pcsx2/pcsx2/MTGS.cpp

1094 lines
27 KiB
C++

/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2002-2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "PrecompiledHeader.h"
#include <vector>
#include <list>
#include "Common.h"
#include "VU.h"
#include "GS.h"
#include "iR5900.h"
#include "VifDma.h"
#include "SamplProf.h"
// Uncomment this to enable profiling of the GS RingBufferCopy function.
//#define PCSX2_GSRING_SAMPLING_STATS
#ifdef PCSX2_GSRING_TX_STATS
#include <intrin.h>
#endif
using namespace Threading;
using namespace std;
#ifdef DEBUG
#define MTGS_LOG Console::WriteLn
#else
#define MTGS_LOG 0&&
#endif
// forces the compiler to treat a non-volatile value as volatile.
// This allows us to declare the vars as non-volatile and only use
// them as volatile when appropriate (more optimized).
#define volatize(x) (*reinterpret_cast<volatile uint*>(&(x)))
/////////////////////////////////////////////////////////////////////////////
// BEGIN -- MTGS GIFtag Parse Implementation
//
// The MTGS needs a dummy "GS plugin" for processing SIGNAL, FINISH, and LABEL
// commands. These commands trigger gsIRQs, which need to be handled accurately
// in synch with the EE (which can be running several frames ahead of the MTGS)
//
// Yeah, it's a lot of work, but the performance gains are huge, even on HT cpus.
// unpack the registers
// registers are stored as a sequence of 4 bit values in the
// upper 64 bits of the GIFTAG. That sucks for us, so we unpack
// them into an 8 bit array.
__forceinline void GIFPath::PrepRegs()
{
if( tag.nreg == 0 )
{
u32 tempreg = tag.regs[0];
for(u32 i=0; i<16; ++i, tempreg >>= 4)
{
if( i == 8 ) tempreg = tag.regs[1];
assert( (tempreg&0xf) < 0x64 );
regs[i] = tempreg & 0xf;
}
}
else
{
u32 tempreg = tag.regs[0];
for(u32 i=0; i<tag.nreg; ++i, tempreg >>= 4)
{
assert( (tempreg&0xf) < 0x64 );
regs[i] = tempreg & 0xf;
}
}
}
void GIFPath::SetTag(const void* mem)
{
tag = *((GIFTAG*)mem);
curreg = 0;
PrepRegs();
}
u32 GIFPath::GetReg()
{
return regs[curreg];
}
static void _mtgsFreezeGIF( SaveState& state, GIFPath (&paths)[3] )
{
for(int i=0; i<3; i++ )
{
state.Freeze( paths[i].tag );
state.Freeze( paths[i].curreg );
}
for(int i=0; i<3; i++ )
{
state.Freeze( paths[i].regs );
}
}
void SaveState::mtgsFreeze()
{
if( mtgsThread != NULL )
{
mtgsThread->Freeze( *this );
}
else
{
// save some zero'd dummy info...
// This isn't ideal, and it could lead to problems in very rare
// circumstances, but most of the time should be perfectly fine.
GIFPath path[3];
memzero_obj( path );
_mtgsFreezeGIF( *this, path );
}
}
static void RegHandlerSIGNAL(const u32* data)
{
MTGS_LOG("MTGS SIGNAL data %x_%x CSRw %x\n",data[0], data[1], CSRw);
GSSIGLBLID->SIGID = (GSSIGLBLID->SIGID&~data[1])|(data[0]&data[1]);
if ((CSRw & 0x1))
GSCSRr |= 1; // signal
if (!(GSIMR&0x100) )
gsIrq();
}
static void RegHandlerFINISH(const u32* data)
{
MTGS_LOG("MTGS FINISH data %x_%x CSRw %x\n",data[0], data[1], CSRw);
if ((CSRw & 0x2))
GSCSRr |= 2; // finish
if (!(GSIMR&0x200) )
gsIrq();
}
static void RegHandlerLABEL(const u32* data)
{
GSSIGLBLID->LBLID = (GSSIGLBLID->LBLID&~data[1])|(data[0]&data[1]);
}
// END -- MTGS GIFtag Parse Implementation
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// MTGS Threaded Class Implementation
mtgsThreadObject* mtgsThread = NULL;
#ifdef RINGBUF_DEBUG_STACK
#include <list>
std::list<uint> ringposStack;
#endif
#ifdef _DEBUG
// debug variable used to check for bad code bits where copies are started
// but never closed, or closed without having been started. (GSRingBufCopy calls
// should always be followed by a call to GSRINGBUF_DONECOPY)
// And it's not even used in the debug code.
//static int copyLock = 0;
#endif
typedef void (*GIFRegHandler)(const u32* data);
static GIFRegHandler s_GSHandlers[3] = { RegHandlerSIGNAL, RegHandlerFINISH, RegHandlerLABEL };
mtgsThreadObject::mtgsThreadObject() :
Thread()
, m_RingPos( 0 )
, m_WritePos( 0 )
, m_post_InitDone()
, m_lock_RingRestart()
, m_CopyCommandTally( 0 )
, m_CopyDataTally( 0 )
, m_RingBufferIsBusy( 0 )
, m_QueuedFrames( 0 )
, m_lock_FrameQueueCounter()
, m_packet_size( 0 )
, m_packet_ringpos( 0 )
#ifdef RINGBUF_DEBUG_STACK
, m_lock_Stack()
#endif
, m_RingBuffer( m_RingBufferSize + (Ps2MemSize::GSregs/sizeof(u128)) )
, m_gsMem( (u8*)m_RingBuffer.GetPtr( m_RingBufferSize ) )
{
memzero_obj( m_path );
}
void mtgsThreadObject::Start()
{
Thread::Start();
// Wait for the thread to finish initialization (it runs GSinit, which can take
// some time since it's creating a new window and all), and then check for errors.
m_post_InitDone.Wait();
if( m_returncode != 0 ) // means the thread failed to init the GS plugin
throw Exception::PluginFailure( "GS", "The GS plugin failed to open/initialize." );
}
mtgsThreadObject::~mtgsThreadObject()
{
}
void mtgsThreadObject::Close()
{
Console::WriteLn( "MTGS > Closing GS thread..." );
SendSimplePacket( GS_RINGTYPE_QUIT, 0, 0, 0 );
SetEvent();
pthread_join( m_thread, NULL );
}
void mtgsThreadObject::Reset()
{
// MTGS Reset process:
// * clear the ringbuffer.
// * Signal a reset.
// * clear the path and byRegs structs (used by GIFtagDummy)
AtomicExchange( m_RingPos, m_WritePos );
MTGS_LOG( "MTGS > Sending Reset...\n" );
SendSimplePacket( GS_RINGTYPE_RESET, 0, 0, 0 );
SendSimplePacket( GS_RINGTYPE_FRAMESKIP, 0, 0, 0 );
memzero_obj( m_path );
}
// Processes a GIFtag & packet, and throws out some gsIRQs as needed.
// Used to keep interrupts in sync with the EE, while the GS itself
// runs potentially several frames behind.
// size - size of the packet in simd128's
__forceinline u32 mtgsThreadObject::_gifTransferDummy( GIF_PATH pathidx, const u8* pMem, u32 size )
{
GIFPath& path = m_path[pathidx];
#ifdef PCSX2_GSRING_SAMPLING_STATS
static uptr profStartPtr = 0;
static uptr profEndPtr = 0;
if( profStartPtr == 0 )
{
__asm
{
__beginfunc:
mov profStartPtr, offset __beginfunc;
mov profEndPtr, offset __endfunc;
}
ProfilerRegisterSource( "GSRingBufCopy", (void*)profStartPtr, profEndPtr - profStartPtr );
}
#endif
while(size > 0)
{
bool eop = false;
if(path.tag.nloop == 0)
{
path.SetTag( pMem );
pMem += sizeof(GIFTAG);
--size;
if(pathidx == 2 && path.tag.eop)
Path3transfer = 0;
if( pathidx == 0 )
{
// hack: if too much data for VU1, just ignore.
// The GIF is evil : if nreg is 0, it's really 16. Otherwise it's the value in nreg.
const int numregs = ((path.tag.nreg-1)&15)+1;
if((path.tag.nloop * numregs) > (size * ((path.tag.flg == 1) ? 2 : 1)))
{
path.tag.nloop = 0;
return ++size;
}
}
/*f(path.tag.pre)
{
assert(path.tag.flg != GIF_FLG_IMAGE); // kingdom hearts, ffxii, tales of abyss
if((path.tag.flg & 2) == 0)
{
// Primitive handler... Nothing for the Dummy to do here.
//GIFReg r;
//r.i64 = path.tag.PRIM;
//(this->*m_fpGIFRegHandlers[GIF_A_D_REG_PRIM])(&r);
}
}*/
if(path.tag.eop)
{
eop = true;
}
else if(path.tag.nloop == 0)
{
if(pathidx == 0 && g_FFXHack)
continue;
eop = true;
}
}
if(path.tag.nloop > 0)
{
switch(path.tag.flg)
{
case GIF_FLG_PACKED:
while(size > 0)
{
if( path.GetReg() == 0xe )
{
const int handler = pMem[8];
if(handler >= 0x60 && handler < 0x63)
s_GSHandlers[handler&0x3]((const u32*)pMem);
}
size--;
pMem += 16; // 128 bits! //sizeof(GIFPackedReg);
if((++path.curreg & 0xf) == path.tag.nreg)
{
path.curreg = 0;
path.tag.nloop--;
if(path.tag.nloop == 0)
break;
}
}
break;
case GIF_FLG_REGLIST:
size *= 2;
while(size > 0)
{
const int handler = path.GetReg();
if(handler >= 0x60 && handler < 0x63)
s_GSHandlers[handler&0x3]((const u32*)pMem);
size--;
pMem += 8; //sizeof(GIFReg); -- 64 bits!
if((++path.curreg & 0xf) == path.tag.nreg)
{
path.curreg = 0;
path.tag.nloop--;
if(path.tag.nloop == 0)
{
break;
}
}
}
if(size & 1) pMem += 8; //sizeof(GIFReg);
size /= 2;
break;
case GIF_FLG_IMAGE2: // hmmm
assert(0);
path.tag.nloop = 0;
break;
case GIF_FLG_IMAGE:
{
int len = (int)min(size, path.tag.nloop);
pMem += len * 16;
path.tag.nloop -= len;
size -= len;
}
break;
jNO_DEFAULT;
}
}
if(eop && ((int)size <= 0 || pathidx == 0))
{
break;
}
}
if(pathidx == 0)
{
if(!path.tag.eop && path.tag.nloop > 0)
{
path.tag.nloop = 0;
DevCon::Write( "path1 hack! " );
// This means that the giftag data got screwly somewhere
// along the way (often means curreg was in a bad state or something)
}
}
#ifdef PCSX2_GSRING_SAMPLING_STATS
__asm
{
__endfunc:
nop;
}
#endif
return size;
}
void mtgsThreadObject::PostVsyncEnd( bool updategs )
{
while( m_QueuedFrames > 8 )
{
if( m_WritePos == volatize( m_RingPos ) )
{
// MTGS ringbuffer is empty, but we still have queued frames in the counter? Ouch!
Console::Error( "MTGS > Queued framecount mismatch = %d", params m_QueuedFrames );
m_QueuedFrames = 0;
break;
}
Sleep( 2 ); // Sleep off quite a bit of time, since we're obviously *waaay* ahead.
SpinWait();
}
m_lock_FrameQueueCounter.Lock();
m_QueuedFrames++;
m_lock_FrameQueueCounter.Unlock();
SendSimplePacket( GS_RINGTYPE_VSYNC,
(*(u32*)(PS2MEM_GS+0x1000)&0x2000), updategs, 0);
// No need to freeze MMX/XMM registers here since this
// code is always called from the context of a BranchTest.
SetEvent();
}
struct PacketTagType
{
u32 command;
u32 data[3];
};
int mtgsThreadObject::Callback()
{
Console::WriteLn("MTGS > Thread Started, Opening GS Plugin...");
memcpy_aligned( m_gsMem, PS2MEM_GS, sizeof(m_gsMem) );
GSsetBaseMem( m_gsMem );
GSirqCallback( NULL );
m_returncode = GSopen((void *)&pDsp, "PCSX2", 1);
Console::WriteLn( "MTGS > GSopen Finished, return code: 0x%x", params m_returncode );
GSCSRr = 0x551B400F; // 0x55190000
m_post_InitDone.Post();
if (m_returncode != 0) { return m_returncode; } // error msg will be issued to the user by Plugins.c
#ifdef RINGBUF_DEBUG_STACK
PacketTagType prevCmd;
#endif
while( true )
{
m_post_event.Wait();
AtomicExchange( m_RingBufferIsBusy, 1 );
// note: m_RingPos is intentionally not volatile, because it should only
// ever be modified by this thread.
while( m_RingPos != volatize(m_WritePos))
{
assert( m_RingPos < m_RingBufferSize );
const PacketTagType& tag = (PacketTagType&)m_RingBuffer[m_RingPos];
u32 ringposinc = 1;
#ifdef RINGBUF_DEBUG_STACK
// pop a ringpos off the stack. It should match this one!
m_lock_Stack.Lock();
uptr stackpos = ringposStack.back();
if( stackpos != m_RingPos )
{
Console::Error( "MTGS Ringbuffer Critical Failure ---> %x to %x (prevCmd: %x)\n", params stackpos, m_RingPos, prevCmd.command );
}
assert( stackpos == m_RingPos );
prevCmd = tag;
ringposStack.pop_back();
m_lock_Stack.Unlock();
#endif
switch( tag.command )
{
case GS_RINGTYPE_RESTART:
AtomicExchange(m_RingPos, 0);
// stall for a bit to let the MainThread have time to update the g_pGSWritePos.
m_lock_RingRestart.Lock();
m_lock_RingRestart.Unlock();
continue;
case GS_RINGTYPE_P1:
{
const int qsize = tag.data[0];
const u128* data = m_RingBuffer.GetPtr( m_RingPos+1 );
// make sure that tag>>16 is the MAX size readable
//GSgifTransfer1(((u32*)data) - 0x1000 + 4*qsize, 0x4000-qsize*16);
GSgifTransfer1((u32*)(data - 0x400 + qsize), 0x4000-qsize*16);
ringposinc += qsize;
}
break;
case GS_RINGTYPE_P2:
{
const int qsize = tag.data[0];
const u128* data = m_RingBuffer.GetPtr( m_RingPos+1 );
GSgifTransfer2((u32*)data, qsize);
ringposinc += qsize;
}
break;
case GS_RINGTYPE_P3:
{
const int qsize = tag.data[0];
const u128* data = m_RingBuffer.GetPtr( m_RingPos+1 );
GSgifTransfer3((u32*)data, qsize);
ringposinc += qsize;
}
break;
case GS_RINGTYPE_VSYNC:
{
GSvsync(tag.data[0]);
gsFrameSkip( !tag.data[1] );
m_lock_FrameQueueCounter.Lock();
AtomicDecrement( m_QueuedFrames );
jASSUME( m_QueuedFrames >= 0 );
m_lock_FrameQueueCounter.Unlock();
if( PAD1update != NULL ) PAD1update(0);
if( PAD2update != NULL ) PAD2update(1);
}
break;
case GS_RINGTYPE_FRAMESKIP:
_gs_ResetFrameskip();
break;
case GS_RINGTYPE_MEMWRITE8:
m_gsMem[tag.data[0]] = (u8)tag.data[1];
break;
case GS_RINGTYPE_MEMWRITE16:
*(u16*)(m_gsMem+tag.data[0]) = (u16)tag.data[1];
break;
case GS_RINGTYPE_MEMWRITE32:
*(u32*)(m_gsMem+tag.data[0]) = tag.data[1];
break;
case GS_RINGTYPE_MEMWRITE64:
*(u64*)(m_gsMem+tag.data[0]) = *(u64*)&tag.data[1];
break;
case GS_RINGTYPE_FREEZE:
{
freezeData* data = (freezeData*)(*(uptr*)&tag.data[1]);
int mode = tag.data[0];
GSfreeze( mode, data );
break;
}
case GS_RINGTYPE_RECORD:
{
int record = tag.data[0];
if( GSsetupRecording != NULL ) GSsetupRecording(record, NULL);
if( SPU2setupRecording != NULL ) SPU2setupRecording(record, NULL);
break;
}
case GS_RINGTYPE_RESET:
MTGS_LOG( "MTGS > Receiving Reset...\n" );
if( GSreset != NULL ) GSreset();
break;
case GS_RINGTYPE_SOFTRESET:
{
int mask = tag.data[0];
MTGS_LOG( "MTGS > Receiving GIF Soft Reset (mask: %d)\n", mask );
GSgifSoftReset( mask );
break;
}
case GS_RINGTYPE_WRITECSR:
GSwriteCSR( tag.data[0] );
break;
case GS_RINGTYPE_MODECHANGE:
_gs_ChangeTimings( tag.data[0], tag.data[1] );
break;
case GS_RINGTYPE_STARTTIME:
m_iSlowStart += tag.data[0];
break;
case GS_RINGTYPE_QUIT:
GSclose();
return 0;
#ifdef PCSX2_DEVBUILD
default:
Console::Error("GSThreadProc, bad packet (%x) at m_RingPos: %x, m_WritePos: %x", params tag.command, m_RingPos, m_WritePos);
assert(0);
m_RingPos = m_WritePos;
continue;
#else
// Optimized performance in non-Dev builds.
jNO_DEFAULT;
#endif
}
uint newringpos = m_RingPos + ringposinc;
assert( newringpos <= m_RingBufferSize );
newringpos &= m_RingBufferMask;
AtomicExchange( m_RingPos, newringpos );
}
AtomicExchange( m_RingBufferIsBusy, 0 );
}
}
// Waits for the GS to empty out the entire ring buffer contents.
// Used primarily for plugin startup/shutdown.
void mtgsThreadObject::WaitGS()
{
// Freeze registers because some kernel code likes to destroy them
FreezeXMMRegs(1);
FreezeMMXRegs(1);
SetEvent();
while( volatize(m_RingPos) != volatize(m_WritePos) )
{
Timeslice();
//SpinWait();
}
FreezeXMMRegs(0);
FreezeMMXRegs(0);
}
// Sets the gsEvent flag and releases a timeslice.
// For use in loops that wait on the GS thread to do certain things.
void mtgsThreadObject::SetEvent()
{
m_post_event.Post();
m_CopyCommandTally = 0;
m_CopyDataTally = 0;
}
void mtgsThreadObject::PrepEventWait()
{
// Freeze registers because some kernel code likes to destroy them
FreezeXMMRegs(1);
FreezeMMXRegs(1);
//Console::Notice( "MTGS Stall! EE waits for nothing! ... except your GPU sometimes." );
SetEvent();
Timeslice();
}
void mtgsThreadObject::PostEventWait() const
{
FreezeMMXRegs(0);
FreezeXMMRegs(0);
}
u8* mtgsThreadObject::GetDataPacketPtr() const
{
return (u8*)m_RingBuffer.GetPtr( m_packet_ringpos );
}
// Closes the data packet send command, and initiates the gs thread (if needed).
void mtgsThreadObject::SendDataPacket()
{
// make sure a previous copy block has been started somewhere.
jASSUME( m_packet_size != 0 );
uint temp = m_packet_ringpos + m_packet_size;
jASSUME( temp <= m_RingBufferSize );
temp &= m_RingBufferMask;
#ifdef _DEBUG
if( m_packet_ringpos + m_packet_size < m_RingBufferSize )
{
uint readpos = volatize(m_RingPos);
if( readpos != m_WritePos )
{
// The writepos should never leapfrog the readpos
// since that indicates a bad write.
if( m_packet_ringpos < readpos )
assert( temp < readpos );
}
// Updating the writepos should never make it equal the readpos, since
// that would stop the buffer prematurely (and indicates bad code in the
// ringbuffer manager)
assert( readpos != temp );
}
#endif
AtomicExchange( m_WritePos, temp );
m_packet_size = 0;
if( m_RingBufferIsBusy ) return;
// The ringbuffer is current in a resting state, so if enough copies have
// queued up then go ahead and initiate the GS thread..
// Optimization notes: What we're doing here is initiating a "burst" mode on
// the thread, which improves its cache hit performance and makes it more friendly
// to other threads in Pcsx2 and such. Primary is the Command Tally, and then a
// secondary data size threshold for games that do lots of texture swizzling.
// 16 was the best value I found so far.
// tested values:
// 24 - very slow on HT machines (+5% drop in fps)
// 8 - roughly 2% slower on HT machines.
m_CopyDataTally += m_packet_size;
if( ( m_CopyDataTally > 0x8000 ) || ( ++m_CopyCommandTally > 16 ) )
{
FreezeXMMRegs(1);
FreezeMMXRegs(1);
//Console::Status( "MTGS Kick! DataSize : 0x%5.8x, CommandTally : %d", m_CopyDataTally, m_CopyCommandTally );
SetEvent();
FreezeMMXRegs(0);
FreezeXMMRegs(0);
}
}
int mtgsThreadObject::PrepDataPacket( GIF_PATH pathidx, const u64* srcdata, u32 size )
{
return PrepDataPacket( pathidx, (u8*)srcdata, size );
}
int mtgsThreadObject::PrepDataPacket( GIF_PATH pathidx, const u32* srcdata, u32 size )
{
return PrepDataPacket( pathidx, (u8*)srcdata, size );
}
#ifdef PCSX2_GSRING_TX_STATS
static u32 ringtx_s=0;
static u32 ringtx_s_ulg=0;
static u32 ringtx_s_min=0xFFFFFFFF;
static u32 ringtx_s_max=0;
static u32 ringtx_c=0;
static u32 ringtx_inf[32][32];
static u32 ringtx_inf_s[32];
#endif
#ifdef PCSX2_GSRING_SAMPLING_STATS
static u32 GSRingBufCopySz = 0;
#endif
// returns the amount of giftag data not processed (in simd128 values).
// Return value is used by VU1 XGKICK to hack-fix data packets which are too
// large for VU1 memory.
// Parameters:
// size - size of the packet data, in smd128's
int mtgsThreadObject::PrepDataPacket( GIF_PATH pathidx, const u8* srcdata, u32 size )
{
#ifdef PCSX2_GSRING_TX_STATS
ringtx_s+=size;
ringtx_s_ulg+=size&0x7F;
ringtx_s_min=min(ringtx_s_min,size);
ringtx_s_max=max(ringtx_s_max,size);
ringtx_c++;
unsigned long tx_sz;
if (_BitScanReverse(&tx_sz,size))
{
unsigned long tx_algn;
_BitScanForward(&tx_algn,size);
ringtx_inf[tx_sz][tx_algn]++;
ringtx_inf_s[tx_sz]+=size;
}
if (ringtx_s>=128*1024*1024)
{
Console::Status("GSRingBufCopy:128MB in %d tx -> b/tx: AVG = %.2f , max = %d, min = %d",ringtx_c,ringtx_s/(float)ringtx_c,ringtx_s_max,ringtx_s_min);
for (int i=0;i<32;i++)
{
u32 total_bucket=0;
u32 bucket_subitems=0;
for (int j=0;j<32;j++)
{
if (ringtx_inf[i][j])
{
total_bucket+=ringtx_inf[i][j];
bucket_subitems++;
Console::Notice("GSRingBufCopy :tx [%d,%d] algn %d : count= %d [%.2f%%]",1<<i,(1<<(i+1))-16,1<<j,ringtx_inf[i][j],ringtx_inf[i][j]/(float)ringtx_c*100);
ringtx_inf[i][j]=0;
}
}
if (total_bucket)
Console::Notice("GSRingBufCopy :tx [%d,%d] total : count= %d [%.2f%%] [%.2f%%]",1<<i,(1<<(i+1))-16,total_bucket,total_bucket/(float)ringtx_c*100,ringtx_inf_s[i]/(float)ringtx_s*100);
ringtx_inf_s[i]=0;
}
Console::Notice("GSRingBufCopy :tx ulg count =%d [%.2f%%]",ringtx_s_ulg,ringtx_s_ulg/(float)ringtx_s*100);
ringtx_s_ulg=0;
ringtx_c=0;
ringtx_s=0;
ringtx_s_min=0xFFFFFFFF;
ringtx_s_max=0;
}
#endif
// Note on volatiles: g_pGSWritePos is not modified by the GS thread,
// so there's no need to use volatile reads here. We still have to use
// interlocked exchanges when we modify it, however, since the GS thread
// is reading it.
uint writepos = m_WritePos;
// Checks if a previous copy was started without an accompanying call to GSRINGBUF_DONECOPY
jASSUME( m_packet_size == 0 );
// Sanity checks! (within the confines of our ringbuffer please!)
jASSUME( size < m_RingBufferSize );
jASSUME( writepos < m_RingBufferSize );
//fixme: Vif sometimes screws up and size is unaligned, try this then (rama)
//Is this still a problem? It should be fixed on the specific VIF command now. (air)
//It seems to be fixed in Fatal Frame, leaving the code here still in case we get that again (rama)
/*if( (size&15) != 0){
Console::Error( "MTGS problem, size unaligned");
size = (size+15)&(~15);
}*/
// retval has the amount of data *not* processed, so we only need to reserve
// enough room for size - retval:
int retval = _gifTransferDummy( pathidx, srcdata, size );
size = size - retval;
m_packet_size = size;
size++; // takes into account our command qword.
if( writepos + size < m_RingBufferSize )
{
// generic gs wait/stall.
// if the writepos is past the readpos then we're safe.
// But if not then we need to make sure the readpos is outside the scope of
// the block about to be written (writepos + size)
if( writepos < volatize(m_RingPos) )
{
// writepos is behind the readpos, so we need to wait until
// readpos is out past the end of the future write pos, or until it wraps
// around (in which case writepos will be >= readpos)
PrepEventWait();
while( true )
{
uint readpos = volatize(m_RingPos);
if( writepos >= readpos ) break;
if( writepos+size < readpos ) break;
SpinWait();
}
PostEventWait();
}
}
else if( writepos + size > m_RingBufferSize )
{
// If the incoming packet doesn't fit, then start over from
// the start of the ring buffer (it's a lot easier than trying
// to wrap the packet around the end of the buffer).
// We have to be careful not to leapfrog our read-position. If it's
// greater than the current write position then we need to stall
// until it loops around to the beginning of the buffer
PrepEventWait();
while( true )
{
uint readpos = volatize(m_RingPos);
// is the buffer empty?
if( readpos == writepos ) break;
// Also: Wait for the readpos to go past the start of the buffer
// Otherwise it'll stop dead in its tracks when we set the new write
// position below (bad!)
if( readpos < writepos && readpos != 0 ) break;
SpinWait();
}
m_lock_RingRestart.Lock();
SendSimplePacket( GS_RINGTYPE_RESTART, 0, 0, 0 );
writepos = 0;
AtomicExchange( m_WritePos, writepos );
m_lock_RingRestart.Unlock();
SetEvent();
// stall until the read position is past the end of our incoming block,
// or until it reaches the current write position (signals an empty buffer).
while( true )
{
uint readpos = volatize(m_RingPos);
if( readpos == m_WritePos ) break;
if( writepos+size < readpos ) break;
SpinWait();
}
PostEventWait();
}
else // always true - if( writepos + size == MTGS_RINGBUFFEREND )
{
// Yay. Perfect fit. What are the odds?
//SysPrintf( "MTGS > Perfect Fit!\n");
PrepEventWait();
while( true )
{
uint readpos = volatize(m_RingPos);
// stop waiting if the buffer is empty!
if( writepos == readpos ) break;
// Copy is ready so long as readpos is less than writepos and *not*
// equal to the base of the ringbuffer (otherwise the buffer will stop
// when the writepos is wrapped around to zero later-on in SendDataPacket)
if( readpos < writepos && readpos != 0 ) break;
SpinWait();
}
PostEventWait();
}
#ifdef RINGBUF_DEBUG_STACK
m_lock_Stack.Lock();
ringposStack.push_front( writepos );
m_lock_Stack.Unlock();
#endif
// Command qword: Low word is the command, and the high word is the packet
// length in SIMDs (128 bits).
PacketTagType& tag = (PacketTagType&)m_RingBuffer[m_WritePos];
tag.command = pathidx+1;
tag.data[0] = m_packet_size;
m_packet_ringpos = m_WritePos + 1;
return m_packet_size;
}
__forceinline uint mtgsThreadObject::_PrepForSimplePacket()
{
#ifdef RINGBUF_DEBUG_STACK
m_lock_Stack.Lock();
ringposStack.push_front( m_WritePos );
m_lock_Stack.Unlock();
#endif
uint future_writepos = m_WritePos+1;
jASSUME( future_writepos <= m_RingBufferSize );
future_writepos &= m_RingBufferMask;
if( future_writepos == volatize(m_RingPos) )
{
PrepEventWait();
do
{
SpinWait();
} while( future_writepos == volatize(m_RingPos) );
PostEventWait();
}
return future_writepos;
}
__forceinline void mtgsThreadObject::_FinishSimplePacket( uint future_writepos )
{
assert( future_writepos != volatize(m_RingPos) );
AtomicExchange( m_WritePos, future_writepos );
}
void mtgsThreadObject::SendSimplePacket( GS_RINGTYPE type, int data0, int data1, int data2 )
{
const uint thefuture = _PrepForSimplePacket();
PacketTagType& tag = (PacketTagType&)m_RingBuffer[m_WritePos];
tag.command = type;
tag.data[0] = data0;
tag.data[1] = data1;
tag.data[2] = data2;
_FinishSimplePacket( thefuture );
}
void mtgsThreadObject::SendPointerPacket( GS_RINGTYPE type, u32 data0, void* data1 )
{
const uint thefuture = _PrepForSimplePacket();
PacketTagType& tag = (PacketTagType&)m_RingBuffer[m_WritePos];
tag.command = type;
tag.data[0] = data0;
*(uptr*)&tag.data[1] = (uptr)data1;
_FinishSimplePacket( thefuture );
}
// Waits for the GS to empty out the entire ring buffer contents.
// Used primarily for plugin startup/shutdown.
void mtgsWaitGS()
{
if( mtgsThread == NULL ) return;
mtgsThread->WaitGS();
}
bool mtgsOpen()
{
// Check the config flag since our thread object has yet to be created
if( !CHECK_MULTIGS ) return false;
// better not be a thread already running, yo!
assert( mtgsThread == NULL );
try
{
mtgsThread = new mtgsThreadObject();
mtgsThread->Start();
}
catch( Exception::ThreadCreationError& )
{
Console::Error( "MTGS > Thread creation failed!" );
mtgsThread = NULL;
return false;
}
return true;
}
void mtgsThreadObject::GIFSoftReset( int mask )
{
if(mask & 1) memzero_obj(m_path[0]);
if(mask & 2) memzero_obj(m_path[1]);
if(mask & 4) memzero_obj(m_path[2]);
if( GSgifSoftReset == NULL ) return;
MTGS_LOG( "MTGS > Sending GIF Soft Reset (mask: %d)\n", mask );
mtgsThread->SendSimplePacket( GS_RINGTYPE_SOFTRESET, mask, 0, 0 );
}
void mtgsThreadObject::Freeze( SaveState& state )
{
_mtgsFreezeGIF( state, this->m_path );
}
// this function is needed because of recompiled calls from iGS.cpp
// (currently used in GCC only)
void mtgsRingBufSimplePacket( s32 command, u32 data0, u32 data1, u32 data2 )
{
mtgsThread->SendSimplePacket( (GS_RINGTYPE)command, data0, data1, data2 );
}