stella/src/emucore/M6532.cxx

516 lines
14 KiB
C++
Raw Normal View History

//============================================================================
//
// SSSS tt lll lll
// SS SS tt ll ll
// SS tttttt eeee ll ll aaaa
// SSSS tt ee ee ll ll aa
// SS tt eeeeee ll ll aaaaa -- "An Atari 2600 VCS Emulator"
// SS SS tt ee ll ll aa aa
// SSSS ttt eeeee llll llll aaaaa
//
// Copyright (c) 1995-2018 by Bradford W. Mott, Stephen Anthony
// and the Stella Team
//
// See the file "License.txt" for information on usage and redistribution of
// this file, and for a DISCLAIMER OF ALL WARRANTIES.
//============================================================================
#include <cassert>
#include "Console.hxx"
#include "Settings.hxx"
#include "Switches.hxx"
#include "System.hxx"
#ifdef DEBUGGER_SUPPORT
#include "CartDebug.hxx"
#endif
#include "M6532.hxx"
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
M6532::M6532(const Console& console, const Settings& settings)
: myConsole(console),
mySettings(settings),
myTimer(0), mySubTimer(0), myDivider(1),
myTimerWrapped(false), myWrappedThisCycle(false),
mySetTimerCycle(0), myLastCycle(0),
myDDRA(0), myDDRB(0), myOutA(0), myOutB(0),
myInterruptFlag(false),
myEdgeDetectPositive(false)
{
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::reset()
{
static constexpr uInt8 RAM_7800[128] = {
0xA9, 0x00, 0xAA, 0x85, 0x01, 0x95, 0x03, 0xE8, 0xE0, 0x2A, 0xD0, 0xF9, 0x85, 0x02, 0xA9, 0x04,
0xEA, 0x30, 0x23, 0xA2, 0x04, 0xCA, 0x10, 0xFD, 0x9A, 0x8D, 0x10, 0x01, 0x20, 0xCB, 0x04, 0x20,
0xCB, 0x04, 0x85, 0x11, 0x85, 0x1B, 0x85, 0x1C, 0x85, 0x0F, 0xEA, 0x85, 0x02, 0xA9, 0x00, 0xEA,
0x30, 0x04, 0x24, 0x03, 0x30, 0x09, 0xA9, 0x02, 0x85, 0x09, 0x8D, 0x12, 0xF1, 0xD0, 0x1E, 0x24,
0x02, 0x30, 0x0C, 0xA9, 0x02, 0x85, 0x06, 0x8D, 0x18, 0xF1, 0x8D, 0x60, 0xF4, 0xD0, 0x0E, 0x85,
0x2C, 0xA9, 0x08, 0x85, 0x1B, 0x20, 0xCB, 0x04, 0xEA, 0x24, 0x02, 0x30, 0xD9, 0xA9, 0xFD, 0x85,
0x08, 0x6C, 0xFC, 0xFF, 0xEA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
// Initialize the 128 bytes of memory
bool devSettings = mySettings.getBool("dev.settings");
if(mySettings.getString(devSettings ? "dev.console" : "plr.console") == "7800")
for(uInt32 t = 0; t < 128; ++t)
myRAM[t] = RAM_7800[t];
else if(mySettings.getBool(devSettings ? "dev.ramrandom" : "plr.ramrandom"))
for(uInt32 t = 0; t < 128; ++t)
myRAM[t] = mySystem->randGenerator().next();
else
memset(myRAM, 0, 128);
myTimer = mySystem->randGenerator().next() & 0xff;
myDivider = 1024;
mySubTimer = 0;
myTimerWrapped = false;
myWrappedThisCycle = false;
mySetTimerCycle = myLastCycle = 0;
// Zero the I/O registers
myDDRA = myDDRB = myOutA = myOutB = 0x00;
// Zero the timer registers
myOutTimer[0] = myOutTimer[1] = myOutTimer[2] = myOutTimer[3] = 0x00;
// Zero the interrupt flag register and mark D7 as invalid
myInterruptFlag = 0x00;
// Edge-detect set to negative (high to low)
myEdgeDetectPositive = false;
// Let the controllers know about the reset
myConsole.leftController().reset();
myConsole.rightController().reset();
#ifdef DEBUGGER_SUPPORT
createAccessBases();
#endif // DEBUGGER_SUPPORT
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::update()
{
Controller& port0 = myConsole.leftController();
Controller& port1 = myConsole.rightController();
// Get current PA7 state
bool prevPA7 = port0.myDigitalPinState[Controller::Four];
// Update entire port state
port0.update();
port1.update();
myConsole.switches().update();
// Get new PA7 state
bool currPA7 = port0.myDigitalPinState[Controller::Four];
// PA7 Flag is set on active transition in appropriate direction
if((!myEdgeDetectPositive && prevPA7 && !currPA7) ||
(myEdgeDetectPositive && !prevPA7 && currPA7))
myInterruptFlag |= PA7Bit;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::updateEmulation()
{
uInt32 cycles = uInt32(mySystem->cycles() - myLastCycle);
uInt32 subTimer = mySubTimer;
// Guard against further state changes if the debugger alread forwarded emulation
// state (in particular myWrappedThisCycle)
if (cycles == 0) return;
myWrappedThisCycle = false;
mySubTimer = (cycles + mySubTimer) % myDivider;
if(!myTimerWrapped)
{
uInt32 timerTicks = (cycles + subTimer) / myDivider;
if(timerTicks > myTimer)
{
cycles -= ((myTimer + 1) * myDivider - subTimer);
myWrappedThisCycle = cycles == 0;
myTimer = 0xFF;
myTimerWrapped = true;
myInterruptFlag |= TimerBit;
}
else
{
myTimer -= timerTicks;
cycles = 0;
}
}
if(myTimerWrapped)
myTimer = (myTimer - cycles) & 0xFF;
myLastCycle = mySystem->cycles();
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::install(System& system)
{
installDelegate(system, *this);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::installDelegate(System& system, Device& device)
{
// Remember which system I'm installed in
mySystem = &system;
// All accesses are to the given device
System::PageAccess access(&device, System::PA_READWRITE);
// Map all peek/poke to mirrors of RIOT address space to this class
// That is, all mirrors of ZP RAM ($80 - $FF) and IO ($280 - $29F) in the
// lower 4K of the 2600 address space are mapped here
// The two types of addresses are differentiated in peek/poke as follows:
// (addr & 0x0200) == 0x0200 is IO (A9 is 1)
// (addr & 0x0300) == 0x0100 is Stack (A8 is 1, A9 is 0)
// (addr & 0x0300) == 0x0000 is ZP RAM (A8 is 0, A9 is 0)
for (uInt16 addr = 0; addr < 0x1000; addr += System::PAGE_SIZE)
if ((addr & 0x0080) == 0x0080) {
mySystem->setPageAccess(addr, access);
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 M6532::peek(uInt16 addr)
{
updateEmulation();
// A9 distinguishes I/O registers from ZP RAM
// A9 = 1 is read from I/O
// A9 = 0 is read from RAM
if((addr & 0x0200) == 0x0000)
return myRAM[addr & 0x007f];
switch(addr & 0x07)
{
case 0x00: // SWCHA - Port A I/O Register (Joystick)
{
uInt8 value = (myConsole.leftController().read() << 4) |
myConsole.rightController().read();
// Each pin is high (1) by default and will only go low (0) if either
// (a) External device drives the pin low
// (b) Corresponding bit in SWACNT = 1 and SWCHA = 0
// Thanks to A. Herbert for this info
return (myOutA | ~myDDRA) & value;
}
case 0x01: // SWACNT - Port A Data Direction Register
{
return myDDRA;
}
case 0x02: // SWCHB - Port B I/O Register (Console switches)
{
return (myOutB | ~myDDRB) & (myConsole.switches().read() | myDDRB);
}
case 0x03: // SWBCNT - Port B Data Direction Register
{
return myDDRB;
}
case 0x04: // INTIM - Timer Output
case 0x06:
{
// Timer Flag is always cleared when accessing INTIM
if (!myWrappedThisCycle) myInterruptFlag &= ~TimerBit;
myTimerWrapped = false;
return myTimer;
}
case 0x05: // TIMINT/INSTAT - Interrupt Flag
case 0x07:
{
// PA7 Flag is always cleared after accessing TIMINT
uInt8 result = myInterruptFlag;
myInterruptFlag &= ~PA7Bit;
return result;
}
default:
{
#ifdef DEBUG_ACCESSES
cerr << "BAD M6532 Peek: " << hex << addr << endl;
#endif
return 0;
}
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool M6532::poke(uInt16 addr, uInt8 value)
{
updateEmulation();
// A9 distinguishes I/O registers from ZP RAM
// A9 = 1 is write to I/O
// A9 = 0 is write to RAM
if((addr & 0x0200) == 0x0000)
{
myRAM[addr & 0x007f] = value;
return true;
}
// A2 distinguishes I/O registers from the timer
// A2 = 1 is write to timer
// A2 = 0 is write to I/O
if((addr & 0x04) != 0)
{
// A4 = 1 is write to TIMxT (x = 1, 8, 64, 1024)
// A4 = 0 is write to edge detect control
if((addr & 0x10) != 0)
setTimerRegister(value, addr & 0x03); // A1A0 determines interval
else
myEdgeDetectPositive = addr & 0x01; // A0 determines direction
}
else
{
switch(addr & 0x03)
{
case 0: // SWCHA - Port A I/O Register (Joystick)
{
myOutA = value;
setPinState(true);
break;
}
case 1: // SWACNT - Port A Data Direction Register
{
myDDRA = value;
setPinState(false);
break;
}
case 2: // SWCHB - Port B I/O Register (Console switches)
{
myOutB = value;
break;
}
case 3: // SWBCNT - Port B Data Direction Register
{
myDDRB = value;
break;
}
}
}
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::setTimerRegister(uInt8 value, uInt8 interval)
{
static constexpr uInt32 divider[] = { 1, 8, 64, 1024 };
myDivider = divider[interval];
myOutTimer[interval] = value;
myTimer = value;
mySubTimer = myDivider - 1;
myTimerWrapped = false;
// Interrupt timer flag is cleared (and invalid) when writing to the timer
myInterruptFlag &= ~TimerBit;
mySetTimerCycle = mySystem->cycles();
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::setPinState(bool swcha)
{
/*
When a bit in the DDR is set as input, +5V is placed on its output
pin. When it's set as output, either +5V or 0V (depending on the
contents of SWCHA) will be placed on the output pin.
The standard macros for the AtariVox and SaveKey use this fact to
send data to the port. This is represented by the following algorithm:
if(DDR bit is input) set output as 1
else if(DDR bit is output) set output as bit in ORA
*/
Controller& port0 = myConsole.leftController();
Controller& port1 = myConsole.rightController();
uInt8 ioport = myOutA | ~myDDRA;
port0.write(Controller::One, ioport & 0x10);
port0.write(Controller::Two, ioport & 0x20);
port0.write(Controller::Three, ioport & 0x40);
port0.write(Controller::Four, ioport & 0x80);
port1.write(Controller::One, ioport & 0x01);
port1.write(Controller::Two, ioport & 0x02);
port1.write(Controller::Three, ioport & 0x04);
port1.write(Controller::Four, ioport & 0x08);
if(swcha)
{
port0.controlWrite(ioport);
port1.controlWrite(ioport);
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
OK, another huge commit. I need to commit this now, because things are starting to go out of sync on my development machines. OK, where to begin ... Changed state file format, so older state files will no longer work. The changes aren't finalized yet, so expect more breakage. Added getByte() and putByte() methods to serialized data, resulting in smaller state files (previously, 1-byte values were stored as 4-byte ints). Totally reworked controller handling code. Controller state is now explicitly set with an ::update() method, making it easier to serialize. Some work is still required on the serialization stuff for more advanced controllers. Added a 'Serializable' interface to all carts, device, controllers, etc that can be (de)serialized. This fixes a long-standing design issue which I personally caused many years ago. Console switches state (SWCHB register) is now saved to state files. Added beginnings of movie support. Basically, this saves an initial state file, and thereafter continuously saves controller and console switches state. Support is still somewhat rough and there's no UI for it, but it does successfully save and later load/play state movies. Removed specific events for driving controllers, and have them use joystick events instead. This has the nice side effect that joystick direction remapping 'just works' for driving controllers too. Fixed issues with paddle emulation seen in 'Night Driver' ROM. Related to this, removed a hack wrt paddles when grabmouse is enabled. There's still some work to do when using the mouse to emulate paddles, but the Stelladaptor and real paddles work fine. Added beginnings of TrackBall CX-22 controller emulation. It doesn't actually do anything yet, but the class is there :) Probably some other stuff that I'm forgetting ... git-svn-id: svn://svn.code.sf.net/p/stella/code/trunk@1385 8b62c5a3-ac7e-4cc8-8f21-d9a121418aba
2007-10-03 21:41:19 +00:00
bool M6532::save(Serializer& out) const
{
try
{
out.putString(name());
out.putByteArray(myRAM, 128);
out.putInt(myTimer);
out.putInt(mySubTimer);
out.putInt(myDivider);
out.putBool(myTimerWrapped);
2017-03-19 21:39:54 +00:00
out.putBool(myWrappedThisCycle);
out.putLong(myLastCycle);
out.putLong(mySetTimerCycle);
out.putByte(myDDRA);
out.putByte(myDDRB);
out.putByte(myOutA);
out.putByte(myOutB);
out.putByte(myInterruptFlag);
out.putBool(myEdgeDetectPositive);
out.putByteArray(myOutTimer, 4);
}
catch(...)
{
cerr << "ERROR: M6532::save" << endl;
return false;
}
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool M6532::load(Serializer& in)
{
try
{
if(in.getString() != name())
return false;
in.getByteArray(myRAM, 128);
myTimer = in.getInt();
mySubTimer = in.getInt();
myDivider = in.getInt();
myTimerWrapped = in.getBool();
2017-03-19 21:39:54 +00:00
myWrappedThisCycle = in.getBool();
myLastCycle = in.getLong();
mySetTimerCycle = in.getLong();
myDDRA = in.getByte();
myDDRB = in.getByte();
myOutA = in.getByte();
myOutB = in.getByte();
myInterruptFlag = in.getByte();
myEdgeDetectPositive = in.getBool();
in.getByteArray(myOutTimer, 4);
}
catch(...)
{
cerr << "ERROR: M6532::load" << endl;
return false;
}
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 M6532::intim()
{
updateEmulation();
return myTimer;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 M6532::timint()
{
updateEmulation();
return myInterruptFlag;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Int32 M6532::intimClocks()
{
updateEmulation();
// This method is similar to intim(), except instead of giving the actual
// INTIM value, it will give the current number of clocks between one
// INTIM value and the next
return myTimerWrapped ? 1 : (myDivider - mySubTimer);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt32 M6532::timerClocks() const
{
return uInt32(mySystem->cycles() - mySetTimerCycle);
}
#ifdef DEBUGGER_SUPPORT
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::createAccessBases()
{
myRAMAccessBase = make_unique<uInt8[]>(RAM_SIZE);
memset(myRAMAccessBase.get(), CartDebug::NONE, RAM_SIZE);
myStackAccessBase = make_unique<uInt8[]>(STACK_SIZE);
memset(myStackAccessBase.get(), CartDebug::NONE, STACK_SIZE);
myIOAccessBase = make_unique<uInt8[]>(IO_SIZE);
memset(myIOAccessBase.get(), CartDebug::NONE, IO_SIZE);
myZPAccessDelay = make_unique<uInt8[]>(RAM_SIZE);
memset(myZPAccessDelay.get(), ZP_DELAY, RAM_SIZE);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 M6532::getAccessFlags(uInt16 address) const
{
if (address & IO_BIT)
return myIOAccessBase[address & IO_MASK];
else if (address & STACK_BIT)
return myStackAccessBase[address & STACK_MASK];
else
return myRAMAccessBase[address & RAM_MASK];
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void M6532::setAccessFlags(uInt16 address, uInt8 flags)
{
// ignore none flag
if (flags != CartDebug::NONE) {
if (address & IO_BIT)
myIOAccessBase[address & IO_MASK] |= flags;
else {
// the first access, either by direct RAM or stack access is assumed as initialization
if (myZPAccessDelay[address & RAM_MASK])
myZPAccessDelay[address & RAM_MASK]--;
else if (address & STACK_BIT)
myStackAccessBase[address & STACK_MASK] |= flags;
else
myRAMAccessBase[address & RAM_MASK] |= flags;
}
}
}
#endif // DEBUGGER_SUPPORT