TextureCache: Flush uploads if the staging buffer overflows in a frame.

This commit is contained in:
Dr. Chat 2016-07-30 23:02:06 -05:00
parent 4577303245
commit ff57d79793
2 changed files with 244 additions and 37 deletions

View File

@ -25,7 +25,7 @@ namespace vulkan {
using xe::ui::vulkan::CheckResult; using xe::ui::vulkan::CheckResult;
constexpr uint32_t kMaxTextureSamplers = 32; constexpr uint32_t kMaxTextureSamplers = 32;
constexpr VkDeviceSize kStagingBufferSize = 64 * 1024 * 1024; constexpr VkDeviceSize kStagingBufferSize = 32 * 1024 * 1024;
struct TextureConfig { struct TextureConfig {
TextureFormat guest_format; TextureFormat guest_format;
@ -118,10 +118,10 @@ TextureCache::TextureCache(Memory* memory, RegisterFile* register_file,
descriptor_pool_info.pNext = nullptr; descriptor_pool_info.pNext = nullptr;
descriptor_pool_info.flags = descriptor_pool_info.flags =
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT; VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
descriptor_pool_info.maxSets = 8192; descriptor_pool_info.maxSets = 32768;
VkDescriptorPoolSize pool_sizes[1]; VkDescriptorPoolSize pool_sizes[1];
pool_sizes[0].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; pool_sizes[0].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
pool_sizes[0].descriptorCount = 8192; pool_sizes[0].descriptorCount = 32768;
descriptor_pool_info.poolSizeCount = 1; descriptor_pool_info.poolSizeCount = 1;
descriptor_pool_info.pPoolSizes = pool_sizes; descriptor_pool_info.pPoolSizes = pool_sizes;
auto err = vkCreateDescriptorPool(*device_, &descriptor_pool_info, nullptr, auto err = vkCreateDescriptorPool(*device_, &descriptor_pool_info, nullptr,
@ -160,9 +160,15 @@ TextureCache::TextureCache(Memory* memory, RegisterFile* register_file,
invalidated_textures_sets_[0].reserve(64); invalidated_textures_sets_[0].reserve(64);
invalidated_textures_sets_[1].reserve(64); invalidated_textures_sets_[1].reserve(64);
invalidated_textures_ = &invalidated_textures_sets_[0]; invalidated_textures_ = &invalidated_textures_sets_[0];
device_queue_ = device_->AcquireQueue();
} }
TextureCache::~TextureCache() { TextureCache::~TextureCache() {
if (device_queue_) {
device_->ReleaseQueue(device_queue_);
}
for (auto it = samplers_.begin(); it != samplers_.end(); ++it) { for (auto it = samplers_.begin(); it != samplers_.end(); ++it) {
vkDestroySampler(*device_, it->second->sampler, nullptr); vkDestroySampler(*device_, it->second->sampler, nullptr);
delete it->second; delete it->second;
@ -204,26 +210,35 @@ TextureCache::Texture* TextureCache::AllocateTexture(
? config.host_format ? config.host_format
: VK_FORMAT_R8G8B8A8_UNORM; : VK_FORMAT_R8G8B8A8_UNORM;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
// Check the device limits for the format before we create it.
VkFormatProperties props; VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(*device_, format, &props);
uint32_t required_flags = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | uint32_t required_flags = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT |
VK_FORMAT_FEATURE_BLIT_DST_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT |
VK_FORMAT_FEATURE_BLIT_SRC_BIT; VK_FORMAT_FEATURE_BLIT_SRC_BIT;
vkGetPhysicalDeviceFormatProperties(*device_, format, &props);
if ((props.optimalTilingFeatures & required_flags) != required_flags) { if ((props.optimalTilingFeatures & required_flags) != required_flags) {
// Texture needs conversion on upload to a native format. // Texture needs conversion on upload to a native format.
// assert_always(); // assert_always();
} }
VkImageFormatProperties image_props;
vkGetPhysicalDeviceImageFormatProperties(
*device_, format, image_info.imageType, image_info.tiling,
image_info.usage, image_info.flags, &image_props);
// TODO(DrChat): Actually check the image properties.
image_info.format = format; image_info.format = format;
image_info.extent = {texture_info.width + 1, texture_info.height + 1, image_info.extent = {texture_info.width + 1, texture_info.height + 1,
texture_info.depth + 1}; texture_info.depth + 1};
image_info.mipLevels = 1; image_info.mipLevels = 1;
image_info.arrayLayers = 1; image_info.arrayLayers = 1;
image_info.samples = VK_SAMPLE_COUNT_1_BIT; image_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_info.queueFamilyIndexCount = 0; image_info.queueFamilyIndexCount = 0;
image_info.pQueueFamilyIndices = nullptr; image_info.pQueueFamilyIndices = nullptr;
@ -257,6 +272,7 @@ TextureCache::Texture* TextureCache::AllocateTexture(
texture->image_memory = memory; texture->image_memory = memory;
texture->memory_offset = 0; texture->memory_offset = 0;
texture->memory_size = mem_requirements.size; texture->memory_size = mem_requirements.size;
texture->access_watch_handle = 0;
texture->texture_info = texture_info; texture->texture_info = texture_info;
return texture; return texture;
} }
@ -380,7 +396,7 @@ TextureCache::Texture* TextureCache::Demand(
} }
} }
if (!command_buffer || texture_info.dimension != Dimension::k2D) { if (!command_buffer) {
// Texture not found and no command buffer was passed, preventing us from // Texture not found and no command buffer was passed, preventing us from
// uploading a new one. // uploading a new one.
return nullptr; return nullptr;
@ -402,6 +418,8 @@ TextureCache::Texture* TextureCache::Demand(
} break; } break;
case Dimension::kCube: { case Dimension::kCube: {
uploaded = UploadTextureCube(command_buffer, completion_fence, texture,
texture_info);
} break; } break;
default: default:
@ -515,6 +533,10 @@ TextureCache::TextureView* TextureCache::DemandView(Texture* texture,
VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
} }
if (texture->texture_info.dimension == Dimension::kCube) {
view_info.subresourceRange.layerCount = 6;
}
VkImageView view; VkImageView view;
auto status = vkCreateImageView(*device_, &view_info, nullptr, &view); auto status = vkCreateImageView(*device_, &view_info, nullptr, &view);
CheckResult(status, "vkCreateImageView"); CheckResult(status, "vkCreateImageView");
@ -748,44 +770,55 @@ void TextureSwap(Endian endianness, void* dest, const void* src,
} }
} }
bool TextureCache::UploadTexture2D( void TextureCache::FlushPendingCommands(
VkCommandBuffer command_buffer, VkCommandBuffer command_buffer,
std::shared_ptr<ui::vulkan::Fence> completion_fence, Texture* dest, std::shared_ptr<ui::vulkan::Fence> completion_fence) {
TextureInfo src) { auto status = vkEndCommandBuffer(command_buffer);
#if FINE_GRAINED_DRAW_SCOPES CheckResult(status, "vkEndCommandBuffer");
SCOPE_profile_cpu_f("gpu");
#endif // FINE_GRAINED_DRAW_SCOPES
assert_true(src.dimension == Dimension::k2D); VkSubmitInfo submit_info;
std::memset(&submit_info, 0, sizeof(submit_info));
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &command_buffer;
size_t unpack_length = src.output_length; if (device_queue_) {
if (!staging_buffer_.CanAcquire(unpack_length)) { auto status =
// Need to have unique memory for every upload for at least one frame. If we vkQueueSubmit(device_queue_, 1, &submit_info, *completion_fence);
// run out of memory, we need to flush all queued upload commands to the CheckResult(status, "vkQueueSubmit");
// GPU. } else {
// TODO: Actually flush commands. std::lock_guard<std::mutex>(device_->primary_queue_mutex());
assert_always();
auto status = vkQueueSubmit(device_->primary_queue(), 1, &submit_info,
*completion_fence);
CheckResult(status, "vkQueueSubmit");
} }
// Grab some temporary memory for staging. VkFence fences[] = {*completion_fence};
auto alloc = staging_buffer_.Acquire(unpack_length, completion_fence); vkWaitForFences(*device_, 1, fences, VK_TRUE, -1);
assert_not_null(alloc); staging_buffer_.Scavenge();
vkResetFences(*device_, 1, fences);
// Upload texture into GPU memory. // Reset the command buffer and put it back into the recording state.
// TODO: If the GPU supports it, we can submit a compute batch to convert the vkResetCommandBuffer(command_buffer, 0);
// texture and copy it to its destination. Otherwise, fallback to conversion VkCommandBufferBeginInfo begin_info;
// on the CPU. std::memset(&begin_info, 0, sizeof(begin_info));
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
vkBeginCommandBuffer(command_buffer, &begin_info);
}
void TextureCache::ConvertTexture2D(uint8_t* dest, const TextureInfo& src) {
void* host_address = memory_->TranslatePhysical(src.guest_address); void* host_address = memory_->TranslatePhysical(src.guest_address);
if (!src.is_tiled) { if (!src.is_tiled) {
if (src.size_2d.input_pitch == src.size_2d.output_pitch) { if (src.size_2d.input_pitch == src.size_2d.output_pitch) {
// Fast path copy entire image. // Fast path copy entire image.
TextureSwap(src.endianness, alloc->host_ptr, host_address, unpack_length); TextureSwap(src.endianness, dest, host_address, src.output_length);
} else { } else {
// Slow path copy row-by-row because strides differ. // Slow path copy row-by-row because strides differ.
// UNPACK_ROW_LENGTH only works for uncompressed images, and likely does // UNPACK_ROW_LENGTH only works for uncompressed images, and likely does
// this exact thing under the covers, so we just always do it here. // this exact thing under the covers, so we just always do it here.
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address); const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address);
uint8_t* dest = reinterpret_cast<uint8_t*>(alloc->host_ptr);
uint32_t pitch = uint32_t pitch =
std::min(src.size_2d.input_pitch, src.size_2d.output_pitch); std::min(src.size_2d.input_pitch, src.size_2d.output_pitch);
for (uint32_t y = 0; for (uint32_t y = 0;
@ -802,7 +835,6 @@ bool TextureCache::UploadTexture2D(
// TODO(benvanik): optimize this inner loop (or work by tiles). // TODO(benvanik): optimize this inner loop (or work by tiles).
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address); const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address);
uint8_t* dest = reinterpret_cast<uint8_t*>(alloc->host_ptr);
uint32_t bytes_per_block = src.format_info->block_width * uint32_t bytes_per_block = src.format_info->block_width *
src.format_info->block_height * src.format_info->block_height *
src.format_info->bits_per_pixel / 8; src.format_info->bits_per_pixel / 8;
@ -830,7 +862,103 @@ bool TextureCache::UploadTexture2D(
} }
} }
} }
}
void TextureCache::ConvertTextureCube(uint8_t* dest, const TextureInfo& src) {
void* host_address = memory_->TranslatePhysical(src.guest_address);
if (!src.is_tiled) {
if (src.size_cube.input_pitch == src.size_cube.output_pitch) {
// Fast path copy entire image.
TextureSwap(src.endianness, dest, host_address, src.output_length);
} else {
// Slow path copy row-by-row because strides differ.
// UNPACK_ROW_LENGTH only works for uncompressed images, and likely does
// this exact thing under the covers, so we just always do it here.
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address);
for (int face = 0; face < 6; ++face) {
uint32_t pitch =
std::min(src.size_cube.input_pitch, src.size_cube.output_pitch);
for (uint32_t y = 0; y < src.size_cube.block_height; y++) {
TextureSwap(src.endianness, dest, src_mem, pitch);
src_mem += src.size_cube.input_pitch;
dest += src.size_cube.output_pitch;
}
}
}
} else {
// TODO(benvanik): optimize this inner loop (or work by tiles).
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address);
uint32_t bytes_per_block = src.format_info->block_width *
src.format_info->block_height *
src.format_info->bits_per_pixel / 8;
// Tiled textures can be packed; get the offset into the packed texture.
uint32_t offset_x;
uint32_t offset_y;
TextureInfo::GetPackedTileOffset(src, &offset_x, &offset_y);
auto bpp = (bytes_per_block >> 2) +
((bytes_per_block >> 1) >> (bytes_per_block >> 2));
for (int face = 0; face < 6; ++face) {
for (uint32_t y = 0, output_base_offset = 0;
y < src.size_cube.block_height;
y++, output_base_offset += src.size_cube.output_pitch) {
auto input_base_offset = TextureInfo::TiledOffset2DOuter(
offset_y + y,
(src.size_cube.input_width / src.format_info->block_width), bpp);
for (uint32_t x = 0, output_offset = output_base_offset;
x < src.size_cube.block_width;
x++, output_offset += bytes_per_block) {
auto input_offset =
TextureInfo::TiledOffset2DInner(offset_x + x, offset_y + y, bpp,
input_base_offset) >>
bpp;
TextureSwap(src.endianness, dest + output_offset,
src_mem + input_offset * bytes_per_block,
bytes_per_block);
}
}
src_mem += src.size_cube.input_face_length;
dest += src.size_cube.output_face_length;
}
}
}
bool TextureCache::UploadTexture2D(
VkCommandBuffer command_buffer,
std::shared_ptr<ui::vulkan::Fence> completion_fence, Texture* dest,
const TextureInfo& src) {
#if FINE_GRAINED_DRAW_SCOPES
SCOPE_profile_cpu_f("gpu");
#endif // FINE_GRAINED_DRAW_SCOPES
assert_true(src.dimension == Dimension::k2D);
size_t unpack_length = src.output_length;
if (!staging_buffer_.CanAcquire(unpack_length)) {
// Need to have unique memory for every upload for at least one frame. If we
// run out of memory, we need to flush all queued upload commands to the
// GPU.
FlushPendingCommands(command_buffer, completion_fence);
// Uploads have been flushed. Continue.
if (!staging_buffer_.CanAcquire(unpack_length)) {
// The staging buffer isn't big enough to hold this texture.
XELOGE(
"TextureCache staging buffer is too small! (uploading 0x%.8X bytes)",
unpack_length);
assert_always();
return false;
}
}
// Grab some temporary memory for staging.
auto alloc = staging_buffer_.Acquire(unpack_length, completion_fence);
assert_not_null(alloc);
// Upload texture into GPU memory.
// TODO: If the GPU supports it, we can submit a compute batch to convert the
// texture and copy it to its destination. Otherwise, fallback to conversion
// on the CPU.
ConvertTexture2D(reinterpret_cast<uint8_t*>(alloc->host_ptr), src);
staging_buffer_.Flush(alloc); staging_buffer_.Flush(alloc);
// Transition the texture into a transfer destination layout. // Transition the texture into a transfer destination layout.
@ -879,8 +1007,79 @@ bool TextureCache::UploadTexture2D(
bool TextureCache::UploadTextureCube( bool TextureCache::UploadTextureCube(
VkCommandBuffer command_buffer, VkCommandBuffer command_buffer,
std::shared_ptr<ui::vulkan::Fence> completion_fence, Texture* dest, std::shared_ptr<ui::vulkan::Fence> completion_fence, Texture* dest,
TextureInfo src) { const TextureInfo& src) {
assert_true(src.dimension == Dimension::kCube);
size_t unpack_length = src.output_length;
if (!staging_buffer_.CanAcquire(unpack_length)) {
// Need to have unique memory for every upload for at least one frame. If we
// run out of memory, we need to flush all queued upload commands to the
// GPU.
FlushPendingCommands(command_buffer, completion_fence);
// Uploads have been flushed. Continue.
if (!staging_buffer_.CanAcquire(unpack_length)) {
// The staging buffer isn't big enough to hold this texture.
XELOGE(
"TextureCache staging buffer is too small! (uploading 0x%.8X bytes)",
unpack_length);
assert_always();
return false; return false;
}
}
// Grab some temporary memory for staging.
auto alloc = staging_buffer_.Acquire(unpack_length, completion_fence);
assert_not_null(alloc);
// Upload texture into GPU memory.
// TODO: If the GPU supports it, we can submit a compute batch to convert the
// texture and copy it to its destination. Otherwise, fallback to conversion
// on the CPU.
ConvertTextureCube(reinterpret_cast<uint8_t*>(alloc->host_ptr), src);
staging_buffer_.Flush(alloc);
// Transition the texture into a transfer destination layout.
VkImageMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = 0;
barrier.dstAccessMask =
VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_HOST_WRITE_BIT;
barrier.oldLayout = dest->image_layout;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = dest->image;
barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
// Now move the converted texture into the destination.
VkBufferImageCopy copy_region;
copy_region.bufferOffset = alloc->offset;
copy_region.bufferRowLength = src.size_cube.output_width;
copy_region.bufferImageHeight = src.size_cube.output_height;
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageOffset = {0, 0, 0};
copy_region.imageExtent = {src.size_cube.output_width,
src.size_cube.output_height, 6};
vkCmdCopyBufferToImage(command_buffer, staging_buffer_.gpu_buffer(),
dest->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&copy_region);
// Now transition the texture into a shader readonly source.
barrier.srcAccessMask = barrier.dstAccessMask;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.oldLayout = barrier.newLayout;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
dest->image_layout = barrier.newLayout;
return true;
} }
VkDescriptorSet TextureCache::PrepareTextureSet( VkDescriptorSet TextureCache::PrepareTextureSet(

View File

@ -146,16 +146,23 @@ class TextureCache {
TextureView* DemandView(Texture* texture, uint16_t swizzle); TextureView* DemandView(Texture* texture, uint16_t swizzle);
Sampler* Demand(const SamplerInfo& sampler_info); Sampler* Demand(const SamplerInfo& sampler_info);
void FlushPendingCommands(
VkCommandBuffer command_buffer,
std::shared_ptr<ui::vulkan::Fence> completion_fence);
void ConvertTexture2D(uint8_t* dest, const TextureInfo& src);
void ConvertTextureCube(uint8_t* dest, const TextureInfo& src);
// Queues commands to upload a texture from system memory, applying any // Queues commands to upload a texture from system memory, applying any
// conversions necessary. This may flush the command buffer to the GPU if we // conversions necessary. This may flush the command buffer to the GPU if we
// run out of staging memory. // run out of staging memory.
bool UploadTexture2D(VkCommandBuffer command_buffer, bool UploadTexture2D(VkCommandBuffer command_buffer,
std::shared_ptr<ui::vulkan::Fence> completion_fence, std::shared_ptr<ui::vulkan::Fence> completion_fence,
Texture* dest, TextureInfo src); Texture* dest, const TextureInfo& src);
bool UploadTextureCube(VkCommandBuffer command_buffer, bool UploadTextureCube(VkCommandBuffer command_buffer,
std::shared_ptr<ui::vulkan::Fence> completion_fence, std::shared_ptr<ui::vulkan::Fence> completion_fence,
Texture* dest, TextureInfo src); Texture* dest, const TextureInfo& src);
bool SetupTextureBindings( bool SetupTextureBindings(
VkCommandBuffer command_buffer, VkCommandBuffer command_buffer,
@ -172,6 +179,7 @@ class TextureCache {
RegisterFile* register_file_ = nullptr; RegisterFile* register_file_ = nullptr;
TraceWriter* trace_writer_ = nullptr; TraceWriter* trace_writer_ = nullptr;
ui::vulkan::VulkanDevice* device_ = nullptr; ui::vulkan::VulkanDevice* device_ = nullptr;
VkQueue device_queue_ = nullptr;
VkDescriptorPool descriptor_pool_ = nullptr; VkDescriptorPool descriptor_pool_ = nullptr;
VkDescriptorSetLayout texture_descriptor_set_layout_ = nullptr; VkDescriptorSetLayout texture_descriptor_set_layout_ = nullptr;