bsnes/higan/ms/interface/master-system.cpp

76 lines
2.4 KiB
C++
Raw Normal View History

MasterSystemInterface::MasterSystemInterface() {
information.manufacturer = "Sega";
information.name = "Master System";
information.overscan = true;
media.append({ID::MasterSystem, "Master System", "ms"});
Port controllerPort1{ID::Port::Controller1, "Controller Port 1"};
Port controllerPort2{ID::Port::Controller2, "Controller Port 2"};
Update to v103r13 release. byuu says: Changelog: - gb/interface: fix Game Boy Color extension to be "gbc" and not "gb" [hex\_usr] - ms/interface: move Master System hardware controls below controller ports - sfc/ppu: improve latching behavior of BGnHOFS registers (not hardware verified) [AWJ] - tomoko/input: rework port/device mapping to support non-sequential ports and devices¹ - todo: should add move() to inputDevice.mappings.append and inputPort.devices.append - note: there's a weird GCC 4.9 bug with brace initialization of InputEmulator; have to assign each field separately - tomoko: all windows sans the main presentation window can be dismissed with the escape key - icarus: the single file selection dialog ("Load ROM Image...") can be dismissed with the escape key - tomoko: do not pause emulation when FocusLoss/Pause is set during exclusive fullscreen mode - hiro/(windows,gtk,qt): implemented Window::setDismissable() function (missing from cocoa port, sorry) - nall/string: fixed printing of largest possible negative numbers (eg `INT_MIN`) [Sintendo] - only took eight months! :D ¹: When I tried to move the Master System hardware port below the controller ports, I ran into a world of pain. The input settings list expects every item in the `InputEmulator<InputPort<InputDevice<InputMapping>>>>` arrays to be populated with valid results. But these would be sparsely populated based on the port and device IDs from inside higan. And that is done so that the Interface::inputPoll can have O(1) lookup of ports and devices. This worked because all the port and device IDs were sequential (they left no gaps in the maps upon creating the lists.) Unfortunately by changing the expectation of port ID to how it appears in the list, inputs would not poll correctly. By leaving them alone and just moving Hardware to the third position, the Game Gear would be missing port IDs of 0 and 1 (the controller ports of the Master System). Even by trying to make separate MasterSystemHardware and GameGearHardware ports, things still fractured when the devices were no longer contigious. I got pretty sick of this and just decided to give up on O(1) port/device lookup, and moved to O(n) lookup. It only knocked the framerate down by maybe one frame per second, enough to be in the margin of error. Inputs aren't polled *that* often for loops that usually terminate after 1-2 cycles to be too detrimental to performance. So the new input system now allows non-sequential port and device IDs. Remember that I killed input IDs a while back. There's never any reason for those to need IDs ... it was easier to just order the inputs in the order you want to see them in the user interface. So the input lookup is still O(1). Only now, everything's safer and I return a maybe<InputMapping&>, and won't crash out the program trying to use a mapping that isn't found for some reason. Errata: the escape key isn't working on the browser/message dialogs on Windows, because of course nothing can ever just be easy and work for me. If anyone else wouldn't mind looking into that, I'd greatly appreciate it. Having the `WM_KEYDOWN` test inside the main `Application_sharedProc`, it seems to not respond to the escape key on modal dialogs. If I put the `WM_KEYDOWN` test in the main window proc, then it doesn't seem to get called for `VK_ESCAPE` at all, and doesn't get called period for modal windows. So I'm at a loss and it's past 4AM here >_>
2017-07-12 08:24:27 +00:00
Port hardware{ID::Port::Hardware, "Hardware"};
{ Device device{ID::Device::None, "None"};
controllerPort1.devices.append(device);
controllerPort2.devices.append(device);
}
{ Device device{ID::Device::Gamepad, "Gamepad"};
device.inputs.append({0, "Up"});
device.inputs.append({0, "Down"});
device.inputs.append({0, "Left"});
device.inputs.append({0, "Right"});
device.inputs.append({0, "1"});
device.inputs.append({0, "2"});
controllerPort1.devices.append(device);
controllerPort2.devices.append(device);
}
Update to v103r13 release. byuu says: Changelog: - gb/interface: fix Game Boy Color extension to be "gbc" and not "gb" [hex\_usr] - ms/interface: move Master System hardware controls below controller ports - sfc/ppu: improve latching behavior of BGnHOFS registers (not hardware verified) [AWJ] - tomoko/input: rework port/device mapping to support non-sequential ports and devices¹ - todo: should add move() to inputDevice.mappings.append and inputPort.devices.append - note: there's a weird GCC 4.9 bug with brace initialization of InputEmulator; have to assign each field separately - tomoko: all windows sans the main presentation window can be dismissed with the escape key - icarus: the single file selection dialog ("Load ROM Image...") can be dismissed with the escape key - tomoko: do not pause emulation when FocusLoss/Pause is set during exclusive fullscreen mode - hiro/(windows,gtk,qt): implemented Window::setDismissable() function (missing from cocoa port, sorry) - nall/string: fixed printing of largest possible negative numbers (eg `INT_MIN`) [Sintendo] - only took eight months! :D ¹: When I tried to move the Master System hardware port below the controller ports, I ran into a world of pain. The input settings list expects every item in the `InputEmulator<InputPort<InputDevice<InputMapping>>>>` arrays to be populated with valid results. But these would be sparsely populated based on the port and device IDs from inside higan. And that is done so that the Interface::inputPoll can have O(1) lookup of ports and devices. This worked because all the port and device IDs were sequential (they left no gaps in the maps upon creating the lists.) Unfortunately by changing the expectation of port ID to how it appears in the list, inputs would not poll correctly. By leaving them alone and just moving Hardware to the third position, the Game Gear would be missing port IDs of 0 and 1 (the controller ports of the Master System). Even by trying to make separate MasterSystemHardware and GameGearHardware ports, things still fractured when the devices were no longer contigious. I got pretty sick of this and just decided to give up on O(1) port/device lookup, and moved to O(n) lookup. It only knocked the framerate down by maybe one frame per second, enough to be in the margin of error. Inputs aren't polled *that* often for loops that usually terminate after 1-2 cycles to be too detrimental to performance. So the new input system now allows non-sequential port and device IDs. Remember that I killed input IDs a while back. There's never any reason for those to need IDs ... it was easier to just order the inputs in the order you want to see them in the user interface. So the input lookup is still O(1). Only now, everything's safer and I return a maybe<InputMapping&>, and won't crash out the program trying to use a mapping that isn't found for some reason. Errata: the escape key isn't working on the browser/message dialogs on Windows, because of course nothing can ever just be easy and work for me. If anyone else wouldn't mind looking into that, I'd greatly appreciate it. Having the `WM_KEYDOWN` test inside the main `Application_sharedProc`, it seems to not respond to the escape key on modal dialogs. If I put the `WM_KEYDOWN` test in the main window proc, then it doesn't seem to get called for `VK_ESCAPE` at all, and doesn't get called period for modal windows. So I'm at a loss and it's past 4AM here >_>
2017-07-12 08:24:27 +00:00
{ Device device{ID::Device::MasterSystemControls, "Controls"};
device.inputs.append({0, "Reset"});
device.inputs.append({0, "Pause"});
hardware.devices.append(device);
}
ports.append(move(controllerPort1));
ports.append(move(controllerPort2));
Update to v103r13 release. byuu says: Changelog: - gb/interface: fix Game Boy Color extension to be "gbc" and not "gb" [hex\_usr] - ms/interface: move Master System hardware controls below controller ports - sfc/ppu: improve latching behavior of BGnHOFS registers (not hardware verified) [AWJ] - tomoko/input: rework port/device mapping to support non-sequential ports and devices¹ - todo: should add move() to inputDevice.mappings.append and inputPort.devices.append - note: there's a weird GCC 4.9 bug with brace initialization of InputEmulator; have to assign each field separately - tomoko: all windows sans the main presentation window can be dismissed with the escape key - icarus: the single file selection dialog ("Load ROM Image...") can be dismissed with the escape key - tomoko: do not pause emulation when FocusLoss/Pause is set during exclusive fullscreen mode - hiro/(windows,gtk,qt): implemented Window::setDismissable() function (missing from cocoa port, sorry) - nall/string: fixed printing of largest possible negative numbers (eg `INT_MIN`) [Sintendo] - only took eight months! :D ¹: When I tried to move the Master System hardware port below the controller ports, I ran into a world of pain. The input settings list expects every item in the `InputEmulator<InputPort<InputDevice<InputMapping>>>>` arrays to be populated with valid results. But these would be sparsely populated based on the port and device IDs from inside higan. And that is done so that the Interface::inputPoll can have O(1) lookup of ports and devices. This worked because all the port and device IDs were sequential (they left no gaps in the maps upon creating the lists.) Unfortunately by changing the expectation of port ID to how it appears in the list, inputs would not poll correctly. By leaving them alone and just moving Hardware to the third position, the Game Gear would be missing port IDs of 0 and 1 (the controller ports of the Master System). Even by trying to make separate MasterSystemHardware and GameGearHardware ports, things still fractured when the devices were no longer contigious. I got pretty sick of this and just decided to give up on O(1) port/device lookup, and moved to O(n) lookup. It only knocked the framerate down by maybe one frame per second, enough to be in the margin of error. Inputs aren't polled *that* often for loops that usually terminate after 1-2 cycles to be too detrimental to performance. So the new input system now allows non-sequential port and device IDs. Remember that I killed input IDs a while back. There's never any reason for those to need IDs ... it was easier to just order the inputs in the order you want to see them in the user interface. So the input lookup is still O(1). Only now, everything's safer and I return a maybe<InputMapping&>, and won't crash out the program trying to use a mapping that isn't found for some reason. Errata: the escape key isn't working on the browser/message dialogs on Windows, because of course nothing can ever just be easy and work for me. If anyone else wouldn't mind looking into that, I'd greatly appreciate it. Having the `WM_KEYDOWN` test inside the main `Application_sharedProc`, it seems to not respond to the escape key on modal dialogs. If I put the `WM_KEYDOWN` test in the main window proc, then it doesn't seem to get called for `VK_ESCAPE` at all, and doesn't get called period for modal windows. So I'm at a loss and it's past 4AM here >_>
2017-07-12 08:24:27 +00:00
ports.append(move(hardware));
}
auto MasterSystemInterface::videoInformation() -> VideoInformation {
VideoInformation vi;
vi.width = 256;
vi.height = 240;
vi.internalWidth = 256;
vi.internalHeight = 240;
vi.aspectCorrection = 8.0 / 7.0;
if(Region::NTSC()) vi.refreshRate = (system.colorburst() * 15.0 / 5.0) / (262.0 * 684.0);
if(Region::PAL()) vi.refreshRate = (system.colorburst() * 15.0 / 5.0) / (312.0 * 684.0);
return vi;
}
auto MasterSystemInterface::videoColors() -> uint32 {
return 1 << 6;
}
auto MasterSystemInterface::videoColor(uint32 color) -> uint64 {
uint2 B = color >> 4;
uint2 G = color >> 2;
uint2 R = color >> 0;
uint64 r = image::normalize(R, 2, 16);
uint64 g = image::normalize(G, 2, 16);
uint64 b = image::normalize(B, 2, 16);
return r << 32 | g << 16 | b << 0;
}
auto MasterSystemInterface::load(uint id) -> bool {
if(id == ID::MasterSystem) return system.load(this, System::Model::MasterSystem);
return false;
}
auto MasterSystemInterface::connect(uint port, uint device) -> void {
if(port == ID::Port::Controller1) controllerPort1.connect(settings.controllerPort1 = device);
if(port == ID::Port::Controller2) controllerPort2.connect(settings.controllerPort2 = device);
}