xenia-canary/src/xenia/cpu/xenon_memory.cc

838 lines
25 KiB
C++
Raw Normal View History

/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/cpu/xenon_memory.h>
#include <alloy/runtime/tracing.h>
#include <gflags/gflags.h>
using namespace alloy;
using namespace alloy::runtime;
using namespace xe::cpu;
2013-10-23 06:34:24 +00:00
// TODO(benvanik): move xbox.h out
#include <xenia/xbox.h>
2013-10-23 06:34:24 +00:00
#if !XE_PLATFORM_WIN32
#include <sys/mman.h>
#endif // WIN32
2013-01-29 05:36:03 +00:00
#define MSPACES 1
#define USE_LOCKS 0
2013-01-29 05:36:03 +00:00
#define USE_DL_PREFIX 1
#define HAVE_MORECORE 0
#define HAVE_MREMAP 0
#define malloc_getpagesize 4096
#define DEFAULT_GRANULARITY 64 * 1024
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
#define MALLOC_ALIGNMENT 32
2013-10-20 19:46:28 +00:00
#define MALLOC_INSPECT_ALL 1
#if XE_DEBUG
#define FOOTERS 0
#endif // XE_DEBUG
2013-01-29 05:36:03 +00:00
#include <third_party/dlmalloc/malloc.c.h>
DEFINE_bool(
log_heap, false,
"Log heap structure on alloc/free.");
DEFINE_uint64(
heap_guard_pages, 0,
"Allocate the given number of guard pages around all heap chunks.");
DEFINE_bool(
scribble_heap, false,
"Scribble 0xCD into all allocated heap memory.");
/**
* Memory map:
* 0x00000000 - 0x3FFFFFFF (1024mb) - virtual 4k pages
* 0x40000000 - 0x7FFFFFFF (1024mb) - virtual 64k pages
* 0x80000000 - 0x8BFFFFFF ( 192mb) - xex 64k pages
* 0x8C000000 - 0x8FFFFFFF ( 64mb) - xex 64k pages (encrypted)
* 0x90000000 - 0x9FFFFFFF ( 256mb) - xex 4k pages
* 0xA0000000 - 0xBFFFFFFF ( 512mb) - physical 64k pages
* 0xC0000000 - 0xDFFFFFFF - physical 16mb pages
* 0xE0000000 - 0xFFFFFFFF - physical 4k pages
*
* We use the host OS to create an entire addressable range for this. That way
* we don't have to emulate a TLB. It'd be really cool to pass through page
* sizes or use madvice to let the OS know what to expect.
*
* We create our own heap of committed memory that lives at
* XENON_MEMORY_HEAP_LOW to XENON_MEMORY_HEAP_HIGH - all normal user allocations
* come from there. Since the Xbox has no paging, we know that the size of this
* heap will never need to be larger than ~512MB (realistically, smaller than
* that). We place it far away from the XEX data and keep the memory around it
* uncommitted so that we have some warning if things go astray.
*
* For XEX/GPU/etc data we allow placement allocations (base_address != 0) and
* commit the requested memory as needed. This bypasses the standard heap, but
* XEXs should never be overwriting anything so that's fine. We can also query
* for previous commits and assert that we really isn't committing twice.
*
* GPU memory is mapped onto the lower 512mb of the virtual 4k range (0).
* So 0xA0000000 = 0x00000000. A more sophisticated allocator could handle
* this.
*/
#define XENON_MEMORY_PHYSICAL_HEAP_LOW 0x00010000
#define XENON_MEMORY_PHYSICAL_HEAP_HIGH 0x20000000
#define XENON_MEMORY_VIRTUAL_HEAP_LOW 0x20000000
#define XENON_MEMORY_VIRTUAL_HEAP_HIGH 0x40000000
class xe::cpu::XenonMemoryHeap {
public:
XenonMemoryHeap(XenonMemory* memory, bool is_physical);
~XenonMemoryHeap();
int Initialize(uint64_t low, uint64_t high);
uint64_t Alloc(uint64_t base_address, size_t size,
uint32_t flags, uint32_t alignment);
uint64_t Free(uint64_t address, size_t size);
2014-01-05 19:19:02 +00:00
size_t QuerySize(uint64_t base_address);
void Dump();
private:
static uint32_t next_heap_id_;
static void DumpHandler(
void* start, void* end, size_t used_bytes, void* context);
private:
XenonMemory* memory_;
uint32_t heap_id_;
bool is_physical_;
Mutex* lock_;
size_t size_;
uint8_t* ptr_;
mspace space_;
};
uint32_t XenonMemoryHeap::next_heap_id_ = 1;
namespace {
namespace BE {
#include <beaengine/BeaEngine.h>
}
struct MMIORange {
uint64_t address;
uint64_t mask;
uint64_t size;
void* context;
MMIOReadCallback read;
MMIOWriteCallback write;
};
MMIORange g_mapped_ranges_[16] = { 0 };
int g_mapped_range_count_ = 0;
uint64_t* GetContextRegPtr(BE::Int32 arg_type, PCONTEXT context) {
DWORD index = 0;
_BitScanForward(&index, arg_type);
return &context->Rax + index;
}
// Handles potential accesses to mmio. We look for access violations to
// addresses in our range and call into the registered handlers, if any.
// If there are none, we continue.
LONG CALLBACK CheckMMIOHandler(PEXCEPTION_POINTERS ex_info) {
// http://msdn.microsoft.com/en-us/library/ms679331(v=vs.85).aspx
// http://msdn.microsoft.com/en-us/library/aa363082(v=vs.85).aspx
auto code = ex_info->ExceptionRecord->ExceptionCode;
if (code == STATUS_ACCESS_VIOLATION) {
// Access violations are pretty rare, so we can do a linear search here.
auto address = ex_info->ExceptionRecord->ExceptionInformation[1];
for (int i = 0; i < g_mapped_range_count_; ++i) {
const auto& range = g_mapped_ranges_[i];
if ((address & range.mask) == range.address) {
// Within our range.
// TODO(benvanik): replace with simple check of mov (that's all
// we care about).
BE::DISASM disasm = { 0 };
disasm.Archi = 64;
disasm.Options = BE::MasmSyntax + BE::PrefixedNumeral;
disasm.EIP = (BE::UIntPtr)ex_info->ExceptionRecord->ExceptionAddress;
BE::UIntPtr eip_end = disasm.EIP + 20;
size_t len = BE::Disasm(&disasm);
if (len == BE::UNKNOWN_OPCODE) {
break;
}
auto action = ex_info->ExceptionRecord->ExceptionInformation[0];
if (action == 0) {
uint64_t value = range.read(range.context, address & 0xFFFFFFFF);
XEASSERT((disasm.Argument1.ArgType & BE::REGISTER_TYPE) ==
BE::REGISTER_TYPE);
uint64_t* reg_ptr = GetContextRegPtr(disasm.Argument1.ArgType,
ex_info->ContextRecord);
switch (disasm.Argument1.ArgSize) {
case 8:
*reg_ptr = static_cast<uint8_t>(value);
break;
case 16:
*reg_ptr = XESWAP16(static_cast<uint16_t>(value));
break;
case 32:
*reg_ptr = XESWAP32(static_cast<uint32_t>(value));
break;
case 64:
*reg_ptr = XESWAP64(static_cast<uint64_t>(value));
break;
}
ex_info->ContextRecord->Rip += len;
return EXCEPTION_CONTINUE_EXECUTION;
} else if (action == 1) {
XEASSERT((disasm.Argument2.ArgType & BE::REGISTER_TYPE) ==
BE::REGISTER_TYPE);
uint64_t* reg_ptr = GetContextRegPtr(disasm.Argument2.ArgType,
ex_info->ContextRecord);
uint64_t value = *reg_ptr;
switch (disasm.Argument2.ArgSize) {
case 8:
value = static_cast<uint8_t>(value);
break;
case 16:
value = XESWAP16(static_cast<uint16_t>(value));
break;
case 32:
value = XESWAP32(static_cast<uint32_t>(value));
break;
case 64:
value = XESWAP64(static_cast<uint64_t>(value));
break;
}
range.write(range.context, address & 0xFFFFFFFF, value);
ex_info->ContextRecord->Rip += len;
return EXCEPTION_CONTINUE_EXECUTION;
}
}
}
}
return EXCEPTION_CONTINUE_SEARCH;
}
} // namespace
2013-01-29 05:36:03 +00:00
2014-06-02 14:49:45 +00:00
XenonMemory::XenonMemory()
: Memory(),
mapping_(0), mapping_base_(0), page_table_(0) {
virtual_heap_ = new XenonMemoryHeap(this, false);
physical_heap_ = new XenonMemoryHeap(this, true);
}
XenonMemory::~XenonMemory() {
2014-06-02 14:11:27 +00:00
// Remove exception handlers.
RemoveVectoredExceptionHandler(CheckMMIOHandler);
RemoveVectoredContinueHandler(CheckMMIOHandler);
// Unallocate mapped ranges.
for (int i = 0; i < g_mapped_range_count_; ++i) {
const auto& range = g_mapped_ranges_[i];
VirtualFree(reinterpret_cast<LPVOID>(range.address), range.size,
MEM_DECOMMIT);
}
if (mapping_base_) {
// GPU writeback.
VirtualFree(
Translate(0xC0000000), 0x00100000,
MEM_DECOMMIT);
}
delete physical_heap_;
delete virtual_heap_;
// Unmap all views and close mapping.
if (mapping_) {
UnmapViews();
CloseHandle(mapping_);
mapping_base_ = 0;
mapping_ = 0;
alloy::tracing::WriteEvent(EventType::MemoryDeinit({
}));
}
}
int XenonMemory::Initialize() {
int result = Memory::Initialize();
if (result) {
return result;
}
result = 1;
// Create main page file-backed mapping. This is all reserved but
// uncommitted (so it shouldn't expand page file).
mapping_ = CreateFileMapping(
INVALID_HANDLE_VALUE,
NULL,
PAGE_READWRITE | SEC_RESERVE,
2013-10-21 07:39:39 +00:00
1, 0, // entire 4gb space
NULL);
if (!mapping_) {
XELOGE("Unable to reserve the 4gb guest address space.");
XEASSERTNOTNULL(mapping_);
XEFAIL();
}
// Attempt to create our views. This may fail at the first address
// we pick, so try a few times.
mapping_base_ = 0;
for (size_t n = 32; n < 64; n++) {
uint8_t* mapping_base = (uint8_t*)(1ull << n);
if (!MapViews(mapping_base)) {
mapping_base_ = mapping_base;
break;
}
}
if (!mapping_base_) {
XELOGE("Unable to find a continuous block in the 64bit address space.");
XEASSERTALWAYS();
XEFAIL();
}
membase_ = mapping_base_;
alloy::tracing::WriteEvent(EventType::MemoryInit({
}));
// Prepare heaps.
virtual_heap_->Initialize(
XENON_MEMORY_VIRTUAL_HEAP_LOW, XENON_MEMORY_VIRTUAL_HEAP_HIGH);
physical_heap_->Initialize(
XENON_MEMORY_PHYSICAL_HEAP_LOW, XENON_MEMORY_PHYSICAL_HEAP_HIGH);
2013-01-29 05:36:03 +00:00
// GPU writeback.
// 0xC... is physical, 0x7F... is virtual. We may need to overlay these.
VirtualAlloc(
Translate(0xC0000000),
0x00100000,
MEM_COMMIT, PAGE_READWRITE);
// Add handlers for MMIO.
// If there is a debugger attached the normal exception handler will not
// fire and we must instead add the continue handler.
AddVectoredExceptionHandler(1, CheckMMIOHandler);
if (IsDebuggerPresent()) {
// TODO(benvanik): is this really required?
//AddVectoredContinueHandler(1, CheckMMIOHandler);
}
2014-06-02 14:49:45 +00:00
// Allocate dirty page table.
// This must live within our low heap. Ideally we'd hardcode the address but
// this is more flexible.
page_table_ = physical_heap_->Alloc(
0, (512 * 1024 * 1024) / (16 * 1024),
X_MEM_COMMIT, 16 * 1024);
return 0;
XECLEANUP:
return result;
}
int XenonMemory::MapViews(uint8_t* mapping_base) {
static struct {
uint64_t virtual_address_start;
uint64_t virtual_address_end;
uint64_t target_address;
} map_info[] = {
0x00000000, 0x3FFFFFFF, 0x00000000, // (1024mb) - virtual 4k pages
0x40000000, 0x7FFFFFFF, 0x40000000, // (1024mb) - virtual 64k pages
0x80000000, 0x9FFFFFFF, 0x80000000, // (512mb) - xex pages
2013-10-22 02:28:25 +00:00
0xA0000000, 0xBFFFFFFF, 0x00000000, // (512mb) - physical 64k pages
0xC0000000, 0xDFFFFFFF, 0x00000000, // - physical 16mb pages
0xE0000000, 0xFFFFFFFF, 0x00000000, // - physical 4k pages
};
XEASSERT(XECOUNT(map_info) == XECOUNT(views_.all_views));
for (size_t n = 0; n < XECOUNT(map_info); n++) {
views_.all_views[n] = (uint8_t*)MapViewOfFileEx(
mapping_,
2013-10-22 02:28:25 +00:00
FILE_MAP_ALL_ACCESS,
0x00000000, (DWORD)map_info[n].target_address,
2013-10-22 02:28:25 +00:00
map_info[n].virtual_address_end - map_info[n].virtual_address_start + 1,
mapping_base + map_info[n].virtual_address_start);
XEEXPECTNOTNULL(views_.all_views[n]);
}
return 0;
XECLEANUP:
UnmapViews();
return 1;
}
void XenonMemory::UnmapViews() {
for (size_t n = 0; n < XECOUNT(views_.all_views); n++) {
if (views_.all_views[n]) {
UnmapViewOfFile(views_.all_views[n]);
}
}
}
bool XenonMemory::AddMappedRange(uint64_t address, uint64_t mask,
uint64_t size, void* context,
MMIOReadCallback read_callback,
MMIOWriteCallback write_callback) {
DWORD protect = 0;
if (read_callback && write_callback) {
protect = PAGE_NOACCESS;
} else if (write_callback) {
protect = PAGE_READONLY;
} else {
// Write-only memory is not supported.
XEASSERTALWAYS();
}
if (!VirtualAlloc(Translate(address),
size,
MEM_COMMIT, protect)) {
return false;
}
XEASSERT(g_mapped_range_count_ + 1 < XECOUNT(g_mapped_ranges_));
g_mapped_ranges_[g_mapped_range_count_++] = {
reinterpret_cast<uint64_t>(mapping_base_) | address,
0xFFFFFFFF00000000 | mask,
size, context,
read_callback, write_callback,
};
return true;
}
bool XenonMemory::CheckMMIOLoad(uint64_t address, uint64_t* out_value) {
for (int i = 0; i < g_mapped_range_count_; ++i) {
const auto& range = g_mapped_ranges_[i];
if (((address | (uint64_t)mapping_base_) & range.mask) == range.address) {
*out_value = static_cast<uint32_t>(range.read(range.context, address));
return true;
}
}
return false;
}
uint8_t XenonMemory::LoadI8(uint64_t address) {
uint64_t value;
if (!CheckMMIOLoad(address, &value)) {
value = *reinterpret_cast<uint8_t*>(Translate(address));
}
return static_cast<uint8_t>(value);
}
uint16_t XenonMemory::LoadI16(uint64_t address) {
uint64_t value;
if (!CheckMMIOLoad(address, &value)) {
value = *reinterpret_cast<uint16_t*>(Translate(address));
}
return static_cast<uint16_t>(value);
}
uint32_t XenonMemory::LoadI32(uint64_t address) {
uint64_t value;
if (!CheckMMIOLoad(address, &value)) {
value = *reinterpret_cast<uint32_t*>(Translate(address));
}
return static_cast<uint32_t>(value);
}
uint64_t XenonMemory::LoadI64(uint64_t address) {
uint64_t value;
if (!CheckMMIOLoad(address, &value)) {
value = *reinterpret_cast<uint64_t*>(Translate(address));
}
return static_cast<uint64_t>(value);
}
bool XenonMemory::CheckMMIOStore(uint64_t address, uint64_t value) {
for (int i = 0; i < g_mapped_range_count_; ++i) {
const auto& range = g_mapped_ranges_[i];
if (((address | (uint64_t)mapping_base_) & range.mask) == range.address) {
range.write(range.context, address, value);
return true;
}
}
return false;
}
void XenonMemory::StoreI8(uint64_t address, uint8_t value) {
if (!CheckMMIOStore(address, value)) {
*reinterpret_cast<uint8_t*>(Translate(address)) = value;
}
}
void XenonMemory::StoreI16(uint64_t address, uint16_t value) {
if (!CheckMMIOStore(address, value)) {
*reinterpret_cast<uint16_t*>(Translate(address)) = value;
}
}
void XenonMemory::StoreI32(uint64_t address, uint32_t value) {
if (!CheckMMIOStore(address, value)) {
*reinterpret_cast<uint32_t*>(Translate(address)) = value;
}
}
void XenonMemory::StoreI64(uint64_t address, uint64_t value) {
if (!CheckMMIOStore(address, value)) {
*reinterpret_cast<uint64_t*>(Translate(address)) = value;
}
}
uint64_t XenonMemory::HeapAlloc(
uint64_t base_address, size_t size, uint32_t flags,
uint32_t alignment) {
// If we were given a base address we are outside of the normal heap and
// will place wherever asked (so long as it doesn't overlap the heap).
if (!base_address) {
// Normal allocation from the managed heap.
uint64_t result;
if (flags & MEMORY_FLAG_PHYSICAL) {
result = physical_heap_->Alloc(
2013-10-23 04:50:10 +00:00
base_address, size, flags, alignment);
} else {
result = virtual_heap_->Alloc(
2013-10-23 04:50:10 +00:00
base_address, size, flags, alignment);
}
2013-10-23 04:50:10 +00:00
if (result) {
if (flags & MEMORY_FLAG_ZERO) {
xe_zero_struct(Translate(result), size);
2013-10-23 04:50:10 +00:00
}
}
return result;
} else {
if (base_address >= XENON_MEMORY_VIRTUAL_HEAP_LOW &&
base_address < XENON_MEMORY_VIRTUAL_HEAP_HIGH) {
// Overlapping managed heap.
XEASSERTALWAYS();
return 0;
}
if (base_address >= XENON_MEMORY_PHYSICAL_HEAP_LOW &&
base_address < XENON_MEMORY_PHYSICAL_HEAP_HIGH) {
// Overlapping managed heap.
XEASSERTALWAYS();
return 0;
}
uint8_t* p = Translate(base_address);
// TODO(benvanik): check if address range is in use with a query.
void* pv = VirtualAlloc(p, size, MEM_COMMIT, PAGE_READWRITE);
if (!pv) {
// Failed.
XEASSERTALWAYS();
return 0;
}
2013-01-29 05:36:03 +00:00
if (flags & MEMORY_FLAG_ZERO) {
2013-10-23 04:50:10 +00:00
xe_zero_struct(pv, size);
}
alloy::tracing::WriteEvent(EventType::MemoryHeapAlloc({
0, flags, base_address, size,
}));
return base_address;
}
2013-01-29 05:36:03 +00:00
}
int XenonMemory::HeapFree(uint64_t address, size_t size) {
if (address >= XENON_MEMORY_VIRTUAL_HEAP_LOW &&
address < XENON_MEMORY_VIRTUAL_HEAP_HIGH) {
return virtual_heap_->Free(address, size) ? 0 : 1;
} else if (address >= XENON_MEMORY_PHYSICAL_HEAP_LOW &&
address < XENON_MEMORY_PHYSICAL_HEAP_HIGH) {
return physical_heap_->Free(address, size) ? 0 : 1;
} else {
// A placed address. Decommit.
alloy::tracing::WriteEvent(EventType::MemoryHeapFree({
0, address,
}));
uint8_t* p = Translate(address);
return VirtualFree(p, size, MEM_DECOMMIT) ? 0 : 1;
}
}
2013-01-29 05:36:03 +00:00
2014-01-05 19:19:02 +00:00
size_t XenonMemory::QuerySize(uint64_t base_address) {
if (base_address >= XENON_MEMORY_VIRTUAL_HEAP_LOW &&
base_address < XENON_MEMORY_VIRTUAL_HEAP_HIGH) {
return virtual_heap_->QuerySize(base_address);
} else if (base_address >= XENON_MEMORY_PHYSICAL_HEAP_LOW &&
base_address < XENON_MEMORY_PHYSICAL_HEAP_HIGH) {
return physical_heap_->QuerySize(base_address);
} else {
// A placed address. Decommit.
uint8_t* p = Translate(base_address);
MEMORY_BASIC_INFORMATION mem_info;
if (VirtualQuery(p, &mem_info, sizeof(mem_info))) {
return mem_info.RegionSize;
} else {
// Error.
return 0;
}
}
}
int XenonMemory::Protect(uint64_t address, size_t size, uint32_t access) {
uint8_t* p = Translate(address);
2013-01-29 05:36:03 +00:00
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p += heap_guard_size;
2013-10-23 06:34:24 +00:00
DWORD new_protect = access;
new_protect = new_protect & (
X_PAGE_NOACCESS | X_PAGE_READONLY | X_PAGE_READWRITE |
X_PAGE_WRITECOPY | X_PAGE_GUARD | X_PAGE_NOCACHE |
X_PAGE_WRITECOMBINE);
DWORD old_protect;
return VirtualProtect(p, size, new_protect, &old_protect) == TRUE ? 0 : 1;
2013-01-29 05:36:03 +00:00
}
uint32_t XenonMemory::QueryProtect(uint64_t address) {
uint8_t* p = Translate(address);
MEMORY_BASIC_INFORMATION info;
size_t info_size = VirtualQuery((void*)p, &info, sizeof(info));
if (!info_size) {
return 0;
}
return info.Protect;
}
XenonMemoryHeap::XenonMemoryHeap(XenonMemory* memory, bool is_physical) :
memory_(memory), is_physical_(is_physical) {
heap_id_ = next_heap_id_++;
lock_ = AllocMutex(10000);
}
XenonMemoryHeap::~XenonMemoryHeap() {
if (lock_ && space_) {
LockMutex(lock_);
destroy_mspace(space_);
space_ = NULL;
UnlockMutex(lock_);
}
if (lock_) {
FreeMutex(lock_);
lock_ = NULL;
}
if (ptr_) {
XEIGNORE(VirtualFree(ptr_, 0, MEM_RELEASE));
alloy::tracing::WriteEvent(EventType::MemoryHeapDeinit({
heap_id_,
}));
}
}
int XenonMemoryHeap::Initialize(uint64_t low, uint64_t high) {
// Commit the memory where our heap will live and allocate it.
// TODO(benvanik): replace dlmalloc with an implementation that can commit
// as it goes.
size_ = high - low;
ptr_ = memory_->views_.v00000000 + low;
void* heap_result = VirtualAlloc(
ptr_, size_, MEM_COMMIT, PAGE_READWRITE);
if (!heap_result) {
return 1;
}
space_ = create_mspace_with_base(ptr_, size_, 0);
alloy::tracing::WriteEvent(EventType::MemoryHeapInit({
heap_id_, low, high, is_physical_,
}));
return 0;
}
uint64_t XenonMemoryHeap::Alloc(
uint64_t base_address, size_t size, uint32_t flags, uint32_t alignment) {
XEIGNORE(LockMutex(lock_));
2013-10-22 02:28:25 +00:00
size_t alloc_size = size;
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
if (heap_guard_size) {
alignment = (uint32_t)MAX(alignment, heap_guard_size);
2013-10-22 02:28:25 +00:00
alloc_size = (uint32_t)XEROUNDUP(size, heap_guard_size);
}
uint8_t* p = (uint8_t*)mspace_memalign(
space_,
2013-10-22 02:28:25 +00:00
alignment,
alloc_size + heap_guard_size * 2);
if (FLAGS_heap_guard_pages) {
size_t real_size = mspace_usable_size(p);
DWORD old_protect;
2013-10-22 02:28:25 +00:00
VirtualProtect(
p, heap_guard_size,
PAGE_NOACCESS, &old_protect);
p += heap_guard_size;
2013-10-22 02:28:25 +00:00
VirtualProtect(
p + alloc_size, heap_guard_size,
PAGE_NOACCESS, &old_protect);
}
if (FLAGS_log_heap) {
Dump();
}
XEIGNORE(UnlockMutex(lock_));
if (!p) {
return 0;
}
2013-10-22 02:28:25 +00:00
if (is_physical_) {
2013-10-22 02:28:25 +00:00
// If physical, we need to commit the memory in the physical address ranges
// so that it can be accessed.
VirtualAlloc(
memory_->views_.vA0000000 + (p - memory_->views_.v00000000),
2013-10-22 02:28:25 +00:00
size,
MEM_COMMIT,
PAGE_READWRITE);
VirtualAlloc(
memory_->views_.vC0000000 + (p - memory_->views_.v00000000),
2013-10-22 02:28:25 +00:00
size,
MEM_COMMIT,
PAGE_READWRITE);
VirtualAlloc(
memory_->views_.vE0000000 + (p - memory_->views_.v00000000),
2013-10-22 02:28:25 +00:00
size,
MEM_COMMIT,
PAGE_READWRITE);
}
2013-10-27 19:47:00 +00:00
if ((flags & X_MEM_NOZERO) &&
FLAGS_scribble_heap) {
// Trash the memory so that we can see bad read-before-write bugs easier.
memset(p, 0xCD, alloc_size);
2013-10-27 23:01:35 +00:00
} else {
// Implicit clear.
memset(p, 0, alloc_size);
}
uint64_t address =
(uint64_t)((uintptr_t)p - (uintptr_t)memory_->mapping_base_);
alloy::tracing::WriteEvent(EventType::MemoryHeapAlloc({
heap_id_, flags, address, size,
}));
return address;
}
uint64_t XenonMemoryHeap::Free(uint64_t address, size_t size) {
uint8_t* p = memory_->Translate(address);
// Heap allocated address.
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p -= heap_guard_size;
size_t real_size = mspace_usable_size(p);
real_size -= heap_guard_size * 2;
if (!real_size) {
return 0;
}
if (FLAGS_scribble_heap) {
// Trash the memory so that we can see bad read-before-write bugs easier.
memset(p + heap_guard_size, 0xDC, size);
}
XEIGNORE(LockMutex(lock_));
if (FLAGS_heap_guard_pages) {
DWORD old_protect;
VirtualProtect(
2013-10-22 02:28:25 +00:00
p, heap_guard_size,
PAGE_READWRITE, &old_protect);
VirtualProtect(
2013-10-22 02:28:25 +00:00
p + heap_guard_size + real_size, heap_guard_size,
PAGE_READWRITE, &old_protect);
}
mspace_free(space_, p);
if (FLAGS_log_heap) {
Dump();
}
XEIGNORE(UnlockMutex(lock_));
2013-10-22 02:28:25 +00:00
if (is_physical_) {
2013-10-22 02:28:25 +00:00
// If physical, decommit from physical ranges too.
VirtualFree(
memory_->views_.vA0000000 + (p - memory_->views_.v00000000),
2013-10-22 02:28:25 +00:00
size,
MEM_DECOMMIT);
VirtualFree(
memory_->views_.vC0000000 + (p - memory_->views_.v00000000),
2013-10-22 02:28:25 +00:00
size,
MEM_DECOMMIT);
VirtualFree(
memory_->views_.vE0000000 + (p - memory_->views_.v00000000),
2013-10-22 02:28:25 +00:00
size,
MEM_DECOMMIT);
}
alloy::tracing::WriteEvent(EventType::MemoryHeapFree({
heap_id_, address,
}));
return (uint64_t)real_size;
}
2013-10-23 06:34:24 +00:00
2014-01-05 19:19:02 +00:00
size_t XenonMemoryHeap::QuerySize(uint64_t base_address) {
uint8_t* p = memory_->Translate(base_address);
// Heap allocated address.
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
p -= heap_guard_size;
size_t real_size = mspace_usable_size(p);
real_size -= heap_guard_size * 2;
if (!real_size) {
return 0;
}
return real_size;
}
void XenonMemoryHeap::Dump() {
XELOGI("XenonMemoryHeap::Dump - %s",
is_physical_ ? "physical" : "virtual");
if (FLAGS_heap_guard_pages) {
XELOGI(" (heap guard pages enabled, stats will be wrong)");
2013-10-23 06:34:24 +00:00
}
struct mallinfo info = mspace_mallinfo(space_);
XELOGI(" arena: %lld", info.arena);
XELOGI(" ordblks: %lld", info.ordblks);
XELOGI(" hblks: %lld", info.hblks);
XELOGI(" hblkhd: %lld", info.hblkhd);
XELOGI(" usmblks: %lld", info.usmblks);
XELOGI(" uordblks: %lld", info.uordblks);
XELOGI(" fordblks: %lld", info.fordblks);
XELOGI(" keepcost: %lld", info.keepcost);
mspace_inspect_all(space_, DumpHandler, this);
}
void XenonMemoryHeap::DumpHandler(
void* start, void* end, size_t used_bytes, void* context) {
2014-01-12 19:09:52 +00:00
XenonMemoryHeap* heap = (XenonMemoryHeap*)context;
XenonMemory* memory = heap->memory_;
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
uint64_t start_addr = (uint64_t)start + heap_guard_size;
uint64_t end_addr = (uint64_t)end - heap_guard_size;
uint32_t guest_start =
2014-01-12 19:09:52 +00:00
(uint32_t)(start_addr - (uintptr_t)memory->mapping_base_);
uint32_t guest_end =
2014-01-12 19:09:52 +00:00
(uint32_t)(end_addr - (uintptr_t)memory->mapping_base_);
if (int32_t(end_addr - start_addr) > 0) {
XELOGI(" - %.8X-%.8X (%10db) %.16llX-%.16llX - %9db used",
guest_start, guest_end, (guest_end - guest_start),
start_addr, end_addr,
used_bytes);
} else {
XELOGI(" - %.16llX-%.16llX - %9db used",
start, end, used_bytes);
2014-01-12 19:09:52 +00:00
}
2013-10-23 06:34:24 +00:00
}