xenia-canary/src/xenia/memory.cc

635 lines
20 KiB
C++
Raw Normal View History

/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/memory.h>
2014-08-16 23:57:00 +00:00
#include <algorithm>
#include <mutex>
#include <gflags/gflags.h>
2014-08-17 00:18:20 +00:00
#include <poly/math.h>
#include <xenia/cpu/mmio_handler.h>
using namespace xe;
2013-10-23 06:34:24 +00:00
// TODO(benvanik): move xbox.h out
#include <xenia/xbox.h>
2013-10-23 06:34:24 +00:00
#if !XE_PLATFORM_WIN32
#include <sys/mman.h>
#endif // WIN32
#define MSPACES 1
#define USE_LOCKS 0
#define USE_DL_PREFIX 1
#define HAVE_MORECORE 0
#define HAVE_MREMAP 0
#define malloc_getpagesize 4096
#define DEFAULT_GRANULARITY 64 * 1024
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
#define MALLOC_ALIGNMENT 32
#define MALLOC_INSPECT_ALL 1
#if XE_DEBUG
#define FOOTERS 0
#endif // XE_DEBUG
2013-01-29 05:36:03 +00:00
#include <third_party/dlmalloc/malloc.c.h>
DEFINE_bool(log_heap, false, "Log heap structure on alloc/free.");
DEFINE_uint64(
heap_guard_pages, 0,
"Allocate the given number of guard pages around all heap chunks.");
DEFINE_bool(scribble_heap, false,
"Scribble 0xCD into all allocated heap memory.");
/**
* Memory map:
* 0x00000000 - 0x3FFFFFFF (1024mb) - virtual 4k pages
* 0x40000000 - 0x7FFFFFFF (1024mb) - virtual 64k pages
* 0x80000000 - 0x8BFFFFFF ( 192mb) - xex 64k pages
* 0x8C000000 - 0x8FFFFFFF ( 64mb) - xex 64k pages (encrypted)
* 0x90000000 - 0x9FFFFFFF ( 256mb) - xex 4k pages
* 0xA0000000 - 0xBFFFFFFF ( 512mb) - physical 64k pages
* 0xC0000000 - 0xDFFFFFFF - physical 16mb pages
* 0xE0000000 - 0xFFFFFFFF - physical 4k pages
*
* We use the host OS to create an entire addressable range for this. That way
* we don't have to emulate a TLB. It'd be really cool to pass through page
* sizes or use madvice to let the OS know what to expect.
*
* We create our own heap of committed memory that lives at
* XENON_MEMORY_HEAP_LOW to XENON_MEMORY_HEAP_HIGH - all normal user allocations
* come from there. Since the Xbox has no paging, we know that the size of this
* heap will never need to be larger than ~512MB (realistically, smaller than
* that). We place it far away from the XEX data and keep the memory around it
* uncommitted so that we have some warning if things go astray.
*
* For XEX/GPU/etc data we allow placement allocations (base_address != 0) and
* commit the requested memory as needed. This bypasses the standard heap, but
* XEXs should never be overwriting anything so that's fine. We can also query
* for previous commits and assert that we really isn't committing twice.
*
* GPU memory is mapped onto the lower 512mb of the virtual 4k range (0).
* So 0xA0000000 = 0x00000000. A more sophisticated allocator could handle
* this.
*/
#define XENON_MEMORY_PHYSICAL_HEAP_LOW 0x00010000
#define XENON_MEMORY_PHYSICAL_HEAP_HIGH 0x20000000
#define XENON_MEMORY_VIRTUAL_HEAP_LOW 0x20000000
#define XENON_MEMORY_VIRTUAL_HEAP_HIGH 0x40000000
class xe::MemoryHeap {
public:
MemoryHeap(Memory* memory, bool is_physical);
~MemoryHeap();
int Initialize(uint64_t low, uint64_t high);
uint64_t Alloc(uint64_t base_address, size_t size, uint32_t flags,
uint32_t alignment);
uint64_t Free(uint64_t address, size_t size);
2014-01-05 19:19:02 +00:00
size_t QuerySize(uint64_t base_address);
void Dump();
private:
static uint32_t next_heap_id_;
static void DumpHandler(void* start, void* end, size_t used_bytes,
void* context);
private:
Memory* memory_;
uint32_t heap_id_;
bool is_physical_;
std::mutex lock_;
size_t size_;
uint8_t* ptr_;
mspace space_;
};
uint32_t MemoryHeap::next_heap_id_ = 1;
2014-12-20 01:29:27 +00:00
Memory::Memory() : mapping_(0), mapping_base_(nullptr) {
virtual_heap_ = new MemoryHeap(this, false);
physical_heap_ = new MemoryHeap(this, true);
}
Memory::~Memory() {
// Uninstall the MMIO handler, as we won't be able to service more
// requests.
mmio_handler_.reset();
2014-06-02 14:11:27 +00:00
if (mapping_base_) {
// GPU writeback.
VirtualFree(Translate(0xC0000000), 0x00100000, MEM_DECOMMIT);
}
delete physical_heap_;
delete virtual_heap_;
// Unmap all views and close mapping.
if (mapping_) {
UnmapViews();
CloseHandle(mapping_);
mapping_base_ = 0;
mapping_ = 0;
}
}
int Memory::Initialize() {
int result = alloy::Memory::Initialize();
if (result) {
return result;
}
// Create main page file-backed mapping. This is all reserved but
// uncommitted (so it shouldn't expand page file).
2014-08-02 04:43:52 +00:00
#if XE_PLATFORM_WIN32
mapping_ =
CreateFileMapping(INVALID_HANDLE_VALUE, NULL,
PAGE_READWRITE | SEC_RESERVE, 1, 0, // entire 4gb space
NULL);
2014-08-02 04:43:52 +00:00
#else
char mapping_path[] = "/xenia/mapping/XXXXXX";
mktemp(mapping_path);
mapping_ = shm_open(mapping_path, O_CREAT, 0);
ftruncate(mapping_, 0x100000000);
#endif // XE_PLATFORM_WIN32
if (!mapping_) {
XELOGE("Unable to reserve the 4gb guest address space.");
assert_not_null(mapping_);
return 1;
}
// Attempt to create our views. This may fail at the first address
// we pick, so try a few times.
mapping_base_ = 0;
for (size_t n = 32; n < 64; n++) {
uint8_t* mapping_base = (uint8_t*)(1ull << n);
if (!MapViews(mapping_base)) {
mapping_base_ = mapping_base;
break;
}
}
if (!mapping_base_) {
XELOGE("Unable to find a continuous block in the 64bit address space.");
assert_always();
return 1;
}
membase_ = mapping_base_;
// Prepare heaps.
virtual_heap_->Initialize(XENON_MEMORY_VIRTUAL_HEAP_LOW,
XENON_MEMORY_VIRTUAL_HEAP_HIGH);
physical_heap_->Initialize(XENON_MEMORY_PHYSICAL_HEAP_LOW,
XENON_MEMORY_PHYSICAL_HEAP_HIGH - 0x1000);
2013-01-29 05:36:03 +00:00
// GPU writeback.
// 0xC... is physical, 0x7F... is virtual. We may need to overlay these.
VirtualAlloc(Translate(0x00000000), 0x00100000, MEM_COMMIT, PAGE_READWRITE);
// Add handlers for MMIO.
mmio_handler_ = cpu::MMIOHandler::Install(mapping_base_);
if (!mmio_handler_) {
XELOGE("Unable to install MMIO handlers");
assert_always();
return 1;
}
return 0;
}
2014-08-02 04:43:52 +00:00
const static struct {
uint64_t virtual_address_start;
uint64_t virtual_address_end;
uint64_t target_address;
2014-08-02 04:43:52 +00:00
} map_info[] = {
0x00000000, 0x3FFFFFFF, 0x00000000, // (1024mb) - virtual 4k pages
0x40000000, 0x7EFFFFFF, 0x40000000, // (1024mb) - virtual 64k pages (cont)
0x7F000000, 0x7F0FFFFF, 0x00000000, // (1mb) - GPU writeback
0x7F100000, 0x7FFFFFFF, 0x00100000, // (15mb) - XPS?
2014-09-14 02:32:37 +00:00
0x80000000, 0x8FFFFFFF, 0x80000000, // (256mb) - xex 64k pages
0x90000000, 0x9FFFFFFF, 0x80000000, // (256mb) - xex 4k pages
0xA0000000, 0xBFFFFFFF, 0x00000000, // (512mb) - physical 64k pages
0xC0000000, 0xDFFFFFFF, 0x00000000, // - physical 16mb pages
0xE0000000, 0xFFFFFFFF, 0x00000000, // - physical 4k pages
2014-08-02 04:43:52 +00:00
};
int Memory::MapViews(uint8_t* mapping_base) {
2014-08-17 00:58:33 +00:00
assert_true(poly::countof(map_info) == poly::countof(views_.all_views));
for (size_t n = 0; n < poly::countof(map_info); n++) {
2014-08-02 04:43:52 +00:00
#if XE_PLATFORM_WIN32
views_.all_views[n] = reinterpret_cast<uint8_t*>(MapViewOfFileEx(
mapping_, FILE_MAP_ALL_ACCESS, 0x00000000,
(DWORD)map_info[n].target_address,
2013-10-22 02:28:25 +00:00
map_info[n].virtual_address_end - map_info[n].virtual_address_start + 1,
2014-08-02 04:43:52 +00:00
mapping_base + map_info[n].virtual_address_start));
#else
views_.all_views[n] = reinterpret_cast<uint8_t*>(mmap(
map_info[n].virtual_address_start + mapping_base,
map_info[n].virtual_address_end - map_info[n].virtual_address_start + 1,
PROT_NONE, MAP_SHARED | MAP_FIXED, mapping_,
map_info[n].target_address));
2014-08-02 04:43:52 +00:00
#endif // XE_PLATFORM_WIN32
if (!views_.all_views[n]) {
// Failed, so bail and try again.
UnmapViews();
return 1;
}
}
return 0;
}
void Memory::UnmapViews() {
2014-08-17 00:58:33 +00:00
for (size_t n = 0; n < poly::countof(views_.all_views); n++) {
if (views_.all_views[n]) {
2014-08-02 04:43:52 +00:00
#if XE_PLATFORM_WIN32
UnmapViewOfFile(views_.all_views[n]);
2014-08-02 04:43:52 +00:00
#else
size_t length = map_info[n].virtual_address_end -
map_info[n].virtual_address_start + 1;
2014-08-02 04:43:52 +00:00
munmap(views_.all_views[n], length);
#endif // XE_PLATFORM_WIN32
}
}
}
bool Memory::AddMappedRange(uint64_t address, uint64_t mask, uint64_t size,
void* context, cpu::MMIOReadCallback read_callback,
cpu::MMIOWriteCallback write_callback) {
DWORD protect = PAGE_NOACCESS;
if (!VirtualAlloc(Translate(address), size, MEM_COMMIT, protect)) {
XELOGE("Unable to map range; commit/protect failed");
return false;
}
return mmio_handler_->RegisterRange(address, mask, size, context,
read_callback, write_callback);
}
uint8_t Memory::LoadI8(uint64_t address) {
uint64_t value;
if (!mmio_handler_->CheckLoad(address, &value)) {
value = *reinterpret_cast<uint8_t*>(Translate(address));
}
return static_cast<uint8_t>(value);
}
uint16_t Memory::LoadI16(uint64_t address) {
uint64_t value;
if (!mmio_handler_->CheckLoad(address, &value)) {
value = *reinterpret_cast<uint16_t*>(Translate(address));
}
return static_cast<uint16_t>(value);
}
uint32_t Memory::LoadI32(uint64_t address) {
uint64_t value;
if (!mmio_handler_->CheckLoad(address, &value)) {
value = *reinterpret_cast<uint32_t*>(Translate(address));
}
return static_cast<uint32_t>(value);
}
uint64_t Memory::LoadI64(uint64_t address) {
uint64_t value;
if (!mmio_handler_->CheckLoad(address, &value)) {
value = *reinterpret_cast<uint64_t*>(Translate(address));
}
return static_cast<uint64_t>(value);
}
void Memory::StoreI8(uint64_t address, uint8_t value) {
if (!mmio_handler_->CheckStore(address, value)) {
*reinterpret_cast<uint8_t*>(Translate(address)) = value;
}
}
void Memory::StoreI16(uint64_t address, uint16_t value) {
if (!mmio_handler_->CheckStore(address, value)) {
*reinterpret_cast<uint16_t*>(Translate(address)) = value;
}
}
void Memory::StoreI32(uint64_t address, uint32_t value) {
if (!mmio_handler_->CheckStore(address, value)) {
*reinterpret_cast<uint32_t*>(Translate(address)) = value;
}
}
void Memory::StoreI64(uint64_t address, uint64_t value) {
if (!mmio_handler_->CheckStore(address, value)) {
*reinterpret_cast<uint64_t*>(Translate(address)) = value;
}
}
uint64_t Memory::HeapAlloc(uint64_t base_address, size_t size, uint32_t flags,
uint32_t alignment) {
// If we were given a base address we are outside of the normal heap and
// will place wherever asked (so long as it doesn't overlap the heap).
if (!base_address) {
// Normal allocation from the managed heap.
uint64_t result;
if (flags & MEMORY_FLAG_PHYSICAL) {
result = physical_heap_->Alloc(base_address, size, flags, alignment);
} else {
result = virtual_heap_->Alloc(base_address, size, flags, alignment);
}
2013-10-23 04:50:10 +00:00
if (result) {
if (flags & MEMORY_FLAG_ZERO) {
memset(Translate(result), 0, size);
2013-10-23 04:50:10 +00:00
}
}
return result;
} else {
if (base_address >= XENON_MEMORY_VIRTUAL_HEAP_LOW &&
base_address < XENON_MEMORY_VIRTUAL_HEAP_HIGH) {
// Overlapping managed heap.
assert_always();
return 0;
}
if (base_address >= XENON_MEMORY_PHYSICAL_HEAP_LOW &&
base_address < XENON_MEMORY_PHYSICAL_HEAP_HIGH) {
// Overlapping managed heap.
assert_always();
return 0;
}
uint8_t* p = Translate(base_address);
// TODO(benvanik): check if address range is in use with a query.
void* pv = VirtualAlloc(p, size, MEM_COMMIT, PAGE_READWRITE);
if (!pv) {
// Failed.
assert_always();
return 0;
}
2013-01-29 05:36:03 +00:00
if (flags & MEMORY_FLAG_ZERO) {
memset(pv, 0, size);
2013-10-23 04:50:10 +00:00
}
return base_address;
}
2013-01-29 05:36:03 +00:00
}
int Memory::HeapFree(uint64_t address, size_t size) {
if (address >= XENON_MEMORY_VIRTUAL_HEAP_LOW &&
address < XENON_MEMORY_VIRTUAL_HEAP_HIGH) {
return virtual_heap_->Free(address, size) ? 0 : 1;
} else if (address >= XENON_MEMORY_PHYSICAL_HEAP_LOW &&
address < XENON_MEMORY_PHYSICAL_HEAP_HIGH) {
return physical_heap_->Free(address, size) ? 0 : 1;
} else {
// A placed address. Decommit.
uint8_t* p = Translate(address);
return VirtualFree(p, size, MEM_DECOMMIT) ? 0 : 1;
}
}
2013-01-29 05:36:03 +00:00
bool Memory::QueryInformation(uint64_t base_address, AllocationInfo* mem_info) {
2014-08-15 06:14:57 +00:00
uint8_t* p = Translate(base_address);
MEMORY_BASIC_INFORMATION mbi;
if (!VirtualQuery(p, &mbi, sizeof(mbi))) {
return false;
}
mem_info->base_address = base_address;
2014-08-20 02:41:29 +00:00
mem_info->allocation_base = static_cast<uint64_t>(
reinterpret_cast<uint8_t*>(mbi.AllocationBase) - membase_);
mem_info->allocation_protect = mbi.AllocationProtect;
mem_info->region_size = mbi.RegionSize;
mem_info->state = mbi.State;
mem_info->protect = mbi.Protect;
mem_info->type = mbi.Type;
return true;
2014-08-15 06:14:57 +00:00
}
size_t Memory::QuerySize(uint64_t base_address) {
2014-01-05 19:19:02 +00:00
if (base_address >= XENON_MEMORY_VIRTUAL_HEAP_LOW &&
base_address < XENON_MEMORY_VIRTUAL_HEAP_HIGH) {
return virtual_heap_->QuerySize(base_address);
} else if (base_address >= XENON_MEMORY_PHYSICAL_HEAP_LOW &&
base_address < XENON_MEMORY_PHYSICAL_HEAP_HIGH) {
return physical_heap_->QuerySize(base_address);
} else {
2014-08-02 04:43:52 +00:00
// A placed address.
2014-01-05 19:19:02 +00:00
uint8_t* p = Translate(base_address);
MEMORY_BASIC_INFORMATION mem_info;
if (VirtualQuery(p, &mem_info, sizeof(mem_info))) {
return mem_info.RegionSize;
} else {
// Error.
return 0;
}
}
}
int Memory::Protect(uint64_t address, size_t size, uint32_t access) {
uint8_t* p = Translate(address);
2013-01-29 05:36:03 +00:00
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p += heap_guard_size;
2013-10-23 06:34:24 +00:00
DWORD new_protect = access;
new_protect =
new_protect &
(X_PAGE_NOACCESS | X_PAGE_READONLY | X_PAGE_READWRITE | X_PAGE_WRITECOPY |
X_PAGE_GUARD | X_PAGE_NOCACHE | X_PAGE_WRITECOMBINE);
2013-10-23 06:34:24 +00:00
DWORD old_protect;
return VirtualProtect(p, size, new_protect, &old_protect) == TRUE ? 0 : 1;
2013-01-29 05:36:03 +00:00
}
uint32_t Memory::QueryProtect(uint64_t address) {
uint8_t* p = Translate(address);
MEMORY_BASIC_INFORMATION info;
size_t info_size = VirtualQuery((void*)p, &info, sizeof(info));
if (!info_size) {
return 0;
}
return info.Protect;
}
MemoryHeap::MemoryHeap(Memory* memory, bool is_physical)
: memory_(memory), is_physical_(is_physical) {
heap_id_ = next_heap_id_++;
}
MemoryHeap::~MemoryHeap() {
if (space_) {
std::lock_guard<std::mutex> guard(lock_);
destroy_mspace(space_);
space_ = NULL;
}
if (ptr_) {
2014-08-16 23:57:00 +00:00
VirtualFree(ptr_, 0, MEM_RELEASE);
}
}
int MemoryHeap::Initialize(uint64_t low, uint64_t high) {
// Commit the memory where our heap will live and allocate it.
// TODO(benvanik): replace dlmalloc with an implementation that can commit
// as it goes.
size_ = high - low;
ptr_ = memory_->views_.v00000000 + low;
void* heap_result = VirtualAlloc(ptr_, size_, MEM_COMMIT, PAGE_READWRITE);
if (!heap_result) {
return 1;
}
space_ = create_mspace_with_base(ptr_, size_, 0);
return 0;
}
uint64_t MemoryHeap::Alloc(uint64_t base_address, size_t size, uint32_t flags,
uint32_t alignment) {
lock_.lock();
2013-10-22 02:28:25 +00:00
size_t alloc_size = size;
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
if (heap_guard_size) {
2014-08-16 23:57:00 +00:00
alignment = std::max(alignment, static_cast<uint32_t>(heap_guard_size));
2014-08-17 00:18:20 +00:00
alloc_size = static_cast<uint32_t>(poly::round_up(size, heap_guard_size));
}
2014-08-16 23:57:00 +00:00
uint8_t* p = (uint8_t*)mspace_memalign(space_, alignment,
alloc_size + heap_guard_size * 2);
assert_true(reinterpret_cast<uint64_t>(p) <= 0xFFFFFFFFFull);
if (FLAGS_heap_guard_pages) {
size_t real_size = mspace_usable_size(p);
DWORD old_protect;
VirtualProtect(p, heap_guard_size, PAGE_NOACCESS, &old_protect);
p += heap_guard_size;
VirtualProtect(p + alloc_size, heap_guard_size, PAGE_NOACCESS,
&old_protect);
}
if (FLAGS_log_heap) {
Dump();
}
lock_.unlock();
if (!p) {
return 0;
}
2013-10-22 02:28:25 +00:00
if (is_physical_) {
2013-10-22 02:28:25 +00:00
// If physical, we need to commit the memory in the physical address ranges
// so that it can be accessed.
VirtualAlloc(memory_->views_.vA0000000 + (p - memory_->views_.v00000000),
size, MEM_COMMIT, PAGE_READWRITE);
VirtualAlloc(memory_->views_.vC0000000 + (p - memory_->views_.v00000000),
size, MEM_COMMIT, PAGE_READWRITE);
VirtualAlloc(memory_->views_.vE0000000 + (p - memory_->views_.v00000000),
size, MEM_COMMIT, PAGE_READWRITE);
}
if ((flags & X_MEM_NOZERO) && FLAGS_scribble_heap) {
// Trash the memory so that we can see bad read-before-write bugs easier.
memset(p, 0xCD, alloc_size);
2013-10-27 23:01:35 +00:00
} else {
// Implicit clear.
memset(p, 0, alloc_size);
}
uint64_t address =
(uint64_t)((uintptr_t)p - (uintptr_t)memory_->mapping_base_);
return address;
}
uint64_t MemoryHeap::Free(uint64_t address, size_t size) {
uint8_t* p = memory_->Translate(address);
// Heap allocated address.
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p -= heap_guard_size;
size_t real_size = mspace_usable_size(p);
real_size -= heap_guard_size * 2;
if (!real_size) {
return 0;
}
if (FLAGS_scribble_heap) {
// Trash the memory so that we can see bad read-before-write bugs easier.
memset(p + heap_guard_size, 0xDC, size);
}
lock_.lock();
if (FLAGS_heap_guard_pages) {
DWORD old_protect;
VirtualProtect(p, heap_guard_size, PAGE_READWRITE, &old_protect);
VirtualProtect(p + heap_guard_size + real_size, heap_guard_size,
PAGE_READWRITE, &old_protect);
}
mspace_free(space_, p);
if (FLAGS_log_heap) {
Dump();
}
lock_.unlock();
2013-10-22 02:28:25 +00:00
if (is_physical_) {
2013-10-22 02:28:25 +00:00
// If physical, decommit from physical ranges too.
VirtualFree(memory_->views_.vA0000000 + (p - memory_->views_.v00000000),
size, MEM_DECOMMIT);
VirtualFree(memory_->views_.vC0000000 + (p - memory_->views_.v00000000),
size, MEM_DECOMMIT);
VirtualFree(memory_->views_.vE0000000 + (p - memory_->views_.v00000000),
size, MEM_DECOMMIT);
2013-10-22 02:28:25 +00:00
}
return (uint64_t)real_size;
}
2013-10-23 06:34:24 +00:00
size_t MemoryHeap::QuerySize(uint64_t base_address) {
2014-01-05 19:19:02 +00:00
uint8_t* p = memory_->Translate(base_address);
// Heap allocated address.
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p -= heap_guard_size;
size_t real_size = mspace_usable_size(p);
real_size -= heap_guard_size * 2;
if (!real_size) {
return 0;
}
return real_size;
}
void MemoryHeap::Dump() {
XELOGI("MemoryHeap::Dump - %s", is_physical_ ? "physical" : "virtual");
if (FLAGS_heap_guard_pages) {
XELOGI(" (heap guard pages enabled, stats will be wrong)");
2013-10-23 06:34:24 +00:00
}
struct mallinfo info = mspace_mallinfo(space_);
XELOGI(" arena: %lld", info.arena);
XELOGI(" ordblks: %lld", info.ordblks);
XELOGI(" hblks: %lld", info.hblks);
XELOGI(" hblkhd: %lld", info.hblkhd);
XELOGI(" usmblks: %lld", info.usmblks);
XELOGI(" uordblks: %lld", info.uordblks);
XELOGI(" fordblks: %lld", info.fordblks);
XELOGI(" keepcost: %lld", info.keepcost);
mspace_inspect_all(space_, DumpHandler, this);
}
void MemoryHeap::DumpHandler(void* start, void* end, size_t used_bytes,
void* context) {
MemoryHeap* heap = (MemoryHeap*)context;
Memory* memory = heap->memory_;
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
uint64_t start_addr = (uint64_t)start + heap_guard_size;
uint64_t end_addr = (uint64_t)end - heap_guard_size;
uint32_t guest_start =
2014-01-12 19:09:52 +00:00
(uint32_t)(start_addr - (uintptr_t)memory->mapping_base_);
uint32_t guest_end = (uint32_t)(end_addr - (uintptr_t)memory->mapping_base_);
if (int32_t(end_addr - start_addr) > 0) {
XELOGI(" - %.8X-%.8X (%10db) %.16llX-%.16llX - %9db used", guest_start,
guest_end, (guest_end - guest_start), start_addr, end_addr,
used_bytes);
} else {
XELOGI(" - %.16llX-%.16llX - %9db used",
start, end, used_bytes);
2014-01-12 19:09:52 +00:00
}
2013-10-23 06:34:24 +00:00
}