xenia-canary/src/xenia/core/memory.cc

379 lines
12 KiB
C++
Raw Normal View History

/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/core/memory.h>
#include <gflags/gflags.h>
#include <xenia/core/mutex.h>
#if !XE_PLATFORM(WIN32)
#include <sys/mman.h>
#endif // WIN32
2013-01-29 05:36:03 +00:00
#define MSPACES 1
#define USE_LOCKS 0
2013-01-29 05:36:03 +00:00
#define USE_DL_PREFIX 1
#define HAVE_MORECORE 0
#define HAVE_MREMAP 0
#define malloc_getpagesize 4096
#define DEFAULT_GRANULARITY 64 * 1024
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
#define MALLOC_ALIGNMENT 32
2013-10-20 19:46:28 +00:00
#define MALLOC_INSPECT_ALL 1
#if XE_DEBUG
#define FOOTERS 1
#endif // XE_DEBUG
2013-01-29 05:36:03 +00:00
#include <third_party/dlmalloc/malloc.c.h>
DEFINE_bool(
log_heap, false,
"Log heap structure on alloc/free.");
DEFINE_uint64(
heap_guard_pages, 0,
"Allocate the given number of guard pages around all heap chunks.");
/**
* Memory map:
* 0x00000000 - 0x3FFFFFFF (1024mb) - virtual 4k pages
* 0x40000000 - 0x7FFFFFFF (1024mb) - virtual 64k pages
* 0x80000000 - 0x8BFFFFFF ( 192mb) - xex 64k pages
* 0x8C000000 - 0x8FFFFFFF ( 64mb) - xex 64k pages (encrypted)
* 0x90000000 - 0x9FFFFFFF ( 256mb) - xex 4k pages
* 0xA0000000 - 0xBFFFFFFF ( 512mb) - physical 64k pages
* 0xC0000000 - 0xDFFFFFFF - physical 16mb pages
* 0xE0000000 - 0xFFFFFFFF - physical 4k pages
*
* We use the host OS to create an entire addressable range for this. That way
* we don't have to emulate a TLB. It'd be really cool to pass through page
* sizes or use madvice to let the OS know what to expect.
*
* We create our own heap of committed memory that lives at XE_MEMORY_HEAP_LOW
* to XE_MEMORY_HEAP_HIGH - all normal user allocations come from there. Since
* the Xbox has no paging, we know that the size of this heap will never need
* to be larger than ~512MB (realistically, smaller than that). We place it far
* away from the XEX data and keep the memory around it uncommitted so that we
* have some warning if things go astray.
*
* For XEX/GPU/etc data we allow placement allocations (base_address != 0) and
* commit the requested memory as needed. This bypasses the standard heap, but
* XEXs should never be overwriting anything so that's fine. We can also query
* for previous commits and assert that we really isn't committing twice.
*/
#define XE_MEMORY_HEAP_LOW 0x20000000
#define XE_MEMORY_HEAP_HIGH 0x40000000
struct xe_memory {
xe_ref_t ref;
size_t system_page_size;
size_t length;
void* ptr;
2013-01-29 05:36:03 +00:00
xe_mutex_t* heap_mutex;
mspace heap;
};
xe_memory_ref xe_memory_create(xe_memory_options_t options) {
2013-01-29 05:36:03 +00:00
xe_memory_ref memory = (xe_memory_ref)xe_calloc(sizeof(xe_memory));
xe_ref_init((xe_ref)memory);
#if XE_PLATFORM(WIN32)
SYSTEM_INFO si;
GetSystemInfo(&si);
memory->system_page_size = si.dwPageSize;
#else
#error need to implement page size retrieval
#endif // WIN32
memory->length = 0xC0000000;
#if XE_PLATFORM(WIN32)
// Reserve the entire usable address space.
// We're 64-bit, so this should be no problem.
memory->ptr = VirtualAlloc(0, memory->length,
MEM_RESERVE,
PAGE_READWRITE);
XEEXPECTNOTNULL(memory->ptr);
#else
memory->ptr = mmap(0, memory->length, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
XEEXPECT(memory->ptr != MAP_FAILED);
XEEXPECTNOTNULL(memory->ptr);
#endif // WIN32
// Lock used around heap allocs/frees.
memory->heap_mutex = xe_mutex_alloc(10000);
XEEXPECTNOTNULL(memory->heap_mutex);
// Commit the memory where our heap will live.
// We don't allocate at 0 to make bad writes easier to find.
uint32_t heap_offset = XE_MEMORY_HEAP_LOW;
uint32_t heap_size = XE_MEMORY_HEAP_HIGH - XE_MEMORY_HEAP_LOW;
uint8_t* heap_ptr = (uint8_t*)memory->ptr + heap_offset;
#if XE_PLATFORM(WIN32)
void* heap_result = VirtualAlloc(heap_ptr, heap_size,
MEM_COMMIT, PAGE_READWRITE);
XEEXPECTNOTNULL(heap_result);
#else
#error ?
#endif // WIN32
2013-01-29 05:36:03 +00:00
// Allocate the mspace for our heap.
memory->heap = create_mspace_with_base(heap_ptr, heap_size, 0);
2013-01-29 05:36:03 +00:00
return memory;
XECLEANUP:
xe_memory_release(memory);
return NULL;
}
void xe_memory_dealloc(xe_memory_ref memory) {
if (memory->heap_mutex && memory->heap) {
xe_mutex_lock(memory->heap_mutex);
destroy_mspace(memory->heap);
memory->heap = NULL;
xe_mutex_unlock(memory->heap_mutex);
}
if (memory->heap_mutex) {
xe_mutex_free(memory->heap_mutex);
memory->heap_mutex = NULL;
}
#if XE_PLATFORM(WIN32)
// This decommits all pages and releases everything.
XEIGNORE(VirtualFree(memory->ptr, 0, MEM_RELEASE));
#else
munmap(memory->ptr, memory->length);
#endif // WIN32
}
xe_memory_ref xe_memory_retain(xe_memory_ref memory) {
xe_ref_retain((xe_ref)memory);
return memory;
}
void xe_memory_release(xe_memory_ref memory) {
xe_ref_release((xe_ref)memory, (xe_ref_dealloc_t)xe_memory_dealloc);
}
size_t xe_memory_get_length(xe_memory_ref memory) {
return memory->length;
}
2013-02-09 06:07:38 +00:00
uint8_t *xe_memory_addr(xe_memory_ref memory, size_t guest_addr) {
return (uint8_t*)memory->ptr + guest_addr;
}
void xe_memory_copy(xe_memory_ref memory,
uint32_t dest, uint32_t src, uint32_t size) {
uint8_t* pdest = (uint8_t*)memory->ptr + dest;
uint8_t* psrc = (uint8_t*)memory->ptr + src;
XEIGNORE(xe_copy_memory(pdest, size, psrc, size));
}
2013-02-09 06:07:38 +00:00
uint32_t xe_memory_search_aligned(xe_memory_ref memory, size_t start,
size_t end, const uint32_t *values,
const size_t value_count) {
XEASSERT(start <= end);
const uint32_t *p = (const uint32_t*)xe_memory_addr(memory, start);
const uint32_t *pe = (const uint32_t*)xe_memory_addr(memory, end);
while (p != pe) {
if (*p == values[0]) {
const uint32_t *pc = p + 1;
size_t matched = 1;
for (size_t n = 1; n < value_count; n++, pc++) {
if (*pc != values[n]) {
break;
}
matched++;
}
if (matched == value_count) {
return (uint32_t)((uint8_t*)p - (uint8_t*)memory->ptr);
}
}
p++;
}
return 0;
}
2013-01-29 05:36:03 +00:00
void xe_memory_heap_dump_handler(
void* start, void* end, size_t used_bytes, void* context) {
xe_memory_ref memory = (xe_memory_ref)context;
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
uint64_t start_addr = (uint64_t)start + heap_guard_size;
uint64_t end_addr = (uint64_t)end - heap_guard_size;
uint32_t guest_start = (uint32_t)(start_addr - (uintptr_t)memory->ptr);
uint32_t guest_end = (uint32_t)(end_addr - (uintptr_t)memory->ptr);
XELOGI(" - %.8X-%.8X (%9db) %.16llX-%.16llX - %9db used",
guest_start, guest_end, (guest_end - guest_start),
start_addr, end_addr,
used_bytes);
}
void xe_memory_heap_dump(xe_memory_ref memory) {
XELOGI("xe_memory_heap_dump:");
if (FLAGS_heap_guard_pages) {
XELOGI(" (heap guard pages enabled, stats will be wrong)");
}
struct mallinfo info = mspace_mallinfo(memory->heap);
XELOGI(" arena: %lld", info.arena);
XELOGI(" ordblks: %lld", info.ordblks);
XELOGI(" hblks: %lld", info.hblks);
XELOGI(" hblkhd: %lld", info.hblkhd);
XELOGI(" usmblks: %lld", info.usmblks);
XELOGI(" uordblks: %lld", info.uordblks);
XELOGI(" fordblks: %lld", info.fordblks);
XELOGI(" keepcost: %lld", info.keepcost);
mspace_inspect_all(memory->heap, xe_memory_heap_dump_handler, memory);
}
uint32_t xe_memory_heap_alloc(
xe_memory_ref memory, uint32_t base_address, uint32_t size,
uint32_t flags, uint32_t alignment) {
2013-01-29 05:36:03 +00:00
XEASSERT(flags == 0);
// If we were given a base address we are outside of the normal heap and
// will place wherever asked (so long as it doesn't overlap the heap).
if (!base_address) {
// Normal allocation from the managed heap.
XEIGNORE(xe_mutex_lock(memory->heap_mutex));
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
if (heap_guard_size) {
alignment = (uint32_t)MAX(alignment, heap_guard_size);
size = (uint32_t)XEROUNDUP(size, heap_guard_size);
}
uint8_t* p = (uint8_t*)mspace_memalign(
memory->heap,
alignment,
size + heap_guard_size * 2);
if (FLAGS_heap_guard_pages) {
size_t real_size = mspace_usable_size(p);
DWORD old_protect;
VirtualProtect(p, heap_guard_size, PAGE_NOACCESS, &old_protect);
p += heap_guard_size;
VirtualProtect(p + size, heap_guard_size, PAGE_NOACCESS, &old_protect);
}
if (FLAGS_log_heap) {
xe_memory_heap_dump(memory);
}
XEIGNORE(xe_mutex_unlock(memory->heap_mutex));
if (!p) {
return 0;
}
return (uint32_t)((uintptr_t)p - (uintptr_t)memory->ptr);
} else {
if (base_address >= XE_MEMORY_HEAP_LOW &&
base_address < XE_MEMORY_HEAP_HIGH) {
// Overlapping managed heap.
XEASSERTALWAYS();
return 0;
}
uint8_t* p = (uint8_t*)memory->ptr + base_address;
#if XE_PLATFORM(WIN32)
// TODO(benvanik): check if address range is in use with a query.
void* pv = VirtualAlloc(p, size, MEM_COMMIT, PAGE_READWRITE);
if (!pv) {
// Failed.
XEASSERTALWAYS();
return 0;
}
#else
#error ?
#endif // WIN32
2013-01-29 05:36:03 +00:00
return base_address;
}
2013-01-29 05:36:03 +00:00
}
int xe_memory_heap_free(
xe_memory_ref memory, uint32_t address, uint32_t size) {
uint8_t* p = (uint8_t*)memory->ptr + address;
if (address >= XE_MEMORY_HEAP_LOW && address < XE_MEMORY_HEAP_HIGH) {
// Heap allocated address.
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
2013-10-20 22:28:00 +00:00
p -= heap_guard_size;
size_t real_size = mspace_usable_size(p);
real_size -= heap_guard_size * 2;
if (!real_size) {
return 0;
}
XEIGNORE(xe_mutex_lock(memory->heap_mutex));
2013-10-20 22:28:00 +00:00
if (FLAGS_heap_guard_pages) {
DWORD old_protect;
VirtualProtect(p, heap_guard_size, PAGE_READWRITE, &old_protect);
VirtualProtect(p + heap_guard_size + real_size, heap_guard_size, PAGE_READWRITE, &old_protect);
}
mspace_free(memory->heap, p);
if (FLAGS_log_heap) {
xe_memory_heap_dump(memory);
}
XEIGNORE(xe_mutex_unlock(memory->heap_mutex));
return (uint32_t)real_size;
} else {
// A placed address. Decommit.
#if XE_PLATFORM(WIN32)
return VirtualFree(p, size, MEM_DECOMMIT) ? 0 : 1;
#else
#error decommit
#endif // WIN32
}
}
2013-01-29 05:36:03 +00:00
bool xe_memory_is_valid(xe_memory_ref memory, uint32_t address) {
uint8_t* p = (uint8_t*)memory->ptr + address;
if (address >= XE_MEMORY_HEAP_LOW && address < XE_MEMORY_HEAP_HIGH) {
// Within heap range, ask dlmalloc.
2013-10-20 20:47:58 +00:00
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p -= heap_guard_size;
return mspace_usable_size(p) > 0;
} else {
// Maybe -- could Query here (though that may be expensive).
return true;
2013-01-29 05:36:03 +00:00
}
}
2013-01-29 05:36:03 +00:00
int xe_memory_protect(
xe_memory_ref memory, uint32_t address, uint32_t size, uint32_t access) {
uint8_t* p = (uint8_t*)memory->ptr + address;
2013-01-29 05:36:03 +00:00
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p += heap_guard_size;
#if XE_PLATFORM(WIN32)
DWORD new_protect = 0;
if (access & XE_MEMORY_ACCESS_WRITE) {
new_protect = PAGE_READWRITE;
} else if (access & XE_MEMORY_ACCESS_READ) {
new_protect = PAGE_READONLY;
} else {
new_protect = PAGE_NOACCESS;
}
DWORD old_protect;
return VirtualProtect(p, size, new_protect, &old_protect) == TRUE ? 0 : 1;
#else
int prot = 0;
if (access & XE_MEMORY_ACCESS_READ) {
prot = PROT_READ;
}
if (access & XE_MEMORY_ACCESS_WRITE) {
prot = PROT_WRITE;
}
return mprotect(p, size, prot);
#endif // WIN32
2013-01-29 05:36:03 +00:00
}