bsnes/higan/fc/system/system.cpp

96 lines
2.2 KiB
C++
Raw Normal View History

#include <fc/fc.hpp>
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
namespace Famicom {
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
Update to v098r04 release. byuu says: Changelog: - SFC: fixed behavior of 21fx $21fe register when no device is connected (must return zero) - SFC: reduced 21fx buffer size to 1024 bytes in both directions to mirror the FT232H we are using - SFC: eliminated dsp/modulo-array.hpp [1] - higan: implemented higan/video interface and migrated all cores to it [2] [1] the echo history buffer was 8-bytes, so there was no need for it at all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and has very weird behavior ... but there's only a single location in the code where it actually writes to this buffer. It's much easier to just write to the buffer three times there instead of implementing an entire class just to abstract away two lines of code. This change actually boosted the speed from ~124.5fps to around ~127.5fps, but that's within the margin of error for GCC. I doubt it's actually faster this way. The DSP core could really use a ton of work. It comes from a port of blargg's spc_dsp to my coding style, but he was extremely fond of using 32-bit signed integers everywhere. There's a lot of opportunity to remove red tape masking by resizing the variables to their actual state sizes. I really need to find where I put spc_dsp6.sfc from blargg. It's a great test to verify if I've made any mistakes in my implementation that would cause regressions. Don't suppose anyone has it? [2] so again, the idea is that higan/audio and higan/video are going to sit between the emulation cores and the user interfaces. The hope is to output raw encoding data from the emulation cores without having to worry about the video display format (generally 24-bit RGB) of the host display. And also to avoid having to repeat myself with eg three separate implementations of interframe blending, and so on. Furthermore, the idea is that the user interface can configure its side of the settings, and the emulation cores can configure their sides. Thus, neither has to worry about the other end. And now we can spin off new user interfaces much easier without having to mess with all of these things. Right now, I've implemented color emulation, interframe blending and SNES horizontal color bleed. I did not implement scanlines (and interlace effects for them) yet, but I probably will at some point. Further, for right now, the WonderSwan/Color screen rotation is busted and will only show games in the horizontal orientation. Obviously this must be fixed before the next official release, but I'll want to think about how to implement it. Also, the SNES light gun pointers are missing for now. Things are a bit messy right now as I've gone through several revisions of how to handle these things, so a good house cleaning is in order once everything is feature-complete again. I need to sit down and think through how and where I want to handle things like light gun cursors, LCD icons, and maybe even rasterized text messages. And obviously ... higan/audio is still just nall::DSP's headers. I need to revamp that whole interface. I want to make it quite powerful with a true audio mixer so I can handle things like SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.) The video system has the concept of "effects" for things like color bleed and interframe blending. I want to extend on this with useful other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x filter, etc. I'd also like to restore the saturation/gamma/luma adjustment sliders ... I always liked allowing people to compensate for their displays without having to change settings system-wide. Lastly, I've always wanted to see some audio effects. Although I doubt we'll ever get my dream of CoreAudio-style profiles, I'd like to get some basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
#include "video.cpp"
#include "serialization.cpp"
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
System system;
Scheduler scheduler;
Cheat cheat;
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
auto System::run() -> void {
if(scheduler.enter() == Scheduler::Event::Frame) ppu.refresh();
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
}
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
auto System::runToSave() -> void {
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
scheduler.synchronize(cpu);
scheduler.synchronize(apu);
scheduler.synchronize(ppu);
scheduler.synchronize(cartridge);
for(auto peripheral : cpu.peripherals) scheduler.synchronize(*peripheral);
}
auto System::load(Emulator::Interface* interface) -> bool {
Update to v102r28 release. byuu says: Changelog: - higan: `Emulator::<Platform::load>()` now returns a struct containing both a path ID and a string option - higan: `Emulator::<Platform::load>()` now takes an optional final argument of string options - fc: added PAL emulation (finally, only took six years) - md: added PAL emulation - md: fixed address parameter to `VDP::Sprite::write()`; fixes missing sprites in Super Street Fighter II - md: emulated HIRQ counter; fixes many games - Super Street Fighter II - status bar - Altered Beast - status bar - Sonic the Hedgehog - Labyrinth Zone - water effect - etc. - ms: added PAL emulation - sfc: added the ability to override the default region auto-detection - sfc: removed "system.region" override setting from `Super Famicom.sys` - tomoko: added options list to game folder load dialog window - tomoko: added the ability to specify game folder load options on the command-line So, basically ... Sega forced a change with the way region detection works. You end up with games that can run on multiple regions, and the content changes accordingly. Bare Knuckle in NTSC-J mode will become Streets of Rage in NTSC-U mode. Some games can even run in both NTSC and PAL mode. In my view, there should be a separate ROM for each region a game was released in, even if the ROM content were identical. But unfortunately that's not how things were done by anyone else. So to support this, the higan load dialog now has a drop-down at the bottom-right, where you can choose the region to load games from. On the SNES, it defaults to "Auto", which will pull the region setting from the manifest, or fall back on NTSC. On the Mega Drive ... unfortunately, I can't auto-detect the region from the ROM header. $1f0 is supposed to contain a string like "JUE", but instead you get games like Maui Mallard that put an "A" there, and other such nonsense. Sega was far more lax than Nintendo with the ROM header validity. So for now at least, you have to manually select your region every time you play a Mega Drive game, thus you have "NTSC-J", "NTSC-U", and "PAL". The same goes for the Master System for the same reason, but there's only "NTSC" and "PAL" here. I'm not sure if games have a way to detect domestic vs international consoles. And for now ... the Famicom is the same as well, with no auto-detection. I'd sincerely hope iNES has a header bit for the region, but I didn't bother with updating icarus to support that yet. The way to pass these parameters on the command-line is to prefix the game path with "option:", so for example:    higan "PAL:/path/to/Sonic the Hedgehog (USA, Europe).md" If you don't provide a prefix, it uses the default (NTSC-J, NTSC, or Auto.) Obviously, it's not possible to pass parameters with drag-and-drop, so you will always get the default option in said case.
2017-06-20 12:34:50 +00:00
information = {};
if(auto fp = platform->open(ID::System, "manifest.bml", File::Read, File::Required)) {
Update to v099r06 release. byuu says: Changelog: - Super Famicom core converted to use nall/vfs - excludes Super Game Boy; since that's invoked from inside the GB core This was definitely the major obstacle to test nall/vfs' applicability. Things worked out pretty great in the end. We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB (cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes a very large source of indirection. Before it was: "coprocessor <=> cartridge <=> interface" for loading and saving data, and now it's just "coprocessor <=> cartridge". And it may make sense to eventually turn this into just "cartridge -> coprocessor" by making each coprocessor class handle its own markup parsing. It's nice to have all the manifest parsing in one location (well, sans MSU1); but it's also nice for loading/unloading to be handled by each coprocessor itself. So I'll have to think longer about that one. I've also started handling Interface::save() differently. Instead of keeping track of memory IDs and filenames, and iterating through that vector of objects ... instead I now have a system that mirrors the markup parsing on loading, but handles saving instead. This was actually the reason the code size savings weren't more significant, but I like this style more. As before, it removes an extra level of indirection. So ... next up, I need to port over the GB, then GBA, then WS cores. These shouldn't take too long since they're all very simple with just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then after that, gut all the old stream stuff from nall and higan. Kill the (load,save)Request stuff, rename the load(Gamepak)Request to something simpler, and then we should be good. Anyway ... these are some huge changes.
2016-06-21 05:22:52 +00:00
information.manifest = fp->reads();
} else {
return false;
}
Update to v094r39 release. byuu says: Changelog: - SNES mid-scanline BGMODE fixes finally merged (can run atx2.zip{mode7.smc}+mtest(2).sfc properly now) - Makefile now discards all built-in rules and variables - switch on bool warning disabled for GCC now as well (was already disabled for Clang) - when loading a game, if any required files are missing, display a warning message box (manifest.bml, program.rom, bios.rom, etc) - when loading a game (or a game slot), if manifest.bml is missing, it will invoke icarus to try and generate it - if that fails (icarus is missing or the folder is bad), you will get a warning telling you that the manifest can't be loaded The warning prompt on missing files work for both games and the .sys folders and their files. For some reason, failing to load the DMG/CGB BIOS is causing a crash before I can display the modal dialog. I have no idea why, and the stack frame backtrace is junk. I also can't seem to abort the failed loading process. If I call Program::unloadMedia(), I get a nasty segfault. Again with a really nasty stack trace. So for now, it'll just end up sitting there emulating an empty ROM (solid black screen.) In time, I'd like to fix that too. Lastly, I need a better method than popen for Windows. popen is kind of ugly and flashes a console window for a brief second even if the application launched is linked with -mwindows. Not sure if there even is one (I need to read the stdout result, so CreateProcess may not work unless I do something nasty like "> %tmp%/temp") I'm also using the regular popen instead of _wpopen, so for this WIP, it won't work if your game folder has non-English letters in the path.
2015-08-04 09:00:55 +00:00
auto document = BML::unserialize(information.manifest);
Update to v099r08 release. byuu says: Changelog: - nall/vfs work 100% completed; even SGB games load now - emulation cores now call load() for the base cartridges as well - updated port/device handling; portmask is gone; device ID bug should be resolved now - SNES controller port 1 multitap option was removed - added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp VRAM::size=0x10000; to enable) Overall, nall/vfs was a huge success!! We've substantially reduced the amount of boilerplate code everywhere, while still allowing (even easier than before) support for RAM-based game loading/saving. All of nall/stream is dead and buried. I am considering removing Emulator::Interface::Medium::id and/or bootable flag. Or at least, doing something different with it. The values for the non-bootable GB/BS/ST entries duplicate the ID that is supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use this as the hardware revision selection ID, and then gut non-bootable options. There's really no reason for that to be there. I think at one point I was using it to generate library tabs for non-bootable systems, but we don't do that anymore anyway. Emulator::Interface::load() may not need the required flag anymore ... it doesn't really do anything right now anyway. I have a few reasons for having the cores load the base cartridge. Most importantly, it is going to enable a special mode for the WonderSwan / WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's possible to boot these systems with no games inserted to set user profile information and such. There are also other systems that may accept being booted without a cartridge. To reach this state, you would load a game and then cancel the load dialog. Right now, this results in games not loading. The second reason is this prevents nasty crashes when loading fails. So if you're missing a required manifest, the emulator won't die a violent death anymore. It's able to back out at any point. The third reason is consistency: loading the base cartridge works the same as the slot cartridges. The fourth reason is Emulator::Interface::open(uint pathID) values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This complicated things because you had to pass the correct ID. But now instead, Emulator::Interface::load() returns maybe<uint> that is nothing when no game is selected, and a pathID for a valid game. And now open() can take this ID to access this game's folder contents. The downside, which is temporary, is that command-line loading is currently broken. But I do intend on restoring it. In fact, I want to do better than before and allow multi-cart booting from the command-line by specifying the base cartridge and then slot cartridges. The idea should be pretty simple: keep a queue of pending filenames that we fill from the command-line and/or drag-and-drop operations on the main window, and then empty out the queue or prompt for load dialogs from the UI when booting a system. This also might be a bit more unorthodox compared to the traditional emulator design of "loadGame(filename)", but ... oh well. It's easy enough still. The port/device changes are fun. We simplified things quite a bit. The portmask stuff is gone entirely. While ports and devices keep IDs, this is really just sugar-coating so UIs can use for(auto& port : emulator->ports) and access port.id; rather than having to use for(auto n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... }; but they should otherwise generally be identical to the order they appear in their respective ranges. Still, don't rely on that. Input::id is gone. There was no point since we also got rid of the nasty Input::order vector. Since I was in here, I went ahead and caved on the pedantics and renamed Input::guid to Input::userData. I removed the SNES controller port 1 multitap option. Basically, the only game that uses this is N-warp Daisakusen and, no offense to d4s, it's not really a good game anyway. It's just a quick demo to show 8-players on the SNES. But in the UI, all it does is confuse people into wasting time mapping a controller they're never going to use, and they're going to wonder which port to use. If more compelling use cases for 8-players comes about, we can reconsider this. I left all the code to support this in place, so all you have to do is uncomment one line to enable it again. We now have dsnes emulation! :D If you change PPU::VRAM::size to 0x10000 (words), then you should now have 128KiB of VRAM. Even better, it serializes the used-VRAM size, so your save states shouldn't crash on you if you swap between the two (though if you try this, you're nuts.) Note that this option does break commercial software. Yoshi's Island in particular. This game is setting A15 on some PPU register writes, but not on others. The end result of this is things break horribly in-game. Also, this option is causing a very tiny speed hit for obvious reasons with the variable masking value (I'm even using size-1 for now.) Given how niche this is, I may just leave it a compile-time constant to avoid the overhead cost. Otherwise, if we keep the option, then it'll go into Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future. ---- Finally, some fun for my OCD ... my monitor suddenly cut out on me in the middle of working on this WIP, about six hours in of non-stop work. Had to hit a bunch of ctrl+alt+fN commands (among other things) and trying to log in headless on another TTY to do issue commands, trying to recover the display. Finally power cycled the monitor and it came back up. So all my typing ended up going to who knows where. Usually this sort of thing terrifies me enough that I scrap a WIP and start over to ensure I didn't screw anything up during the crashed screen when hitting keys randomly. Obviously, everything compiles and appears to work fine. And I know it's extremely paranoid, but OCD isn't logical, so ... I'm going to go over every line of the 100KiB r07->r08 diff looking for any corruption/errors/whatever. ---- Review finished. r08 diff review notes: - fc/controller/gamepad/gamepad.cpp: use uint device = ID::Device::Gamepad; not id = ...; - gb/cartridge/cartridge.hpp: remove redundant uint _pathID; (in Information::pathID already) - gb/cartridge/cartridge.hpp: pull sha256 inside Information - sfc/cartridge/load/cpp: add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more descriptive - sfc/controller/gamepad/gamepad.cpp: use uint device = ID::Device::Gamepad; not id = ...; - sfc/interface/interface.cpp: remove n variable from the Multitap device input generation loop (now unused) - sfc/interface/interface.hpp: put struct Port above struct Device like the other classes - ui-tomoko: cheats.bml is reading from/writing to mediumPaths(0) [system folder instead of game folder] - ui-tomoko: instead of mediumPaths(1) - call emulator->metadataPathID() or something like that
2016-06-24 12:16:53 +00:00
if(!cartridge.load()) return false;
Update to v103r01 release. byuu says: Changelog: - nall/dsp: improve one pole coefficient calculations [Fatbag] - higan/audio: reworked filters to support selection of either one pole (first-order) or biquad (second-order) filters - note: the design is not stable yet; so forks should not put too much effort into synchronizing with this change yet - fc: added first-order filters as per NESdev wiki (90hz lowpass + 440hz lowpass + 14khz highpass) - fc: created separate NTSC-J and NTSC-U regions - NESdev wiki says the Japanese Famicom uses a separate audio filtering strategy, but details are fuzzy - there's also cartridge audio output being disabled on NES units; and differences with controllers - this stuff will be supported in the future, just adding the support for it now - gba: corrected serious bugs in PSG wave channel emulation [Cydrak] - note that if there are still bugs here, it's my fault - md/psg,ym2612: added first-order low-pass 2840hz filter to match VA3-VA6 Mega Drives - md/psg: lowered volume relative to the YM2612 - using 0x1400; multiple people agreed it was the closest to the hardware recordings against a VA6 - ms,md/psg: don't serialize the volume levels array - md/vdp: Hblank bit acts the same during Vblank as outside of it (it isn't always set during Vblank) - md/vdp: return isPAL in bit 0 of control port reads - tomoko: change command-line option separator from : to | - [Editor's note: This change was present in the public v103, but it's in this changelog because it was made after the v103 WIP] - higan/all: change the 20hz high-pass filters from second-order three-pass to first-order one-pass - these filters are meant to remove DC bias, but I honestly can't hear a difference with or without them - so there's really no sense wasting CPU power with an extremely powerful filter here Things I did not do: - change icarus install rule - work on 8-bit Mega Drive SRAM - work on Famicom or Mega Drive region detection heuristics in icarus My long-term dream plan is to devise a special user-configurable filtering system where you can set relative volumes and create your own list of filters (any number of them in any order at any frequency), that way people can make the systems sound however they want. Right now, the sanest place to put this information is inside the $system.sys/manifest.bml files. But that's not very user friendly, and upgrading to new versions will lose these changes if you don't copy them over manually. Of course, cluttering the GUI with a fancy filter editor is probably supreme overkill for 99% of users, so maybe that's fine.
2017-06-26 01:41:58 +00:00
if(cartridge.region() == "NTSC-J") {
information.region = Region::NTSCJ;
information.frequency = Emulator::Constants::Colorburst::NTSC * 6.0;
}
if(cartridge.region() == "NTSC-U") {
information.region = Region::NTSCU;
Update to v103 WIP release. byuu says (in the WIP forum): Changelog: - higan: cheat codes accept = and ? separators now - the new preferred code format is: address=value or address=if-match?value - the old code format of address/value and address/if-match/value will continue to work - higan: cheats.bml is no longer included with the base distribution - mightymo stopped updating it in 2015, and it's not source code; it can still be pulled in from older releases - fc: improved PAL mode timing; use PAL APU timing tables; fix PAL noise period table [hex\_usr] - md: support aborting a Z80 bus wait in order to capture save states without freezing - note that this will violate accuracy; but in practice a slight desync is better than an emulator deadlock - sfc: revert DSP ENDX randomization for now (want to research it more before deploying in an official release) - sfc: fix Super Famicom.sys/manifest.bml APU RAM size [hex\_usr] - tomoko: cleaned up make install rules - hiro/cocoa: use ABGR for pixel data [Sintendo] Note: I forgot to change the command-line and drag-and-drop separator from : to | in this WIP. However, it is corrected in the v103 official binary and source published on download.byuu.org. Sorry about that, I know it makes the Git repository history more difficult. I'm not concerned whether the : → | change is part of v103 or v103r01 in the repository, and will leave this to your discretion, Screwtape. I also still need to set the VDP bit to indicate PAL mode in the Mega Drive core. This is what happens when I have 47 things I have to do, given how lousy my memory is. I miss things.
2017-06-22 06:04:07 +00:00
information.frequency = Emulator::Constants::Colorburst::NTSC * 6.0;
Update to v102r28 release. byuu says: Changelog: - higan: `Emulator::<Platform::load>()` now returns a struct containing both a path ID and a string option - higan: `Emulator::<Platform::load>()` now takes an optional final argument of string options - fc: added PAL emulation (finally, only took six years) - md: added PAL emulation - md: fixed address parameter to `VDP::Sprite::write()`; fixes missing sprites in Super Street Fighter II - md: emulated HIRQ counter; fixes many games - Super Street Fighter II - status bar - Altered Beast - status bar - Sonic the Hedgehog - Labyrinth Zone - water effect - etc. - ms: added PAL emulation - sfc: added the ability to override the default region auto-detection - sfc: removed "system.region" override setting from `Super Famicom.sys` - tomoko: added options list to game folder load dialog window - tomoko: added the ability to specify game folder load options on the command-line So, basically ... Sega forced a change with the way region detection works. You end up with games that can run on multiple regions, and the content changes accordingly. Bare Knuckle in NTSC-J mode will become Streets of Rage in NTSC-U mode. Some games can even run in both NTSC and PAL mode. In my view, there should be a separate ROM for each region a game was released in, even if the ROM content were identical. But unfortunately that's not how things were done by anyone else. So to support this, the higan load dialog now has a drop-down at the bottom-right, where you can choose the region to load games from. On the SNES, it defaults to "Auto", which will pull the region setting from the manifest, or fall back on NTSC. On the Mega Drive ... unfortunately, I can't auto-detect the region from the ROM header. $1f0 is supposed to contain a string like "JUE", but instead you get games like Maui Mallard that put an "A" there, and other such nonsense. Sega was far more lax than Nintendo with the ROM header validity. So for now at least, you have to manually select your region every time you play a Mega Drive game, thus you have "NTSC-J", "NTSC-U", and "PAL". The same goes for the Master System for the same reason, but there's only "NTSC" and "PAL" here. I'm not sure if games have a way to detect domestic vs international consoles. And for now ... the Famicom is the same as well, with no auto-detection. I'd sincerely hope iNES has a header bit for the region, but I didn't bother with updating icarus to support that yet. The way to pass these parameters on the command-line is to prefix the game path with "option:", so for example:    higan "PAL:/path/to/Sonic the Hedgehog (USA, Europe).md" If you don't provide a prefix, it uses the default (NTSC-J, NTSC, or Auto.) Obviously, it's not possible to pass parameters with drag-and-drop, so you will always get the default option in said case.
2017-06-20 12:34:50 +00:00
}
if(cartridge.region() == "PAL") {
information.region = Region::PAL;
Update to v103 WIP release. byuu says (in the WIP forum): Changelog: - higan: cheat codes accept = and ? separators now - the new preferred code format is: address=value or address=if-match?value - the old code format of address/value and address/if-match/value will continue to work - higan: cheats.bml is no longer included with the base distribution - mightymo stopped updating it in 2015, and it's not source code; it can still be pulled in from older releases - fc: improved PAL mode timing; use PAL APU timing tables; fix PAL noise period table [hex\_usr] - md: support aborting a Z80 bus wait in order to capture save states without freezing - note that this will violate accuracy; but in practice a slight desync is better than an emulator deadlock - sfc: revert DSP ENDX randomization for now (want to research it more before deploying in an official release) - sfc: fix Super Famicom.sys/manifest.bml APU RAM size [hex\_usr] - tomoko: cleaned up make install rules - hiro/cocoa: use ABGR for pixel data [Sintendo] Note: I forgot to change the command-line and drag-and-drop separator from : to | in this WIP. However, it is corrected in the v103 official binary and source published on download.byuu.org. Sorry about that, I know it makes the Git repository history more difficult. I'm not concerned whether the : → | change is part of v103 or v103r01 in the repository, and will leave this to your discretion, Screwtape. I also still need to set the VDP bit to indicate PAL mode in the Mega Drive core. This is what happens when I have 47 things I have to do, given how lousy my memory is. I miss things.
2017-06-22 06:04:07 +00:00
information.frequency = Emulator::Constants::Colorburst::PAL * 6.0;
Update to v102r28 release. byuu says: Changelog: - higan: `Emulator::<Platform::load>()` now returns a struct containing both a path ID and a string option - higan: `Emulator::<Platform::load>()` now takes an optional final argument of string options - fc: added PAL emulation (finally, only took six years) - md: added PAL emulation - md: fixed address parameter to `VDP::Sprite::write()`; fixes missing sprites in Super Street Fighter II - md: emulated HIRQ counter; fixes many games - Super Street Fighter II - status bar - Altered Beast - status bar - Sonic the Hedgehog - Labyrinth Zone - water effect - etc. - ms: added PAL emulation - sfc: added the ability to override the default region auto-detection - sfc: removed "system.region" override setting from `Super Famicom.sys` - tomoko: added options list to game folder load dialog window - tomoko: added the ability to specify game folder load options on the command-line So, basically ... Sega forced a change with the way region detection works. You end up with games that can run on multiple regions, and the content changes accordingly. Bare Knuckle in NTSC-J mode will become Streets of Rage in NTSC-U mode. Some games can even run in both NTSC and PAL mode. In my view, there should be a separate ROM for each region a game was released in, even if the ROM content were identical. But unfortunately that's not how things were done by anyone else. So to support this, the higan load dialog now has a drop-down at the bottom-right, where you can choose the region to load games from. On the SNES, it defaults to "Auto", which will pull the region setting from the manifest, or fall back on NTSC. On the Mega Drive ... unfortunately, I can't auto-detect the region from the ROM header. $1f0 is supposed to contain a string like "JUE", but instead you get games like Maui Mallard that put an "A" there, and other such nonsense. Sega was far more lax than Nintendo with the ROM header validity. So for now at least, you have to manually select your region every time you play a Mega Drive game, thus you have "NTSC-J", "NTSC-U", and "PAL". The same goes for the Master System for the same reason, but there's only "NTSC" and "PAL" here. I'm not sure if games have a way to detect domestic vs international consoles. And for now ... the Famicom is the same as well, with no auto-detection. I'd sincerely hope iNES has a header bit for the region, but I didn't bother with updating icarus to support that yet. The way to pass these parameters on the command-line is to prefix the game path with "option:", so for example:    higan "PAL:/path/to/Sonic the Hedgehog (USA, Europe).md" If you don't provide a prefix, it uses the default (NTSC-J, NTSC, or Auto.) Obviously, it's not possible to pass parameters with drag-and-drop, so you will always get the default option in said case.
2017-06-20 12:34:50 +00:00
}
this->interface = interface;
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
serializeInit();
return information.loaded = true;
}
auto System::save() -> void {
cartridge.save();
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
}
2013-01-14 12:10:20 +00:00
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
auto System::unload() -> void {
if(!loaded()) return;
cpu.peripherals.reset();
controllerPort1.unload();
controllerPort2.unload();
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
cartridge.unload();
information.loaded = false;
}
Update to v105r1 release. byuu says: Changelog: - higan: readded support for soft-reset to Famicom, Super Famicom, Mega Drive cores (work in progress) - handhelds lack soft reset obviously - the PC Engine also lacks a physical reset button - the Master System's reset button acts like a gamepad button, so can't show up in the menu - Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80) RAM - Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou [Jonas Quinn] - Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu Monogatari II's real-time clock [Talarubi] - Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou Zero's real-time clock [Talarubi] - Super Famicom: removed `*::init()` functions, as they were never used - Super Famicom: removed all but two `*::load()` functions, as they were not used - higan: added option to auto-save backup RAM every five seconds (enabled by default) - this is in case the emulator crashes, or there's a power outage; turn it off under advanced settings if you want - libco: updated license from public domain to ISC, for consistency with nall, ruby, hiro - nall: Linux compiler defaults to g++; override with g++-version if g++ is <= 4.8 - FreeBSD compiler default is going to remain g++49 until my dev box OS ships with g++ >= 4.9 Errata: I have weird RAM initialization constants, thanks to hex_usr and onethirdxcubed for both finding this: http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184 I'll remove this in the next WIP.
2017-11-06 22:05:54 +00:00
auto System::power(bool reset) -> void {
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
Emulator::video.reset();
Emulator::video.setInterface(interface);
configureVideoPalette();
configureVideoEffects();
Emulator::audio.reset();
Emulator::audio.setInterface(interface);
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
scheduler.reset();
Update to v102r02 release. byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode.
2017-01-22 21:04:26 +00:00
cartridge.power();
Update to v105r1 release. byuu says: Changelog: - higan: readded support for soft-reset to Famicom, Super Famicom, Mega Drive cores (work in progress) - handhelds lack soft reset obviously - the PC Engine also lacks a physical reset button - the Master System's reset button acts like a gamepad button, so can't show up in the menu - Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80) RAM - Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou [Jonas Quinn] - Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu Monogatari II's real-time clock [Talarubi] - Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou Zero's real-time clock [Talarubi] - Super Famicom: removed `*::init()` functions, as they were never used - Super Famicom: removed all but two `*::load()` functions, as they were not used - higan: added option to auto-save backup RAM every five seconds (enabled by default) - this is in case the emulator crashes, or there's a power outage; turn it off under advanced settings if you want - libco: updated license from public domain to ISC, for consistency with nall, ruby, hiro - nall: Linux compiler defaults to g++; override with g++-version if g++ is <= 4.8 - FreeBSD compiler default is going to remain g++49 until my dev box OS ships with g++ >= 4.9 Errata: I have weird RAM initialization constants, thanks to hex_usr and onethirdxcubed for both finding this: http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184 I'll remove this in the next WIP.
2017-11-06 22:05:54 +00:00
cpu.power(reset);
apu.power(reset);
ppu.power(reset);
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
scheduler.primary(cpu);
controllerPort1.power(ID::Port::Controller1);
controllerPort2.power(ID::Port::Controller2);
controllerPort1.connect(settings.controllerPort1);
controllerPort2.connect(settings.controllerPort2);
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
}
auto System::init() -> void {
assert(interface != nullptr);
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
}
auto System::term() -> void {
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
}
}