ZF = x == 0;
SF = x.bit(7);
return x;
}
auto Z80::SRL(uint8 x) -> uint8 {
bool c = x.bit(0);
x = x >> 1;
CF = c;
NF = 0;
PF = parity(x);
XF = x.bit(3);
HF = 0;
YF = x.bit(5);
ZF = x == 0;
SF = x.bit(7);
return x;
}
auto Z80::SUB(uint8 x, uint8 y, bool c) -> uint8 {
uint9 z = x - y - c;
CF = z.bit(8);
NF = 1;
VF = (x ^ y) & (x ^ z) & 0x80;
XF = z.bit(3);
HF = (x ^ y ^ z) & 0x10;
YF = z.bit(5);
ZF = (uint8)z == 0;
SF = z.bit(7);
return z;
}
auto Z80::XOR(uint8 x, uint8 y) -> uint8 {
uint8 z = x ^ y;
CF = 0;
NF = 0;
PF = parity(z);
XF = z.bit(3);
HF = 0;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
//
auto Z80::instructionADC_a_irr(uint16& x) -> void {
A = ADD(A, read(displace(x)), CF);
}
auto Z80::instructionADC_a_n() -> void {
A = ADD(A, operand(), CF);
}
auto Z80::instructionADC_a_r(uint8& x) -> void {
A = ADD(A, x, CF);
}
auto Z80::instructionADC_hl_rr(uint16& x) -> void {
wait(4);
auto lo = ADD(HL >> 0, x >> 0, CF);
wait(3);
auto hi = ADD(HL >> 8, x >> 8, CF);
HL = hi << 8 | lo << 0;
ZF = HL == 0;
}
auto Z80::instructionADD_a_irr(uint16& x) -> void {
A = ADD(A, read(displace(x)));
}
auto Z80::instructionADD_a_n() -> void {
A = ADD(A, operand());
}
auto Z80::instructionADD_a_r(uint8& x) -> void {
A = ADD(A, x);
}
auto Z80::instructionADD_hl_rr(uint16& x) -> void {
wait(4);
auto lo = ADD(HL >> 0, x >> 0);
wait(3);
auto hi = ADD(HL >> 8, x >> 8, CF);
HL = hi << 8 | lo << 0;
ZF = HL == 0;
}
auto Z80::instructionAND_a_irr(uint16& x) -> void {
A = AND(A, read(displace(x)));
}
auto Z80::instructionAND_a_n() -> void {
A = AND(A, operand());
}
auto Z80::instructionAND_a_r(uint8& x) -> void {
A = AND(A, x);
}
auto Z80::instructionBIT_o_irr(uint3 bit, uint16& x) -> void {
BIT(bit, read(displace(x)));
}
auto Z80::instructionBIT_o_r(uint3 bit, uint8& x) -> void {
BIT(bit, x);
}
auto Z80::instructionCALL_c_nn(bool c) -> void {
auto addr = operands();
if(!c) return;
wait(1);
push(PC);
PC = addr;
}
auto Z80::instructionCALL_nn() -> void {
auto addr = operands();
wait(1);
push(PC);
PC = addr;
}
auto Z80::instructionCCF() -> void {
CF = !CF;
NF = 0;
HF = !CF;
}
auto Z80::instructionCP_a_irr(uint16& x) -> void {
SUB(A, read(displace(x)));
}
auto Z80::instructionCP_a_n() -> void {
SUB(A, operand());
}
auto Z80::instructionCP_a_r(uint8& x) -> void {
SUB(A, x);
}
auto Z80::instructionCPD() -> void {
auto data = read(_HL--);
SUB(A, data);
VF = --BC > 0;
wait(5);
}
auto Z80::instructionCPDR() -> void {
instructionCPD();
if(!VF || ZF) return;
wait(5);
PC -= 2;
}
auto Z80::instructionCPI() -> void {
auto data = read(_HL++);
wait(5);
SUB(A, data);
VF = --BC > 0;
}
auto Z80::instructionCPIR() -> void {
instructionCPI();
if(!VF || ZF) return;
wait(5);
PC -= 2;
}
auto Z80::instructionCPL() -> void {
A = ~A;
NF = 1;
XF = A.bit(3);
HF = 1;
YF = A.bit(5);
}
auto Z80::instructionDAA() -> void {
uint8 lo = A.bits(0,3);
uint8 hi = A.bits(4,7);
uint8 diff;
if(CF) {
diff = lo <= 9 && !HF ? 0x60 : 0x66;
} else if(lo >= 10) {
diff = hi <= 8 ? 0x06 : 0x66;
} else if(hi >= 10) {
diff = HF ? 0x66 : 0x60;
} else {
diff = HF ? 0x06 : 0x00;
}
if(NF == 0) A += diff;
if(NF == 1) A -= diff;
CF = CF || (lo <= 9 ? hi >= 10 : hi >= 9);
PF = parity(A);
XF = A.bit(3);
HF = NF ? (HF && lo <= 5) : (lo >= 10);
YF = A.bit(5);
ZF = A == 0;
SF = A.bit(7);
}
auto Z80::instructionDEC_irr(uint16& x) -> void {
auto addr = displace(x);
auto data = read(addr);
wait(1);
write(addr, DEC(data));
}
auto Z80::instructionDEC_r(uint8& x) -> void {
x = DEC(x);
}
auto Z80::instructionDEC_rr(uint16& x) -> void {
wait(2);
x--;
}
auto Z80::instructionDI() -> void {
r.iff1 = 0;
r.iff2 = 0;
}
auto Z80::instructionDJNZ_e() -> void {
wait(1);
auto e = operand();
if(!--B) return;
wait(5);
PC += (int8)e;
}
auto Z80::instructionEI() -> void {
r.iff1 = 1;
r.iff2 = 1;
}
auto Z80::instructionEX_rr_rr(uint16& x, uint16& y) -> void {
auto z = x;
x = y;
y = z;
}
auto Z80::instructionEXX() -> void {
swap(BC, BC_);
swap(DE, DE_);
swap(_HL, HL_);
}
auto Z80::instructionHALT() -> void {
r.halt = 1;
}
auto Z80::instructionIM_o(uint2 code) -> void {
wait(4);
r.im = code;
}
auto Z80::instructionIN_a_in() -> void {
A = in(operand());
}
auto Z80::instructionIN_r_ic(uint8& x) -> void {
x = in(C);
}
auto Z80::instructionINC_irr(uint16& x) -> void {
auto addr = displace(x);
auto data = read(addr);
wait(1);
write(addr, INC(data));
}
auto Z80::instructionINC_r(uint8& x) -> void {
x = INC(x);
}
auto Z80::instructionINC_rr(uint16& x) -> void {
wait(2);
x++;
}
auto Z80::instructionIND() -> void {
wait(1);
auto data = in(C);
write(_HL--, data);
NF = 0;
ZF = --B > 0;
}
auto Z80::instructionINDR() -> void {
instructionIND();
if(!ZF) return;
wait(5);
PC -= 2;
}
auto Z80::instructionINI() -> void {
wait(1);
auto data = in(C);
write(_HL++, data);
NF = 0;
ZF = --B > 0;
}
auto Z80::instructionINIR() -> void {
instructionINI();
if(!ZF) return;
wait(5);
PC -= 2;
}
auto Z80::instructionJP_c_nn(bool c) -> void {
auto pc = operands();
if(c) r.pc = pc;
}
auto Z80::instructionJP_rr(uint16& x) -> void {
PC = x;
}
auto Z80::instructionJR_c_e(bool c) -> void {
auto e = operand();
if(c) wait(5), r.pc += (int8)e;
}
auto Z80::instructionLD_a_inn() -> void {
A = read(operands());
}
auto Z80::instructionLD_a_irr(uint16& x) -> void {
A = read(displace(x));
}
auto Z80::instructionLD_inn_a() -> void {
write(operands(), A);
}
auto Z80::instructionLD_inn_rr(uint16& x) -> void {
auto addr = operands();
write(addr + 0, x >> 0);
write(addr + 1, x >> 8);
}
auto Z80::instructionLD_irr_a(uint16& x) -> void {
write(displace(x), A);
}
auto Z80::instructionLD_irr_n(uint16& x) -> void {
auto addr = displace(x);
write(addr, operand());
}
auto Z80::instructionLD_irr_r(uint16& x, uint8& y) -> void {
write(displace(x), y);
}
auto Z80::instructionLD_r_n(uint8& x) -> void {
x = operand();
}
auto Z80::instructionLD_r_irr(uint8& x, uint16& y) -> void {
x = read(displace(y));
}
auto Z80::instructionLD_r_r(uint8& x, uint8& y) -> void {
x = y;
}
//LD to/from I/R requires an extra T-cycle
auto Z80::instructionLD_r_r1(uint8& x, uint8& y) -> void {
wait(1);
x = y;
}
auto Z80::instructionLD_rr_inn(uint16& x) -> void {
auto addr = operands();
x.byte(0) = read(addr + 0);
x.byte(1) = read(addr + 1);
}
auto Z80::instructionLD_rr_nn(uint16& x) -> void {
x = operands();
}
auto Z80::instructionLD_sp_rr(uint16& x) -> void {
wait(2);
SP = x;
}
auto Z80::instructionLDD() -> void {
auto data = read(_HL--);
write(DE--, data);
wait(2);
NF = 0;
VF = --BC > 0;
HF = 0;
}
auto Z80::instructionLDDR() -> void {
instructionLDD();
if(!VF) return;
wait(5);
PC -= 2;
}
auto Z80::instructionLDI() -> void {
auto data = read(_HL++);
write(DE++, data);
wait(2);
NF = 0;
VF = --BC > 0;
HF = 0;
}
auto Z80::instructionLDIR() -> void {
instructionLDI();
if(!VF) return;
wait(5);
PC -= 2;
}
auto Z80::instructionNEG() -> void {
A = SUB(0, A);
}
auto Z80::instructionNOP() -> void {
}
auto Z80::instructionOR_a_irr(uint16& x) -> void {
A = OR(A, read(displace(x)));
}
auto Z80::instructionOR_a_n() -> void {
A = OR(A, operand());
}
auto Z80::instructionOR_a_r(uint8& x) -> void {
A = OR(A, x);
}
auto Z80::instructionOTDR() -> void {
instructionOUTD();
if(!ZF) return;
wait(5);
PC -= 2;
}
auto Z80::instructionOTIR() -> void {
instructionOUTI();
if(!ZF) return;
wait(5);
PC -= 2;
}
auto Z80::instructionOUT_ic_r(uint8& x) -> void {
out(C, x);
}
auto Z80::instructionOUT_n_a() -> void {
auto addr = operand();
out(addr, A);
}
auto Z80::instructionOUTD() -> void {
wait(1);
auto data = read(_HL--);
out(C, data);
NF = 1;
ZF = --B > 0;
}
auto Z80::instructionOUTI() -> void {
wait(1);
auto data = read(_HL++);
out(C, data);
NF = 1;
ZF = --B > 0;
}
auto Z80::instructionPOP_rr(uint16& x) -> void {
x = pop();
}
auto Z80::instructionPUSH_rr(uint16& x) -> void {
wait(1);
push(x);
}
auto Z80::instructionRES_o_irr(uint3 bit, uint16& x) -> void {
auto addr = displace(x);
write(addr, RES(bit, read(addr)));
}
auto Z80::instructionRES_o_r(uint3 bit, uint8& x) -> void {
x = RES(bit, x);
}
auto Z80::instructionRET() -> void {
wait(1);
PC = pop();
}
auto Z80::instructionRET_c(bool c) -> void {
wait(1);
if(!c) return;
PC = pop();
}
auto Z80::instructionRETI() -> void {
PC = pop();
//todo: there's more to RETI than just PC restore ...
}
auto Z80::instructionRETN() -> void {
PC = pop();
r.iff1 = r.iff2;
}
auto Z80::instructionRL_irr(uint16& x) -> void {
auto addr = displace(x);
write(addr, RL(read(addr)));
}
auto Z80::instructionRL_r(uint8& x) -> void {
x = RL(x);
}
auto Z80::instructionRLA() -> void {
bool c = A.bit(7);
A = A << 1 | CF;
CF = c;
NF = 0;
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
}
auto Z80::instructionRLC_irr(uint16& x) -> void {
auto addr = displace(x);
write(addr, RLC(read(addr)));
}
auto Z80::instructionRLC_r(uint8& x) -> void {
x = RLC(x);
}
auto Z80::instructionRLCA() -> void {
bool c = A.bit(7);
A = A << 1 | c;
CF = c;
NF = 0;
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
}
auto Z80::instructionRLD() -> void {
auto data = read(HL);
wait(1);
write(HL, (data << 4) | (A & 0x0f));
wait(3);
A = (A & 0xf0) | (data >> 4);
NF = 0;
PF = parity(A);
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
ZF = A == 0;
SF = A.bit(7);
}
auto Z80::instructionRR_irr(uint16& x) -> void {
auto addr = displace(x);
write(addr, RR(read(addr)));
}
auto Z80::instructionRR_r(uint8& x) -> void {
x = RR(x);
}
auto Z80::instructionRRA() -> void {
bool c = A.bit(0);
A = CF << 7 | A >> 1;
CF = c;
NF = 0;
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
}
auto Z80::instructionRRC_irr(uint16& x) -> void {
auto addr = displace(x);
write(addr, RRC(read(addr)));
}
auto Z80::instructionRRC_r(uint8& x) -> void {
x = RRC(x);
}
auto Z80::instructionRRCA() -> void {
bool c = A.bit(0);
A = c << 7 | A >> 1;
CF = c;
NF = 0;
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
}
auto Z80::instructionRRD() -> void {
auto data = read(HL);
wait(1);
write(HL, (data >> 4) | (A << 4));
wait(3);
A = (A & 0xf0) | (data & 0x0f);
NF = 0;
PF = parity(A);
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
ZF = A == 0;
SF = A.bit(7);
}
auto Z80::instructionRST_o(uint3 vector) -> void {
wait(1);
push(PC);
PC = vector << 3;
}
auto Z80::instructionSBC_a_irr(uint16& x) -> void {
A = SUB(A, read(displace(x)), CF);
}
auto Z80::instructionSBC_a_n() -> void {
A = SUB(A, operand(), CF);
}
auto Z80::instructionSBC_a_r(uint8& x) -> void {
A = SUB(A, x, CF);
}
auto Z80::instructionSBC_hl_rr(uint16& x) -> void {
wait(4);
auto lo = SUB(HL >> 0, x >> 0, CF);
wait(3);
auto hi = SUB(HL >> 8, x >> 8, CF);
HL = hi << 8 | lo << 0;
ZF = HL == 0;
}
auto Z80::instructionSCF() -> void {
CF = 1;
NF = 0;
HF = 0;
}
auto Z80::instructionSET_o_irr(uint3 bit, uint16& x) -> void {
auto addr = displace(x);
write(addr, SET(bit, read(addr)));
}
auto Z80::instructionSET_o_r(uint3 bit, uint8& x) -> void {
x = SET(bit, x);
}
auto Z80::instructionSLA_irr(uint16& x) -> void {
auto addr = displace(x);
write(addr, SLA(read(addr)));
}
auto Z80::instructionSLA_r(uint8& x) -> void {
x = SLA(x);
}
auto Z80::instructionSLL_irr(uint16& x) -> void {
auto addr = displace(x);
write(addr, SLL(read(addr)));
}
auto Z80::instructionSLL_r(uint8& x) -> void {
x = SLL(x);
}
auto Z80::instructionSRA_irr(uint16& x) -> void {
auto addr = displace(x);
write(addr, SRA(read(addr)));
}
auto Z80::instructionSRA_r(uint8& x) -> void {
x = SRA(x);
}
auto Z80::instructionSRL_irr(uint16& x) -> void {
auto addr = displace(x);
write(addr, SRL(read(addr)));
}
auto Z80::instructionSRL_r(uint8& x) -> void {
x = SRL(x);
}
auto Z80::instructionSUB_a_irr(uint16& x) -> void {
A = SUB(A, read(displace(x)));
}
auto Z80::instructionSUB_a_n() -> void {
A = SUB(A, operand());
}
auto Z80::instructionSUB_a_r(uint8& x) -> void {
A = SUB(A, x);
}
auto Z80::instructionXOR_a_irr(uint16& x) -> void {
A = XOR(A, read(displace(x)));
}
auto Z80::instructionXOR_a_n() -> void {
A = XOR(A, operand());
}
auto Z80::instructionXOR_a_r(uint8& x) -> void {
A = XOR(A, x);
}