2015-11-10 11:02:29 +00:00
|
|
|
auto System::serialize() -> serializer {
|
2016-06-25 08:53:11 +00:00
|
|
|
serializer s(serializeSize);
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v098r01 release.
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
2016-04-09 03:40:12 +00:00
|
|
|
uint signature = 0x31545342;
|
Update to v100r15 release.
byuu wrote:
Aforementioned scheduler changes added. Longer explanation of why here:
http://hastebin.com/raw/toxedenece
Again, we really need to test this as thoroughly as possible for
regressions :/
This is a really major change that affects absolutely everything: all
emulation cores, all coprocessors, etc.
Also added ADDX and SUB to the 68K core, which brings us just barely
above 50% of the instruction encoding space completed.
[Editor's note: The "aformentioned scheduler changes" were described in
a previous forum post:
Unfortunately, 64-bits just wasn't enough precision (we were
getting misalignments ~230 times a second on 21/24MHz clocks), so
I had to move to 128-bit counters. This of course doesn't exist on
32-bit architectures (and probably not on all 64-bit ones either),
so for now ... higan's only going to compile on 64-bit machines
until we figure something out. Maybe we offer a "lower precision"
fallback for machines that lack uint128_t or something. Using the
booth algorithm would be way too slow.
Anyway, the precision is now 2^-96, which is roughly 10^-29. That
puts us far beyond the yoctosecond. Suck it, MAME :P I'm jokingly
referring to it as the byuusecond. The other 32-bits of precision
allows a 1Hz clock to run up to one full second before all clocks
need to be normalized to prevent overflow.
I fixed a serious wobbling issue where I was using clock > other.clock
for synchronization instead of clock >= other.clock; and also another
aliasing issue when two threads share a common frequency, but don't
run in lock-step. The latter I don't even fully understand, but I
did observe it in testing.
nall/serialization.hpp has been extended to support 128-bit integers,
but without explicitly naming them (yay generic code), so nall will
still compile on 32-bit platforms for all other applications.
Speed is basically a wash now. FC's a bit slower, SFC's a bit faster.
The "longer explanation" in the linked hastebin is:
Okay, so the idea is that we can have an arbitrary number of
oscillators. Take the SNES:
- CPU/PPU clock = 21477272.727272hz
- SMP/DSP clock = 24576000hz
- Cartridge DSP1 clock = 8000000hz
- Cartridge MSU1 clock = 44100hz
- Controller Port 1 modem controller clock = 57600hz
- Controller Port 2 barcode battler clock = 115200hz
- Expansion Port exercise bike clock = 192000hz
Is this a pathological case? Of course it is, but it's possible. The
first four do exist in the wild already: see Rockman X2 MSU1
patch. Manifest files with higan let you specify any frequency you
want for any component.
The old trick higan used was to hold an int64 counter for each
thread:thread synchronization, and adjust it like so:
- if thread A steps X clocks; then clock += X * threadB.frequency
- if clock >= 0; switch to threadB
- if thread B steps X clocks; then clock -= X * threadA.frequency
- if clock < 0; switch to threadA
But there are also system configurations where one processor has to
synchronize with more than one other processor. Take the Genesis:
- the 68K has to sync with the Z80 and PSG and YM2612 and VDP
- the Z80 has to sync with the 68K and PSG and YM2612
- the PSG has to sync with the 68K and Z80 and YM2612
Now I could do this by having an int64 clock value for every
association. But these clock values would have to be outside the
individual Thread class objects, and we would have to update every
relationship's clock value. So the 68K would have to update the Z80,
PSG, YM2612 and VDP clocks. That's four expensive 64-bit multiply-adds
per clock step event instead of one.
As such, we have to account for both possibilities. The only way to
do this is with a single time base. We do this like so:
- setup: scalar = timeBase / frequency
- step: clock += scalar * clocks
Once per second, we look at every thread, find the smallest clock
value. Then subtract that value from all threads. This prevents the
clock counters from overflowing.
Unfortunately, these oscillator values are psychotic, unpredictable,
and often times repeating fractions. Even with a timeBase of
1,000,000,000,000,000,000 (one attosecond); we get rounding errors
every ~16,300 synchronizations. Specifically, this happens with a CPU
running at 21477273hz (rounded) and SMP running at 24576000hz. That
may be good enough for most emulators, but ... you know how I am.
Plus, even at the attosecond level, we're really pushing against the
limits of 64-bit integers. Given the reciprocal inverse, a frequency
of 1Hz (which does exist in higan!) would have a scalar that consumes
1/18th of the entire range of a uint64 on every single step. Yes, I
could raise the frequency, and then step by that amount, I know. But
I don't want to have weird gotchas like that in the scheduler core.
Until I increase the accuracy to about 100 times greater than a
yoctosecond, the rounding errors are too great. And since the only
choice above 64-bit values is 128-bit values; we might as well use
all the extra headroom. 2^-96 as a timebase gives me the ability to
have both a 1Hz and 4GHz clock; and run them both for a full second;
before an overflow event would occur.
Another hastebin includes demonstration code:
#include <libco/libco.h>
#include <nall/nall.hpp>
using namespace nall;
//
cothread_t mainThread = nullptr;
const uint iterations = 100'000'000;
const uint cpuFreq = 21477272.727272 + 0.5;
const uint smpFreq = 24576000.000000 + 0.5;
const uint cpuStep = 4;
const uint smpStep = 5;
//
struct ThreadA {
cothread_t handle = nullptr;
uint64 frequency = 0;
int64 clock = 0;
auto create(auto (*entrypoint)() -> void, uint frequency) {
this->handle = co_create(65536, entrypoint);
this->frequency = frequency;
this->clock = 0;
}
};
struct CPUA : ThreadA {
static auto Enter() -> void;
auto main() -> void;
CPUA() { create(&CPUA::Enter, cpuFreq); }
} cpuA;
struct SMPA : ThreadA {
static auto Enter() -> void;
auto main() -> void;
SMPA() { create(&SMPA::Enter, smpFreq); }
} smpA;
uint8 queueA[iterations];
uint offsetA;
cothread_t resumeA = cpuA.handle;
auto EnterA() -> void {
offsetA = 0;
co_switch(resumeA);
}
auto QueueA(uint value) -> void {
queueA[offsetA++] = value;
if(offsetA >= iterations) {
resumeA = co_active();
co_switch(mainThread);
}
}
auto CPUA::Enter() -> void { while(true) cpuA.main(); }
auto CPUA::main() -> void {
QueueA(1);
smpA.clock -= cpuStep * smpA.frequency;
if(smpA.clock < 0) co_switch(smpA.handle);
}
auto SMPA::Enter() -> void { while(true) smpA.main(); }
auto SMPA::main() -> void {
QueueA(2);
smpA.clock += smpStep * cpuA.frequency;
if(smpA.clock >= 0) co_switch(cpuA.handle);
}
//
struct ThreadB {
cothread_t handle = nullptr;
uint128_t scalar = 0;
uint128_t clock = 0;
auto print128(uint128_t value) {
string s;
while(value) {
s.append((char)('0' + value % 10));
value /= 10;
}
s.reverse();
print(s, "\n");
}
//femtosecond (10^15) = 16306
//attosecond (10^18) = 688838
//zeptosecond (10^21) = 13712691
//yoctosecond (10^24) = 13712691 (hitting a dead-end on a rounding error causing a wobble)
//byuusecond? ( 2^96) = (perfect? 79,228 times more precise than a yoctosecond)
auto create(auto (*entrypoint)() -> void, uint128_t frequency) {
this->handle = co_create(65536, entrypoint);
uint128_t unitOfTime = 1;
//for(uint n : range(29)) unitOfTime *= 10;
unitOfTime <<= 96; //2^96 time units ...
this->scalar = unitOfTime / frequency;
print128(this->scalar);
this->clock = 0;
}
auto step(uint128_t clocks) -> void { clock += clocks * scalar; }
auto synchronize(ThreadB& thread) -> void { if(clock >= thread.clock) co_switch(thread.handle); }
};
struct CPUB : ThreadB {
static auto Enter() -> void;
auto main() -> void;
CPUB() { create(&CPUB::Enter, cpuFreq); }
} cpuB;
struct SMPB : ThreadB {
static auto Enter() -> void;
auto main() -> void;
SMPB() { create(&SMPB::Enter, smpFreq); clock = 1; }
} smpB;
auto correct() -> void {
auto minimum = min(cpuB.clock, smpB.clock);
cpuB.clock -= minimum;
smpB.clock -= minimum;
}
uint8 queueB[iterations];
uint offsetB;
cothread_t resumeB = cpuB.handle;
auto EnterB() -> void {
correct();
offsetB = 0;
co_switch(resumeB);
}
auto QueueB(uint value) -> void {
queueB[offsetB++] = value;
if(offsetB >= iterations) {
resumeB = co_active();
co_switch(mainThread);
}
}
auto CPUB::Enter() -> void { while(true) cpuB.main(); }
auto CPUB::main() -> void {
QueueB(1);
step(cpuStep);
synchronize(smpB);
}
auto SMPB::Enter() -> void { while(true) smpB.main(); }
auto SMPB::main() -> void {
QueueB(2);
step(smpStep);
synchronize(cpuB);
}
//
#include <nall/main.hpp>
auto nall::main(string_vector) -> void {
mainThread = co_active();
uint masterCounter = 0;
while(true) {
print(masterCounter++, " ...\n");
auto A = clock();
EnterA();
auto B = clock();
print((double)(B - A) / CLOCKS_PER_SEC, "s\n");
auto C = clock();
EnterB();
auto D = clock();
print((double)(D - C) / CLOCKS_PER_SEC, "s\n");
for(uint n : range(iterations)) {
if(queueA[n] != queueB[n]) return print("fail at ", n, "\n");
}
}
}
...and that's everything.]
2016-07-31 02:11:20 +00:00
|
|
|
char version[16] = {};
|
|
|
|
char hash[64] = {};
|
|
|
|
char description[512] = {};
|
Update to v099r07 release.
byuu says:
Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
Emulator::Interface and ui-tomoko
- loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
- whenever this is bumped, all older states will break; but this makes
bumping state versions way easier
- also, the version string makes it a lot easier to identify
compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]
NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.
So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.
The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.
I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.
But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!
In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 12:09:30 +00:00
|
|
|
memory::copy(&version, (const char*)Emulator::SerializerVersion, Emulator::SerializerVersion.size());
|
Update to v098r01 release.
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
2016-04-09 03:40:12 +00:00
|
|
|
memory::copy(&hash, (const char*)cartridge.sha256(), 64);
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
s.integer(signature);
|
Update to v099r07 release.
byuu says:
Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
Emulator::Interface and ui-tomoko
- loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
- whenever this is bumped, all older states will break; but this makes
bumping state versions way easier
- also, the version string makes it a lot easier to identify
compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]
NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.
So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.
The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.
I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.
But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!
In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 12:09:30 +00:00
|
|
|
s.array(version);
|
2012-04-29 06:16:44 +00:00
|
|
|
s.array(hash);
|
2010-08-09 13:28:56 +00:00
|
|
|
s.array(description);
|
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
serializeAll(s);
|
2010-08-09 13:28:56 +00:00
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
auto System::unserialize(serializer& s) -> bool {
|
Update to v098r01 release.
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
2016-04-09 03:40:12 +00:00
|
|
|
uint signature = 0;
|
Update to v100r15 release.
byuu wrote:
Aforementioned scheduler changes added. Longer explanation of why here:
http://hastebin.com/raw/toxedenece
Again, we really need to test this as thoroughly as possible for
regressions :/
This is a really major change that affects absolutely everything: all
emulation cores, all coprocessors, etc.
Also added ADDX and SUB to the 68K core, which brings us just barely
above 50% of the instruction encoding space completed.
[Editor's note: The "aformentioned scheduler changes" were described in
a previous forum post:
Unfortunately, 64-bits just wasn't enough precision (we were
getting misalignments ~230 times a second on 21/24MHz clocks), so
I had to move to 128-bit counters. This of course doesn't exist on
32-bit architectures (and probably not on all 64-bit ones either),
so for now ... higan's only going to compile on 64-bit machines
until we figure something out. Maybe we offer a "lower precision"
fallback for machines that lack uint128_t or something. Using the
booth algorithm would be way too slow.
Anyway, the precision is now 2^-96, which is roughly 10^-29. That
puts us far beyond the yoctosecond. Suck it, MAME :P I'm jokingly
referring to it as the byuusecond. The other 32-bits of precision
allows a 1Hz clock to run up to one full second before all clocks
need to be normalized to prevent overflow.
I fixed a serious wobbling issue where I was using clock > other.clock
for synchronization instead of clock >= other.clock; and also another
aliasing issue when two threads share a common frequency, but don't
run in lock-step. The latter I don't even fully understand, but I
did observe it in testing.
nall/serialization.hpp has been extended to support 128-bit integers,
but without explicitly naming them (yay generic code), so nall will
still compile on 32-bit platforms for all other applications.
Speed is basically a wash now. FC's a bit slower, SFC's a bit faster.
The "longer explanation" in the linked hastebin is:
Okay, so the idea is that we can have an arbitrary number of
oscillators. Take the SNES:
- CPU/PPU clock = 21477272.727272hz
- SMP/DSP clock = 24576000hz
- Cartridge DSP1 clock = 8000000hz
- Cartridge MSU1 clock = 44100hz
- Controller Port 1 modem controller clock = 57600hz
- Controller Port 2 barcode battler clock = 115200hz
- Expansion Port exercise bike clock = 192000hz
Is this a pathological case? Of course it is, but it's possible. The
first four do exist in the wild already: see Rockman X2 MSU1
patch. Manifest files with higan let you specify any frequency you
want for any component.
The old trick higan used was to hold an int64 counter for each
thread:thread synchronization, and adjust it like so:
- if thread A steps X clocks; then clock += X * threadB.frequency
- if clock >= 0; switch to threadB
- if thread B steps X clocks; then clock -= X * threadA.frequency
- if clock < 0; switch to threadA
But there are also system configurations where one processor has to
synchronize with more than one other processor. Take the Genesis:
- the 68K has to sync with the Z80 and PSG and YM2612 and VDP
- the Z80 has to sync with the 68K and PSG and YM2612
- the PSG has to sync with the 68K and Z80 and YM2612
Now I could do this by having an int64 clock value for every
association. But these clock values would have to be outside the
individual Thread class objects, and we would have to update every
relationship's clock value. So the 68K would have to update the Z80,
PSG, YM2612 and VDP clocks. That's four expensive 64-bit multiply-adds
per clock step event instead of one.
As such, we have to account for both possibilities. The only way to
do this is with a single time base. We do this like so:
- setup: scalar = timeBase / frequency
- step: clock += scalar * clocks
Once per second, we look at every thread, find the smallest clock
value. Then subtract that value from all threads. This prevents the
clock counters from overflowing.
Unfortunately, these oscillator values are psychotic, unpredictable,
and often times repeating fractions. Even with a timeBase of
1,000,000,000,000,000,000 (one attosecond); we get rounding errors
every ~16,300 synchronizations. Specifically, this happens with a CPU
running at 21477273hz (rounded) and SMP running at 24576000hz. That
may be good enough for most emulators, but ... you know how I am.
Plus, even at the attosecond level, we're really pushing against the
limits of 64-bit integers. Given the reciprocal inverse, a frequency
of 1Hz (which does exist in higan!) would have a scalar that consumes
1/18th of the entire range of a uint64 on every single step. Yes, I
could raise the frequency, and then step by that amount, I know. But
I don't want to have weird gotchas like that in the scheduler core.
Until I increase the accuracy to about 100 times greater than a
yoctosecond, the rounding errors are too great. And since the only
choice above 64-bit values is 128-bit values; we might as well use
all the extra headroom. 2^-96 as a timebase gives me the ability to
have both a 1Hz and 4GHz clock; and run them both for a full second;
before an overflow event would occur.
Another hastebin includes demonstration code:
#include <libco/libco.h>
#include <nall/nall.hpp>
using namespace nall;
//
cothread_t mainThread = nullptr;
const uint iterations = 100'000'000;
const uint cpuFreq = 21477272.727272 + 0.5;
const uint smpFreq = 24576000.000000 + 0.5;
const uint cpuStep = 4;
const uint smpStep = 5;
//
struct ThreadA {
cothread_t handle = nullptr;
uint64 frequency = 0;
int64 clock = 0;
auto create(auto (*entrypoint)() -> void, uint frequency) {
this->handle = co_create(65536, entrypoint);
this->frequency = frequency;
this->clock = 0;
}
};
struct CPUA : ThreadA {
static auto Enter() -> void;
auto main() -> void;
CPUA() { create(&CPUA::Enter, cpuFreq); }
} cpuA;
struct SMPA : ThreadA {
static auto Enter() -> void;
auto main() -> void;
SMPA() { create(&SMPA::Enter, smpFreq); }
} smpA;
uint8 queueA[iterations];
uint offsetA;
cothread_t resumeA = cpuA.handle;
auto EnterA() -> void {
offsetA = 0;
co_switch(resumeA);
}
auto QueueA(uint value) -> void {
queueA[offsetA++] = value;
if(offsetA >= iterations) {
resumeA = co_active();
co_switch(mainThread);
}
}
auto CPUA::Enter() -> void { while(true) cpuA.main(); }
auto CPUA::main() -> void {
QueueA(1);
smpA.clock -= cpuStep * smpA.frequency;
if(smpA.clock < 0) co_switch(smpA.handle);
}
auto SMPA::Enter() -> void { while(true) smpA.main(); }
auto SMPA::main() -> void {
QueueA(2);
smpA.clock += smpStep * cpuA.frequency;
if(smpA.clock >= 0) co_switch(cpuA.handle);
}
//
struct ThreadB {
cothread_t handle = nullptr;
uint128_t scalar = 0;
uint128_t clock = 0;
auto print128(uint128_t value) {
string s;
while(value) {
s.append((char)('0' + value % 10));
value /= 10;
}
s.reverse();
print(s, "\n");
}
//femtosecond (10^15) = 16306
//attosecond (10^18) = 688838
//zeptosecond (10^21) = 13712691
//yoctosecond (10^24) = 13712691 (hitting a dead-end on a rounding error causing a wobble)
//byuusecond? ( 2^96) = (perfect? 79,228 times more precise than a yoctosecond)
auto create(auto (*entrypoint)() -> void, uint128_t frequency) {
this->handle = co_create(65536, entrypoint);
uint128_t unitOfTime = 1;
//for(uint n : range(29)) unitOfTime *= 10;
unitOfTime <<= 96; //2^96 time units ...
this->scalar = unitOfTime / frequency;
print128(this->scalar);
this->clock = 0;
}
auto step(uint128_t clocks) -> void { clock += clocks * scalar; }
auto synchronize(ThreadB& thread) -> void { if(clock >= thread.clock) co_switch(thread.handle); }
};
struct CPUB : ThreadB {
static auto Enter() -> void;
auto main() -> void;
CPUB() { create(&CPUB::Enter, cpuFreq); }
} cpuB;
struct SMPB : ThreadB {
static auto Enter() -> void;
auto main() -> void;
SMPB() { create(&SMPB::Enter, smpFreq); clock = 1; }
} smpB;
auto correct() -> void {
auto minimum = min(cpuB.clock, smpB.clock);
cpuB.clock -= minimum;
smpB.clock -= minimum;
}
uint8 queueB[iterations];
uint offsetB;
cothread_t resumeB = cpuB.handle;
auto EnterB() -> void {
correct();
offsetB = 0;
co_switch(resumeB);
}
auto QueueB(uint value) -> void {
queueB[offsetB++] = value;
if(offsetB >= iterations) {
resumeB = co_active();
co_switch(mainThread);
}
}
auto CPUB::Enter() -> void { while(true) cpuB.main(); }
auto CPUB::main() -> void {
QueueB(1);
step(cpuStep);
synchronize(smpB);
}
auto SMPB::Enter() -> void { while(true) smpB.main(); }
auto SMPB::main() -> void {
QueueB(2);
step(smpStep);
synchronize(cpuB);
}
//
#include <nall/main.hpp>
auto nall::main(string_vector) -> void {
mainThread = co_active();
uint masterCounter = 0;
while(true) {
print(masterCounter++, " ...\n");
auto A = clock();
EnterA();
auto B = clock();
print((double)(B - A) / CLOCKS_PER_SEC, "s\n");
auto C = clock();
EnterB();
auto D = clock();
print((double)(D - C) / CLOCKS_PER_SEC, "s\n");
for(uint n : range(iterations)) {
if(queueA[n] != queueB[n]) return print("fail at ", n, "\n");
}
}
}
...and that's everything.]
2016-07-31 02:11:20 +00:00
|
|
|
char version[16] = {};
|
|
|
|
char hash[64] = {};
|
|
|
|
char description[512] = {};
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
s.integer(signature);
|
Update to v099r07 release.
byuu says:
Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
Emulator::Interface and ui-tomoko
- loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
- whenever this is bumped, all older states will break; but this makes
bumping state versions way easier
- also, the version string makes it a lot easier to identify
compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]
NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.
So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.
The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.
I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.
But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!
In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 12:09:30 +00:00
|
|
|
s.array(version);
|
2012-04-29 06:16:44 +00:00
|
|
|
s.array(hash);
|
2010-08-09 13:28:56 +00:00
|
|
|
s.array(description);
|
|
|
|
|
|
|
|
if(signature != 0x31545342) return false;
|
Update to v099r07 release.
byuu says:
Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
Emulator::Interface and ui-tomoko
- loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
- whenever this is bumped, all older states will break; but this makes
bumping state versions way easier
- also, the version string makes it a lot easier to identify
compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]
NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.
So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.
The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.
I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.
But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!
In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 12:09:30 +00:00
|
|
|
if(string{version} != Emulator::SerializerVersion) return false;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v105r1 release.
byuu says:
Changelog:
- higan: readded support for soft-reset to Famicom, Super Famicom,
Mega Drive cores (work in progress)
- handhelds lack soft reset obviously
- the PC Engine also lacks a physical reset button
- the Master System's reset button acts like a gamepad button, so
can't show up in the menu
- Mega Drive: power cycle wasn't initializing CPU (M68K) or APU (Z80)
RAM
- Super Famicom: fix SPC700 opcode 0x3b regression; fixes Majuu Ou
[Jonas Quinn]
- Super Famicom: fix SharpRTC save regression; fixes Dai Kaijuu
Monogatari II's real-time clock [Talarubi]
- Super Famicom: fix EpsonRTC save regression; fixes Tengai Makyou
Zero's real-time clock [Talarubi]
- Super Famicom: removed `*::init()` functions, as they were never used
- Super Famicom: removed all but two `*::load()` functions, as they
were not used
- higan: added option to auto-save backup RAM every five seconds
(enabled by default)
- this is in case the emulator crashes, or there's a power outage;
turn it off under advanced settings if you want
- libco: updated license from public domain to ISC, for consistency
with nall, ruby, hiro
- nall: Linux compiler defaults to g++; override with g++-version if
g++ is <= 4.8
- FreeBSD compiler default is going to remain g++49 until my dev
box OS ships with g++ >= 4.9
Errata: I have weird RAM initialization constants, thanks to hex_usr
and onethirdxcubed for both finding this:
http://wiki.nesdev.com/w/index.php?title=CPU_power_up_state&diff=11711&oldid=11184
I'll remove this in the next WIP.
2017-11-06 22:05:54 +00:00
|
|
|
power(/* reset = */ false);
|
2015-11-10 11:02:29 +00:00
|
|
|
serializeAll(s);
|
2010-08-09 13:28:56 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
//internal
|
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
auto System::serialize(serializer& s) -> void {
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
auto System::serializeAll(serializer& s) -> void {
|
Update to v104r04 release.
byuu says:
Changelog:
- higan/emulator: added new Random class with three entropy settings:
none, low, and high
- md/vdp: corrected Vcounter readout in interlace mode [MoD]
- sfc: updated core to use the new Random class; defaults to high
entropy
No entropy essentially returns 0, unless the random.bias(n) function is
called, in which case, it returns n. In this case, n is meant to be the
"logical/ideal" default value that maximizes compatibility with games.
Low entropy is a very simple entropy modeled after RAM initialization
striping patterns (eg 32 0x00s, followed by 32 0xFFs, repeating
throughout.) It doesn't "glitch" like real hardware does on rare
occasions (parts of the pattern being broken from time to time.) It also
only really returns 0 or ~0. So the entropy is indeed extremely low, and
not very useful at all for detecting bugs. Over time, we can try to
improve this, of course.
High entropy is PCG. This replaces the older, lower-entropy and more
predictable, LFSR. PCG should be more than enough for emulator
randomness, while still being quite fast.
Unfortunately, the bad news ... both no entropy and low entropy fix the
Konami logo popping sound in Prince of Persia, but all three entropy
settings still cause the distortion in-game, especially evident at the
title screen. So ... this may be a more serious bug than first
suspected.
2017-08-24 02:45:24 +00:00
|
|
|
random.serialize(s);
|
2010-08-09 13:28:56 +00:00
|
|
|
cartridge.serialize(s);
|
|
|
|
system.serialize(s);
|
|
|
|
cpu.serialize(s);
|
|
|
|
smp.serialize(s);
|
|
|
|
ppu.serialize(s);
|
|
|
|
dsp.serialize(s);
|
|
|
|
|
2018-02-21 09:53:49 +00:00
|
|
|
if(cartridge.has.ICD) icd.serialize(s);
|
Update to v099r06 release.
byuu says:
Changelog:
- Super Famicom core converted to use nall/vfs
- excludes Super Game Boy; since that's invoked from inside the GB core
This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.
We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.
It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.
I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.
So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.
Anyway ... these are some huge changes.
2016-06-21 05:22:52 +00:00
|
|
|
if(cartridge.has.MCC) mcc.serialize(s);
|
2018-05-14 13:53:18 +00:00
|
|
|
if(cartridge.has.DIP) dip.serialize(s);
|
Update to v099r06 release.
byuu says:
Changelog:
- Super Famicom core converted to use nall/vfs
- excludes Super Game Boy; since that's invoked from inside the GB core
This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.
We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.
It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.
I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.
So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.
Anyway ... these are some huge changes.
2016-06-21 05:22:52 +00:00
|
|
|
if(cartridge.has.Event) event.serialize(s);
|
|
|
|
if(cartridge.has.SA1) sa1.serialize(s);
|
|
|
|
if(cartridge.has.SuperFX) superfx.serialize(s);
|
|
|
|
if(cartridge.has.ARMDSP) armdsp.serialize(s);
|
|
|
|
if(cartridge.has.HitachiDSP) hitachidsp.serialize(s);
|
|
|
|
if(cartridge.has.NECDSP) necdsp.serialize(s);
|
|
|
|
if(cartridge.has.EpsonRTC) epsonrtc.serialize(s);
|
|
|
|
if(cartridge.has.SharpRTC) sharprtc.serialize(s);
|
|
|
|
if(cartridge.has.SPC7110) spc7110.serialize(s);
|
|
|
|
if(cartridge.has.SDD1) sdd1.serialize(s);
|
|
|
|
if(cartridge.has.OBC1) obc1.serialize(s);
|
|
|
|
if(cartridge.has.MSU1) msu1.serialize(s);
|
|
|
|
|
2018-05-14 13:53:18 +00:00
|
|
|
if(cartridge.has.BSMemorySlot) bsmemory.serialize(s);
|
|
|
|
if(cartridge.has.SufamiTurboSlotA) sufamiturboA.serialize(s);
|
|
|
|
if(cartridge.has.SufamiTurboSlotB) sufamiturboB.serialize(s);
|
2017-06-30 04:17:23 +00:00
|
|
|
|
|
|
|
controllerPort1.serialize(s);
|
|
|
|
controllerPort2.serialize(s);
|
|
|
|
expansionPort.serialize(s);
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
|
Update to v073r03 release.
byuu says:
Changelog:
- much tighter SGB integration, but this is still a work-in-progress
- memory::gb(rom,ram,rtc) is gone, uses GameBoy:: memory structures
directly (a big gain, no need to copy memory to save and load)
- UI-based cartridge loading works with GameBoy:: directly as well
- libsnes will need to be updated internally to reflect this
- games can save and load (even before bgameboy can, hah)
- save states hooked up, but they crash the DMG. I don't know why, as
if it was hard enough saving states with libco, try doing it for an
emulator inside an emulator >_<
- last remnants of old SGB stuff removed, <sueprgameboy> XML converted
to <icd2>
- looks like the XML list idea is looking pretty useless for
SNES::Cartridge now that bgameboy handles its own XML mapping
2011-01-08 10:06:09 +00:00
|
|
|
//perform dry-run state save:
|
2010-08-09 13:28:56 +00:00
|
|
|
//determines exactly how many bytes are needed to save state for this cartridge,
|
|
|
|
//as amount varies per game (eg different RAM sizes, special chips, etc.)
|
2015-11-10 11:02:29 +00:00
|
|
|
auto System::serializeInit() -> void {
|
2010-08-09 13:28:56 +00:00
|
|
|
serializer s;
|
|
|
|
|
Update to v098r01 release.
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
2016-04-09 03:40:12 +00:00
|
|
|
uint signature = 0;
|
Update to v100r15 release.
byuu wrote:
Aforementioned scheduler changes added. Longer explanation of why here:
http://hastebin.com/raw/toxedenece
Again, we really need to test this as thoroughly as possible for
regressions :/
This is a really major change that affects absolutely everything: all
emulation cores, all coprocessors, etc.
Also added ADDX and SUB to the 68K core, which brings us just barely
above 50% of the instruction encoding space completed.
[Editor's note: The "aformentioned scheduler changes" were described in
a previous forum post:
Unfortunately, 64-bits just wasn't enough precision (we were
getting misalignments ~230 times a second on 21/24MHz clocks), so
I had to move to 128-bit counters. This of course doesn't exist on
32-bit architectures (and probably not on all 64-bit ones either),
so for now ... higan's only going to compile on 64-bit machines
until we figure something out. Maybe we offer a "lower precision"
fallback for machines that lack uint128_t or something. Using the
booth algorithm would be way too slow.
Anyway, the precision is now 2^-96, which is roughly 10^-29. That
puts us far beyond the yoctosecond. Suck it, MAME :P I'm jokingly
referring to it as the byuusecond. The other 32-bits of precision
allows a 1Hz clock to run up to one full second before all clocks
need to be normalized to prevent overflow.
I fixed a serious wobbling issue where I was using clock > other.clock
for synchronization instead of clock >= other.clock; and also another
aliasing issue when two threads share a common frequency, but don't
run in lock-step. The latter I don't even fully understand, but I
did observe it in testing.
nall/serialization.hpp has been extended to support 128-bit integers,
but without explicitly naming them (yay generic code), so nall will
still compile on 32-bit platforms for all other applications.
Speed is basically a wash now. FC's a bit slower, SFC's a bit faster.
The "longer explanation" in the linked hastebin is:
Okay, so the idea is that we can have an arbitrary number of
oscillators. Take the SNES:
- CPU/PPU clock = 21477272.727272hz
- SMP/DSP clock = 24576000hz
- Cartridge DSP1 clock = 8000000hz
- Cartridge MSU1 clock = 44100hz
- Controller Port 1 modem controller clock = 57600hz
- Controller Port 2 barcode battler clock = 115200hz
- Expansion Port exercise bike clock = 192000hz
Is this a pathological case? Of course it is, but it's possible. The
first four do exist in the wild already: see Rockman X2 MSU1
patch. Manifest files with higan let you specify any frequency you
want for any component.
The old trick higan used was to hold an int64 counter for each
thread:thread synchronization, and adjust it like so:
- if thread A steps X clocks; then clock += X * threadB.frequency
- if clock >= 0; switch to threadB
- if thread B steps X clocks; then clock -= X * threadA.frequency
- if clock < 0; switch to threadA
But there are also system configurations where one processor has to
synchronize with more than one other processor. Take the Genesis:
- the 68K has to sync with the Z80 and PSG and YM2612 and VDP
- the Z80 has to sync with the 68K and PSG and YM2612
- the PSG has to sync with the 68K and Z80 and YM2612
Now I could do this by having an int64 clock value for every
association. But these clock values would have to be outside the
individual Thread class objects, and we would have to update every
relationship's clock value. So the 68K would have to update the Z80,
PSG, YM2612 and VDP clocks. That's four expensive 64-bit multiply-adds
per clock step event instead of one.
As such, we have to account for both possibilities. The only way to
do this is with a single time base. We do this like so:
- setup: scalar = timeBase / frequency
- step: clock += scalar * clocks
Once per second, we look at every thread, find the smallest clock
value. Then subtract that value from all threads. This prevents the
clock counters from overflowing.
Unfortunately, these oscillator values are psychotic, unpredictable,
and often times repeating fractions. Even with a timeBase of
1,000,000,000,000,000,000 (one attosecond); we get rounding errors
every ~16,300 synchronizations. Specifically, this happens with a CPU
running at 21477273hz (rounded) and SMP running at 24576000hz. That
may be good enough for most emulators, but ... you know how I am.
Plus, even at the attosecond level, we're really pushing against the
limits of 64-bit integers. Given the reciprocal inverse, a frequency
of 1Hz (which does exist in higan!) would have a scalar that consumes
1/18th of the entire range of a uint64 on every single step. Yes, I
could raise the frequency, and then step by that amount, I know. But
I don't want to have weird gotchas like that in the scheduler core.
Until I increase the accuracy to about 100 times greater than a
yoctosecond, the rounding errors are too great. And since the only
choice above 64-bit values is 128-bit values; we might as well use
all the extra headroom. 2^-96 as a timebase gives me the ability to
have both a 1Hz and 4GHz clock; and run them both for a full second;
before an overflow event would occur.
Another hastebin includes demonstration code:
#include <libco/libco.h>
#include <nall/nall.hpp>
using namespace nall;
//
cothread_t mainThread = nullptr;
const uint iterations = 100'000'000;
const uint cpuFreq = 21477272.727272 + 0.5;
const uint smpFreq = 24576000.000000 + 0.5;
const uint cpuStep = 4;
const uint smpStep = 5;
//
struct ThreadA {
cothread_t handle = nullptr;
uint64 frequency = 0;
int64 clock = 0;
auto create(auto (*entrypoint)() -> void, uint frequency) {
this->handle = co_create(65536, entrypoint);
this->frequency = frequency;
this->clock = 0;
}
};
struct CPUA : ThreadA {
static auto Enter() -> void;
auto main() -> void;
CPUA() { create(&CPUA::Enter, cpuFreq); }
} cpuA;
struct SMPA : ThreadA {
static auto Enter() -> void;
auto main() -> void;
SMPA() { create(&SMPA::Enter, smpFreq); }
} smpA;
uint8 queueA[iterations];
uint offsetA;
cothread_t resumeA = cpuA.handle;
auto EnterA() -> void {
offsetA = 0;
co_switch(resumeA);
}
auto QueueA(uint value) -> void {
queueA[offsetA++] = value;
if(offsetA >= iterations) {
resumeA = co_active();
co_switch(mainThread);
}
}
auto CPUA::Enter() -> void { while(true) cpuA.main(); }
auto CPUA::main() -> void {
QueueA(1);
smpA.clock -= cpuStep * smpA.frequency;
if(smpA.clock < 0) co_switch(smpA.handle);
}
auto SMPA::Enter() -> void { while(true) smpA.main(); }
auto SMPA::main() -> void {
QueueA(2);
smpA.clock += smpStep * cpuA.frequency;
if(smpA.clock >= 0) co_switch(cpuA.handle);
}
//
struct ThreadB {
cothread_t handle = nullptr;
uint128_t scalar = 0;
uint128_t clock = 0;
auto print128(uint128_t value) {
string s;
while(value) {
s.append((char)('0' + value % 10));
value /= 10;
}
s.reverse();
print(s, "\n");
}
//femtosecond (10^15) = 16306
//attosecond (10^18) = 688838
//zeptosecond (10^21) = 13712691
//yoctosecond (10^24) = 13712691 (hitting a dead-end on a rounding error causing a wobble)
//byuusecond? ( 2^96) = (perfect? 79,228 times more precise than a yoctosecond)
auto create(auto (*entrypoint)() -> void, uint128_t frequency) {
this->handle = co_create(65536, entrypoint);
uint128_t unitOfTime = 1;
//for(uint n : range(29)) unitOfTime *= 10;
unitOfTime <<= 96; //2^96 time units ...
this->scalar = unitOfTime / frequency;
print128(this->scalar);
this->clock = 0;
}
auto step(uint128_t clocks) -> void { clock += clocks * scalar; }
auto synchronize(ThreadB& thread) -> void { if(clock >= thread.clock) co_switch(thread.handle); }
};
struct CPUB : ThreadB {
static auto Enter() -> void;
auto main() -> void;
CPUB() { create(&CPUB::Enter, cpuFreq); }
} cpuB;
struct SMPB : ThreadB {
static auto Enter() -> void;
auto main() -> void;
SMPB() { create(&SMPB::Enter, smpFreq); clock = 1; }
} smpB;
auto correct() -> void {
auto minimum = min(cpuB.clock, smpB.clock);
cpuB.clock -= minimum;
smpB.clock -= minimum;
}
uint8 queueB[iterations];
uint offsetB;
cothread_t resumeB = cpuB.handle;
auto EnterB() -> void {
correct();
offsetB = 0;
co_switch(resumeB);
}
auto QueueB(uint value) -> void {
queueB[offsetB++] = value;
if(offsetB >= iterations) {
resumeB = co_active();
co_switch(mainThread);
}
}
auto CPUB::Enter() -> void { while(true) cpuB.main(); }
auto CPUB::main() -> void {
QueueB(1);
step(cpuStep);
synchronize(smpB);
}
auto SMPB::Enter() -> void { while(true) smpB.main(); }
auto SMPB::main() -> void {
QueueB(2);
step(smpStep);
synchronize(cpuB);
}
//
#include <nall/main.hpp>
auto nall::main(string_vector) -> void {
mainThread = co_active();
uint masterCounter = 0;
while(true) {
print(masterCounter++, " ...\n");
auto A = clock();
EnterA();
auto B = clock();
print((double)(B - A) / CLOCKS_PER_SEC, "s\n");
auto C = clock();
EnterB();
auto D = clock();
print((double)(D - C) / CLOCKS_PER_SEC, "s\n");
for(uint n : range(iterations)) {
if(queueA[n] != queueB[n]) return print("fail at ", n, "\n");
}
}
}
...and that's everything.]
2016-07-31 02:11:20 +00:00
|
|
|
char version[16] = {};
|
|
|
|
char hash[64] = {};
|
|
|
|
char description[512] = {};
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
s.integer(signature);
|
Update to v099r07 release.
byuu says:
Changelog:
- (hopefully) fixed BS Memory and Sufami Turbo slot loading
- ported GB, GBA, WS cores to use nall/vfs
- completely removed loadRequest, saveRequest functionality from
Emulator::Interface and ui-tomoko
- loadRequest(folder) is now load(folder)
- save states now use a shared Emulator::SerializerVersion string
- whenever this is bumped, all older states will break; but this makes
bumping state versions way easier
- also, the version string makes it a lot easier to identify
compatibility windows for save states
- SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr]
NOTE: Super Game Boy loading is currently broken, and I'm not entirely
sure how to fix it :/
The file loading handoff was -really- complicated, and so I'm kind of
at a loss ... so for now, don't try it.
Everything else should theoretically work, so please report any bugs
you find.
So, this is pretty much it. I'd be very curious to hear feedback from
people who objected to the old nall/stream design, whether they are
happy with the new file loading system or think it could use further
improvements.
The 16-bit VRAM turned out to be a wash on performance (roughly the same
as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The
main reason for this was because Yoshi's Island was breaking horribly
until I changed the vramRead, vramWrite functions to take uint15 instead
of uint16.
I suspect the issue is we're using uint16s in some areas now that need
to be uint15, and this game is setting the VRAM address to 0x8000+,
causing us to go out of bounds on memory accesses.
But ... I want to go ahead and do something cute for fun, and just because
we can ... and this new interface is so incredibly perfect for it!! I
want to support an SNES unit with 128KiB of VRAM. Not out of the box,
but as a fun little tweakable thing. The SNES was clearly designed to
support that, they just didn't use big enough VRAM chips, and left one
of the lines disconnected. So ... let's connect it anyway!
In the end, if we design it right, the only code difference should be
one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 12:09:30 +00:00
|
|
|
s.array(version);
|
2012-04-29 06:16:44 +00:00
|
|
|
s.array(hash);
|
2010-08-09 13:28:56 +00:00
|
|
|
s.array(description);
|
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
serializeAll(s);
|
2016-06-25 08:53:11 +00:00
|
|
|
serializeSize = s.size();
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|