pcsx2/pcsx2/x86/iR3000A.cpp

1444 lines
34 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
// recompiler reworked to add dynamic linking Jan06
// and added reg caching, const propagation, block analysis Jun06
// zerofrog(@gmail.com)
#include "PrecompiledHeader.h"
#include "iR3000A.h"
#include "BaseblockEx.h"
#include "System/RecTypes.h"
#include <time.h>
#ifndef _WIN32
#include <sys/types.h>
#endif
#include "IopCommon.h"
#include "iCore.h"
#include "NakedAsm.h"
#include "AppConfig.h"
using namespace x86Emitter;
extern u32 g_iopNextEventCycle;
extern void psxBREAK();
u32 g_psxMaxRecMem = 0;
u32 s_psxrecblocks[] = {0};
uptr psxRecLUT[0x10000];
uptr psxhwLUT[0x10000];
#define HWADDR(mem) (psxhwLUT[mem >> 16] + (mem))
static RecompiledCodeReserve* recMem = NULL;
static BASEBLOCK *recRAM = NULL; // and the ptr to the blocks here
static BASEBLOCK *recROM = NULL; // and here
static BASEBLOCK *recROM1 = NULL; // also here
static BaseBlocks recBlocks;
static u8 *recPtr = NULL;
u32 psxpc; // recompiler psxpc
int psxbranch; // set for branch
u32 g_iopCyclePenalty;
static EEINST* s_pInstCache = NULL;
static u32 s_nInstCacheSize = 0;
static BASEBLOCK* s_pCurBlock = NULL;
static BASEBLOCKEX* s_pCurBlockEx = NULL;
static u32 s_nEndBlock = 0; // what psxpc the current block ends
static u32 s_branchTo;
static bool s_nBlockFF;
static u32 s_saveConstRegs[32];
static u32 s_saveHasConstReg = 0, s_saveFlushedConstReg = 0;
static EEINST* s_psaveInstInfo = NULL;
u32 s_psxBlockCycles = 0; // cycles of current block recompiling
static u32 s_savenBlockCycles = 0;
static void iPsxBranchTest(u32 newpc, u32 cpuBranch);
void psxRecompileNextInstruction(int delayslot);
extern void (*rpsxBSC[64])();
void rpsxpropBSC(EEINST* prev, EEINST* pinst);
static void iopClearRecLUT(BASEBLOCK* base, int count);
static u32 psxdump = 0;
#define PSX_GETBLOCK(x) PC_GETBLOCK_(x, psxRecLUT)
#define PSXREC_CLEARM(mem) \
(((mem) < g_psxMaxRecMem && (psxRecLUT[(mem) >> 16] + (mem))) ? \
psxRecClearMem(mem) : 4)
// =====================================================================================================
// Dynamically Compiled Dispatchers - R3000A style
// =====================================================================================================
static void __fastcall iopRecRecompile( const u32 startpc );
static u32 s_store_ebp, s_store_esp;
// Recompiled code buffer for EE recompiler dispatchers!
static u8 __pagealigned iopRecDispatchers[__pagesize];
typedef void DynGenFunc();
static DynGenFunc* iopDispatcherEvent = NULL;
static DynGenFunc* iopDispatcherReg = NULL;
static DynGenFunc* iopJITCompile = NULL;
static DynGenFunc* iopJITCompileInBlock = NULL;
static DynGenFunc* iopEnterRecompiledCode = NULL;
static DynGenFunc* iopExitRecompiledCode = NULL;
static void recEventTest()
{
_cpuEventTest_Shared();
}
// parameters:
// espORebp - 0 for ESP, or 1 for EBP.
// regval - current value of the register at the time the fault was detected (predates the
// stackframe setup code in this function)
static void __fastcall StackFrameCheckFailed( int espORebp, int regval )
{
pxFailDev( pxsFmt( L"(R3000A Recompiler Stackframe) Sanity check failed on %s\n\tCurrent=%d; Saved=%d",
(espORebp==0) ? L"ESP" : L"EBP", regval, (espORebp==0) ? s_store_esp : s_store_ebp )
);
// Note: The recompiler will attempt to recover ESP and EBP after returning from this function,
// so typically selecting Continue/Ignore/Cancel for this assertion should allow PCSX2 to con-
// tinue to run with some degree of stability.
}
static void _DynGen_StackFrameCheck()
{
if( !IsDevBuild ) return;
// --------- EBP Here -----------
xCMP( ebp, ptr[&s_store_ebp] );
xForwardJE8 skipassert_ebp;
xMOV( ecx, 1 ); // 1 specifies EBP
xMOV( edx, ebp );
xCALL( StackFrameCheckFailed );
xMOV( ebp, ptr[&s_store_ebp] ); // half-hearted frame recovery attempt!
skipassert_ebp.SetTarget();
// --------- ESP There -----------
xCMP( esp, ptr[&s_store_esp] );
xForwardJE8 skipassert_esp;
xXOR( ecx, ecx ); // 0 specifies ESP
xMOV( edx, esp );
xCALL( StackFrameCheckFailed );
xMOV( esp, ptr[&s_store_esp] ); // half-hearted frame recovery attempt!
skipassert_esp.SetTarget();
}
// The address for all cleared blocks. It recompiles the current pc and then
// dispatches to the recompiled block address.
static DynGenFunc* _DynGen_JITCompile()
{
pxAssertMsg( iopDispatcherReg != NULL, "Please compile the DispatcherReg subroutine *before* JITComple. Thanks." );
u8* retval = xGetPtr();
_DynGen_StackFrameCheck();
xMOV( ecx, ptr[&psxRegs.pc] );
xCALL( iopRecRecompile );
xMOV( eax, ptr[&psxRegs.pc] );
xMOV( ebx, eax );
xSHR( eax, 16 );
xMOV( ecx, ptr[psxRecLUT + (eax*4)] );
xJMP( ptr32[ecx+ebx] );
return (DynGenFunc*)retval;
}
static DynGenFunc* _DynGen_JITCompileInBlock()
{
u8* retval = xGetPtr();
xJMP( iopJITCompile );
return (DynGenFunc*)retval;
}
// called when jumping to variable pc address
static DynGenFunc* _DynGen_DispatcherReg()
{
u8* retval = xGetPtr();
_DynGen_StackFrameCheck();
xMOV( eax, ptr[&psxRegs.pc] );
xMOV( ebx, eax );
xSHR( eax, 16 );
xMOV( ecx, ptr[psxRecLUT + (eax*4)] );
xJMP( ptr32[ecx+ebx] );
return (DynGenFunc*)retval;
}
// --------------------------------------------------------------------------------------
// EnterRecompiledCode - dynamic compilation stub!
// --------------------------------------------------------------------------------------
// In Release Builds this literally generates the following code:
// push edi
// push esi
// push ebx
// jmp DispatcherReg
// pop ebx
// pop esi
// pop edi
//
// See notes on why this works in both GCC (aligned stack!) and other compilers (not-so-
// aligned stack!). In debug/dev builds the code gen is more complicated, as it constructs
// ebp stackframe mess, which allows for a complete backtrace from debug breakpoints (yay).
//
// Also, if you set PCSX2_IOP_FORCED_ALIGN_STACK to 1, the codegen for MSVC becomes slightly
// more complicated since it has to perform a full stack alignment on entry.
//
#if defined(__GNUG__) || defined(__DARWIN__)
# define PCSX2_ASSUME_ALIGNED_STACK 1
#else
# define PCSX2_ASSUME_ALIGNED_STACK 0
#endif
// Set to 0 for a speedup in release builds.
// [doesn't apply to GCC/Mac, which must always align]
#define PCSX2_IOP_FORCED_ALIGN_STACK 0 //1
// For overriding stackframe generation options in Debug builds (possibly useful for troubleshooting)
// Typically this value should be the same as IsDevBuild.
static const bool GenerateStackFrame = IsDevBuild;
static DynGenFunc* _DynGen_EnterRecompiledCode()
{
u8* retval = xGetPtr();
bool allocatedStack = GenerateStackFrame || PCSX2_IOP_FORCED_ALIGN_STACK;
// Optimization: The IOP never uses stack-based parameter invocation, so we can avoid
// allocating any room on the stack for it (which is important since the IOP's entry
// code gets invoked quite a lot).
if( allocatedStack )
{
xPUSH( ebp );
xMOV( ebp, esp );
xAND( esp, -0x10 );
xSUB( esp, 0x20 );
xMOV( ptr[ebp-12], edi );
xMOV( ptr[ebp-8], esi );
xMOV( ptr[ebp-4], ebx );
}
else
{
// GCC Compiler:
// The frame pointer coming in from the EE's event test can be safely assumed to be
// aligned, since GCC always aligns stackframes. While handy in x86-64, where CALL + PUSH EBP
// results in a neatly realigned stack on entry to every function, unfortunately in x86-32
// this is usually worthless because CALL+PUSH leaves us 8 byte aligned instead (fail). So
// we have to do the usual set of stackframe alignments and simulated callstack mess
// *regardless*.
// MSVC/Intel compilers:
// The PCSX2_IOP_FORCED_ALIGN_STACK setting is 0, so we don't care. Just push regs like
// the good old days! (stack alignment will be indeterminate)
xPUSH( edi );
xPUSH( esi );
xPUSH( ebx );
allocatedStack = false;
}
uptr* imm = NULL;
if( allocatedStack )
{
if( GenerateStackFrame )
{
// Simulate a CALL function by pushing the call address and EBP onto the stack.
// This retains proper stacktrace and stack unwinding (handy in devbuilds!)
xMOV( ptr32[esp+0x0c], 0xffeeff );
imm = (uptr*)(xGetPtr()-4);
// This part simulates the "normal" stackframe prep of "push ebp, mov ebp, esp"
xMOV( ptr32[esp+0x08], ebp );
xLEA( ebp, ptr32[esp+0x08] );
}
}
if( IsDevBuild )
{
xMOV( ptr[&s_store_esp], esp );
xMOV( ptr[&s_store_ebp], ebp );
}
xJMP( iopDispatcherReg );
if( imm != NULL )
*imm = (uptr)xGetPtr();
// ----------------------
// ----> Cleanup! ---->
iopExitRecompiledCode = (DynGenFunc*)xGetPtr();
if( allocatedStack )
{
// pop the nested "simulated call" stackframe, if needed:
if( GenerateStackFrame ) xLEAVE();
xMOV( edi, ptr[ebp-12] );
xMOV( esi, ptr[ebp-8] );
xMOV( ebx, ptr[ebp-4] );
xLEAVE();
}
else
{
xPOP( ebx );
xPOP( esi );
xPOP( edi );
}
xRET();
return (DynGenFunc*)retval;
}
static void _DynGen_Dispatchers()
{
// In case init gets called multiple times:
HostSys::MemProtectStatic( iopRecDispatchers, PageAccess_ReadWrite() );
// clear the buffer to 0xcc (easier debugging).
memset_8<0xcc,__pagesize>( iopRecDispatchers );
xSetPtr( iopRecDispatchers );
// Place the EventTest and DispatcherReg stuff at the top, because they get called the
// most and stand to benefit from strong alignment and direct referencing.
iopDispatcherEvent = (DynGenFunc*)xGetPtr();
xCALL( recEventTest );
iopDispatcherReg = _DynGen_DispatcherReg();
iopJITCompile = _DynGen_JITCompile();
iopJITCompileInBlock = _DynGen_JITCompileInBlock();
iopEnterRecompiledCode = _DynGen_EnterRecompiledCode();
HostSys::MemProtectStatic( iopRecDispatchers, PageAccess_ExecOnly() );
recBlocks.SetJITCompile( iopJITCompile );
}
////////////////////////////////////////////////////
using namespace R3000A;
#include "Utilities/AsciiFile.h"
static void iIopDumpBlock( int startpc, u8 * ptr )
{
u32 i, j;
EEINST* pcur;
u8 used[34];
int numused, count;
Console.WriteLn( "dump1 %x:%x, %x", startpc, psxpc, psxRegs.cycle );
g_Conf->Folders.Logs.Mkdir();
wxString filename( Path::Combine( g_Conf->Folders.Logs, wxsFormat( L"psxdump%.8X.txt", startpc ) ) );
AsciiFile f( filename, L"w" );
/*for ( i = startpc; i < s_nEndBlock; i += 4 ) {
f.Printf("%s\n", disR3000Fasm( iopMemRead32( i ), i ) );
}*/
// write the instruction info
f.Printf("\n\nlive0 - %x, lastuse - %x used - %x\n", EEINST_LIVE0, EEINST_LASTUSE, EEINST_USED);
memzero(used);
numused = 0;
for(i = 0; i < ArraySize(s_pInstCache->regs); ++i) {
if( s_pInstCache->regs[i] & EEINST_USED ) {
used[i] = 1;
numused++;
}
}
f.Printf(" ");
for(i = 0; i < ArraySize(s_pInstCache->regs); ++i) {
if( used[i] ) f.Printf("%2d ", i);
}
f.Printf("\n");
f.Printf(" ");
for(i = 0; i < ArraySize(s_pInstCache->regs); ++i) {
if( used[i] ) f.Printf("%s ", disRNameGPR[i]);
}
f.Printf("\n");
pcur = s_pInstCache+1;
for( i = 0; i < (s_nEndBlock-startpc)/4; ++i, ++pcur) {
f.Printf("%2d: %2.2x ", i+1, pcur->info);
count = 1;
for(j = 0; j < ArraySize(s_pInstCache->regs); j++) {
if( used[j] ) {
f.Printf("%2.2x%s", pcur->regs[j], ((count%8)&&count<numused)?"_":" ");
++count;
}
}
f.Printf("\n");
}
#ifdef __LINUX__
char command[256];
// dump the asm
{
AsciiFile f2( L"mydump1", L"w" );
f2.Write( ptr, (uptr)x86Ptr - (uptr)ptr );
}
wxCharBuffer buf( filename.ToUTF8() );
const char* filenamea = buf.data();
sprintf( command, "objdump -D --target=binary --architecture=i386 -M intel mydump1 | cat %s - > tempdump", filenamea );
system( command );
sprintf( command, "mv tempdump %s", filenamea );
system( command );
//f = fopen( filename.c_str(), "a+" );
#endif
}
u8 _psxLoadWritesRs(u32 tempcode)
{
switch(tempcode>>26) {
case 32: case 33: case 34: case 35: case 36: case 37: case 38:
return ((tempcode>>21)&0x1f)==((tempcode>>16)&0x1f); // rs==rt
}
return 0;
}
u8 _psxIsLoadStore(u32 tempcode)
{
switch(tempcode>>26) {
case 32: case 33: case 34: case 35: case 36: case 37: case 38:
// 4 byte stores
case 40: case 41: case 42: case 43: case 46:
return 1;
}
return 0;
}
void _psxFlushAllUnused()
{
int i;
for(i = 0; i < 34; ++i) {
if( psxpc < s_nEndBlock ) {
if( (g_pCurInstInfo[1].regs[i]&EEINST_USED) )
continue;
}
else if( (g_pCurInstInfo[0].regs[i]&EEINST_USED) )
continue;
if( i < 32 && PSX_IS_CONST1(i) ) _psxFlushConstReg(i);
else {
_deleteX86reg(X86TYPE_PSX, i, 1);
}
}
}
int _psxFlushUnusedConstReg()
{
int i;
for(i = 1; i < 32; ++i) {
if( (g_psxHasConstReg & (1<<i)) && !(g_psxFlushedConstReg&(1<<i)) &&
!_recIsRegWritten(g_pCurInstInfo+1, (s_nEndBlock-psxpc)/4, XMMTYPE_GPRREG, i) ) {
// check if will be written in the future
MOV32ItoM((uptr)&psxRegs.GPR.r[i], g_psxConstRegs[i]);
g_psxFlushedConstReg |= 1<<i;
return 1;
}
}
return 0;
}
void _psxFlushCachedRegs()
{
_psxFlushConstRegs();
}
void _psxFlushConstReg(int reg)
{
if( PSX_IS_CONST1( reg ) && !(g_psxFlushedConstReg&(1<<reg)) ) {
MOV32ItoM((uptr)&psxRegs.GPR.r[reg], g_psxConstRegs[reg]);
g_psxFlushedConstReg |= (1<<reg);
}
}
void _psxFlushConstRegs()
{
int i;
// flush constants
// ignore r0
for(i = 1; i < 32; ++i) {
if( g_psxHasConstReg & (1<<i) ) {
if( !(g_psxFlushedConstReg&(1<<i)) ) {
MOV32ItoM((uptr)&psxRegs.GPR.r[i], g_psxConstRegs[i]);
g_psxFlushedConstReg |= 1<<i;
}
if( g_psxHasConstReg == g_psxFlushedConstReg )
break;
}
}
}
void _psxDeleteReg(int reg, int flush)
{
if( !reg ) return;
if( flush && PSX_IS_CONST1(reg) ) {
_psxFlushConstReg(reg);
return;
}
PSX_DEL_CONST(reg);
_deleteX86reg(X86TYPE_PSX, reg, flush ? 0 : 2);
}
void _psxMoveGPRtoR(x86IntRegType to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoR( to, g_psxConstRegs[fromgpr] );
else {
// check x86
MOV32MtoR(to, (uptr)&psxRegs.GPR.r[ fromgpr ] );
}
}
void _psxMoveGPRtoM(u32 to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoM( to, g_psxConstRegs[fromgpr] );
else {
// check x86
MOV32MtoR(EAX, (uptr)&psxRegs.GPR.r[ fromgpr ] );
MOV32RtoM(to, EAX );
}
}
void _psxMoveGPRtoRm(x86IntRegType to, int fromgpr)
{
if( PSX_IS_CONST1(fromgpr) )
MOV32ItoRm( to, g_psxConstRegs[fromgpr] );
else {
// check x86
MOV32MtoR(EAX, (uptr)&psxRegs.GPR.r[ fromgpr ] );
MOV32RtoRm(to, EAX );
}
}
void _psxFlushCall(int flushtype)
{
// x86-32 ABI : These registers are not preserved across calls:
_freeX86reg( EAX );
_freeX86reg( ECX );
_freeX86reg( EDX );
if( flushtype & FLUSH_CACHED_REGS )
_psxFlushConstRegs();
}
void psxSaveBranchState()
{
s_savenBlockCycles = s_psxBlockCycles;
memcpy(s_saveConstRegs, g_psxConstRegs, sizeof(g_psxConstRegs));
s_saveHasConstReg = g_psxHasConstReg;
s_saveFlushedConstReg = g_psxFlushedConstReg;
s_psaveInstInfo = g_pCurInstInfo;
// save all regs
memcpy(s_saveX86regs, x86regs, sizeof(x86regs));
}
void psxLoadBranchState()
{
s_psxBlockCycles = s_savenBlockCycles;
memcpy(g_psxConstRegs, s_saveConstRegs, sizeof(g_psxConstRegs));
g_psxHasConstReg = s_saveHasConstReg;
g_psxFlushedConstReg = s_saveFlushedConstReg;
g_pCurInstInfo = s_psaveInstInfo;
// restore all regs
memcpy(x86regs, s_saveX86regs, sizeof(x86regs));
}
////////////////////
// Code Templates //
////////////////////
void _psxOnWriteReg(int reg)
{
PSX_DEL_CONST(reg);
}
// rd = rs op rt
void psxRecompileCodeConst0(R3000AFNPTR constcode, R3000AFNPTR_INFO constscode, R3000AFNPTR_INFO consttcode, R3000AFNPTR_INFO noconstcode)
{
if ( ! _Rd_ ) return;
// for now, don't support xmm
_deleteX86reg(X86TYPE_PSX, _Rs_, 1);
_deleteX86reg(X86TYPE_PSX, _Rt_, 1);
_deleteX86reg(X86TYPE_PSX, _Rd_, 0);
if( PSX_IS_CONST2(_Rs_, _Rt_) ) {
PSX_SET_CONST(_Rd_);
constcode();
return;
}
if( PSX_IS_CONST1(_Rs_) ) {
constscode(0);
PSX_DEL_CONST(_Rd_);
return;
}
if( PSX_IS_CONST1(_Rt_) ) {
consttcode(0);
PSX_DEL_CONST(_Rd_);
return;
}
noconstcode(0);
PSX_DEL_CONST(_Rd_);
}
// rt = rs op imm16
void psxRecompileCodeConst1(R3000AFNPTR constcode, R3000AFNPTR_INFO noconstcode)
{
if ( ! _Rt_ ) {
// check for iop module import table magic
if (psxRegs.code >> 16 == 0x2400) {
MOV32ItoM( (uptr)&psxRegs.code, psxRegs.code );
MOV32ItoM( (uptr)&psxRegs.pc, psxpc );
_psxFlushCall(FLUSH_NODESTROY);
const char *libname = irxImportLibname(psxpc);
u16 index = psxRegs.code & 0xffff;
#ifdef PCSX2_DEVBUILD
const char *funcname = irxImportFuncname(libname, index);
irxDEBUG debug = irxImportDebug(libname, index);
if (SysTraceActive(IOP.Bios)) {
xMOV(ecx, (uptr)libname);
xMOV(edx, index);
xPUSH((uptr)funcname);
xCALL(irxImportLog);
}
if (debug)
xCALL(debug);
#endif
irxHLE hle = irxImportHLE(libname, index);
if (hle) {
xCALL(hle);
xCMP(eax, 0);
xJNE(iopDispatcherReg);
}
}
return;
}
// for now, don't support xmm
_deleteX86reg(X86TYPE_PSX, _Rs_, 1);
_deleteX86reg(X86TYPE_PSX, _Rt_, 0);
if( PSX_IS_CONST1(_Rs_) ) {
PSX_SET_CONST(_Rt_);
constcode();
return;
}
noconstcode(0);
PSX_DEL_CONST(_Rt_);
}
// rd = rt op sa
void psxRecompileCodeConst2(R3000AFNPTR constcode, R3000AFNPTR_INFO noconstcode)
{
if ( ! _Rd_ ) return;
// for now, don't support xmm
_deleteX86reg(X86TYPE_PSX, _Rt_, 1);
_deleteX86reg(X86TYPE_PSX, _Rd_, 0);
if( PSX_IS_CONST1(_Rt_) ) {
PSX_SET_CONST(_Rd_);
constcode();
return;
}
noconstcode(0);
PSX_DEL_CONST(_Rd_);
}
// rd = rt MULT rs (SPECIAL)
void psxRecompileCodeConst3(R3000AFNPTR constcode, R3000AFNPTR_INFO constscode, R3000AFNPTR_INFO consttcode, R3000AFNPTR_INFO noconstcode, int LOHI)
{
_deleteX86reg(X86TYPE_PSX, _Rs_, 1);
_deleteX86reg(X86TYPE_PSX, _Rt_, 1);
if( LOHI ) {
_deleteX86reg(X86TYPE_PSX, PSX_HI, 1);
_deleteX86reg(X86TYPE_PSX, PSX_LO, 1);
}
if( PSX_IS_CONST2(_Rs_, _Rt_) ) {
constcode();
return;
}
if( PSX_IS_CONST1(_Rs_) ) {
constscode(0);
return;
}
if( PSX_IS_CONST1(_Rt_) ) {
consttcode(0);
return;
}
noconstcode(0);
}
static uptr m_ConfiguredCacheReserve = 32;
static u8* m_recBlockAlloc = NULL;
static const uint m_recBlockAllocSize =
(((Ps2MemSize::IopRam + Ps2MemSize::Rom + Ps2MemSize::Rom1) / 4) * sizeof(BASEBLOCK));
static void recReserveCache()
{
if (!recMem) recMem = new RecompiledCodeReserve(L"R3000A Recompiler Cache", _1mb * 2);
recMem->SetProfilerName("IOPrec");
while (!recMem->IsOk())
{
if (recMem->Reserve( m_ConfiguredCacheReserve * _1mb, HostMemoryMap::IOPrec ) != NULL) break;
// If it failed, then try again (if possible):
if (m_ConfiguredCacheReserve < 4) break;
m_ConfiguredCacheReserve /= 2;
}
recMem->ThrowIfNotOk();
}
static void recReserve()
{
// IOP has no hardware requirements!
recReserveCache();
}
static void recAlloc()
{
// Goal: Allocate BASEBLOCKs for every possible branch target in IOP memory.
// Any 4-byte aligned address makes a valid branch target as per MIPS design (all instructions are
// always 4 bytes long).
if( m_recBlockAlloc == NULL )
m_recBlockAlloc = (u8*)_aligned_malloc( m_recBlockAllocSize, 4096 );
if( m_recBlockAlloc == NULL )
throw Exception::OutOfMemory( L"R3000A BASEBLOCK lookup tables" );
u8* curpos = m_recBlockAlloc;
recRAM = (BASEBLOCK*)curpos; curpos += (Ps2MemSize::IopRam / 4) * sizeof(BASEBLOCK);
recROM = (BASEBLOCK*)curpos; curpos += (Ps2MemSize::Rom / 4) * sizeof(BASEBLOCK);
recROM1 = (BASEBLOCK*)curpos; curpos += (Ps2MemSize::Rom1 / 4) * sizeof(BASEBLOCK);
if( s_pInstCache == NULL )
{
s_nInstCacheSize = 128;
s_pInstCache = (EEINST*)malloc( sizeof(EEINST) * s_nInstCacheSize );
}
if( s_pInstCache == NULL )
throw Exception::OutOfMemory( L"R3000 InstCache." );
_DynGen_Dispatchers();
}
void recResetIOP()
{
DevCon.WriteLn( "iR3000A Recompiler reset." );
recAlloc();
recMem->Reset();
iopClearRecLUT((BASEBLOCK*)m_recBlockAlloc,
(((Ps2MemSize::IopRam + Ps2MemSize::Rom + Ps2MemSize::Rom1) / 4)));
for (int i = 0; i < 0x10000; i++)
recLUT_SetPage(psxRecLUT, 0, 0, 0, i, 0);
// IOP knows 64k pages, hence for the 0x10000's
// The bottom 2 bits of PC are always zero, so we <<14 to "compress"
// the pc indexer into it's lower common denominator.
// We're only mapping 20 pages here in 4 places.
// 0x80 comes from : (Ps2MemSize::IopRam / 0x10000) * 4
for (int i=0; i<0x80; i++)
{
recLUT_SetPage(psxRecLUT, psxhwLUT, recRAM, 0x0000, i, i & 0x1f);
recLUT_SetPage(psxRecLUT, psxhwLUT, recRAM, 0x8000, i, i & 0x1f);
recLUT_SetPage(psxRecLUT, psxhwLUT, recRAM, 0xa000, i, i & 0x1f);
}
for (int i=0x1fc0; i<0x2000; i++)
{
recLUT_SetPage(psxRecLUT, psxhwLUT, recROM, 0x0000, i, i - 0x1fc0);
recLUT_SetPage(psxRecLUT, psxhwLUT, recROM, 0x8000, i, i - 0x1fc0);
recLUT_SetPage(psxRecLUT, psxhwLUT, recROM, 0xa000, i, i - 0x1fc0);
}
for (int i=0x1e00; i<0x1e04; i++)
{
recLUT_SetPage(psxRecLUT, psxhwLUT, recROM1, 0x0000, i, i - 0x1fc0);
recLUT_SetPage(psxRecLUT, psxhwLUT, recROM1, 0x8000, i, i - 0x1fc0);
recLUT_SetPage(psxRecLUT, psxhwLUT, recROM1, 0xa000, i, i - 0x1fc0);
}
if( s_pInstCache )
memset( s_pInstCache, 0, sizeof(EEINST)*s_nInstCacheSize );
recBlocks.Reset();
g_psxMaxRecMem = 0;
recPtr = *recMem;
psxbranch = 0;
}
static void recShutdown()
{
safe_delete( recMem );
safe_aligned_free( m_recBlockAlloc );
safe_free( s_pInstCache );
s_nInstCacheSize = 0;
}
static void iopClearRecLUT(BASEBLOCK* base, int count)
{
for (int i = 0; i < count; i++)
base[i].SetFnptr((uptr)iopJITCompile);
}
static void recExecute()
{
// note: this function is currently never used.
//for (;;) R3000AExecute();
}
static __noinline s32 recExecuteBlock( s32 eeCycles )
{
iopBreak = 0;
iopCycleEE = eeCycles;
#ifdef PCSX2_DEVBUILD
//if (SysTrace.SIF.IsActive())
// SysTrace.IOP.R3000A.Write("Switching to IOP CPU for %d cycles", eeCycles);
#endif
// [TODO] recExecuteBlock could be replaced by a direct call to the iopEnterRecompiledCode()
// (by assigning its address to the psxRec structure). But for that to happen, we need
// to move iopBreak/iopCycleEE update code to emitted assembly code. >_< --air
// Likely Disasm, as borrowed from MSVC:
// Entry:
// mov eax,dword ptr [esp+4]
// mov dword ptr [iopBreak (0E88DCCh)],0
// mov dword ptr [iopCycleEE (832A84h)],eax
// Exit:
// mov ecx,dword ptr [iopBreak (0E88DCCh)]
// mov edx,dword ptr [iopCycleEE (832A84h)]
// lea eax,[edx+ecx]
iopEnterRecompiledCode();
return iopBreak + iopCycleEE;
}
// Returns the offset to the next instruction after any cleared memory
static __fi u32 psxRecClearMem(u32 pc)
{
BASEBLOCK* pblock;
pblock = PSX_GETBLOCK(pc);
// if ((u8*)iopJITCompile == pblock->GetFnptr())
if (pblock->GetFnptr() == (uptr)iopJITCompile)
return 4;
pc = HWADDR(pc);
u32 lowerextent = pc, upperextent = pc + 4;
int blockidx = recBlocks.Index(pc);
pxAssert(blockidx != -1);
while (BASEBLOCKEX* pexblock = recBlocks[blockidx - 1]) {
if (pexblock->startpc + pexblock->size * 4 <= lowerextent)
break;
lowerextent = min(lowerextent, pexblock->startpc);
blockidx--;
}
int toRemoveFirst = blockidx;
while (BASEBLOCKEX* pexblock = recBlocks[blockidx]) {
if (pexblock->startpc >= upperextent)
break;
lowerextent = min(lowerextent, pexblock->startpc);
upperextent = max(upperextent, pexblock->startpc + pexblock->size * 4);
blockidx++;
}
if(toRemoveFirst != blockidx) {
recBlocks.Remove(toRemoveFirst, (blockidx - 1));
}
blockidx=0;
while(BASEBLOCKEX* pexblock = recBlocks[blockidx++])
{
if (pc >= pexblock->startpc && pc < pexblock->startpc + pexblock->size * 4) {
DevCon.Error("Impossible block clearing failure");
pxFailDev( "Impossible block clearing failure" );
}
}
iopClearRecLUT(PSX_GETBLOCK(lowerextent), (upperextent - lowerextent) / 4);
return upperextent - pc;
}
static __fi void recClearIOP(u32 Addr, u32 Size)
{
u32 pc = Addr;
while (pc < Addr + Size*4)
pc += PSXREC_CLEARM(pc);
}
void psxSetBranchReg(u32 reg)
{
psxbranch = 1;
if( reg != 0xffffffff ) {
_allocX86reg(ESI, X86TYPE_PCWRITEBACK, 0, MODE_WRITE);
_psxMoveGPRtoR(ESI, reg);
psxRecompileNextInstruction(1);
if( x86regs[ESI].inuse ) {
pxAssert( x86regs[ESI].type == X86TYPE_PCWRITEBACK );
MOV32RtoM((uptr)&psxRegs.pc, ESI);
x86regs[ESI].inuse = 0;
#ifdef PCSX2_DEBUG
xOR( esi, esi );
#endif
}
else {
MOV32MtoR(EAX, (uptr)&g_recWriteback);
MOV32RtoM((uptr)&psxRegs.pc, EAX);
#ifdef PCSX2_DEBUG
xOR( eax, eax );
#endif
}
#ifdef PCSX2_DEBUG
xForwardJNZ8 skipAssert;
xWrite8( 0xcc );
skipAssert.SetTarget();
#endif
}
_psxFlushCall(FLUSH_EVERYTHING);
iPsxBranchTest(0xffffffff, 1);
JMP32((uptr)iopDispatcherReg - ( (uptr)x86Ptr + 5 ));
}
void psxSetBranchImm( u32 imm )
{
psxbranch = 1;
pxAssert( imm );
// end the current block
MOV32ItoM( (uptr)&psxRegs.pc, imm );
_psxFlushCall(FLUSH_EVERYTHING);
iPsxBranchTest(imm, imm <= psxpc);
recBlocks.Link(HWADDR(imm), xJcc32());
}
static __fi u32 psxScaleBlockCycles()
{
return s_psxBlockCycles;
}
static void iPsxBranchTest(u32 newpc, u32 cpuBranch)
{
u32 blockCycles = psxScaleBlockCycles();
if (EmuConfig.Speedhacks.WaitLoop && s_nBlockFF && newpc == s_branchTo)
{
xMOV(eax, ptr32[&psxRegs.cycle]);
xMOV(ecx, eax);
xMOV(edx, ptr32[&iopCycleEE]);
xADD(edx, 7);
xSHR(edx, 3);
xADD(eax, edx);
xCMP(eax, ptr32[&g_iopNextEventCycle]);
xCMOVNS(eax, ptr32[&g_iopNextEventCycle]);
xMOV(ptr32[&psxRegs.cycle], eax);
xSUB(eax, ecx);
xSHL(eax, 3);
xSUB(ptr32[&iopCycleEE], eax);
xJLE(iopExitRecompiledCode);
xCALL(iopEventTest);
if( newpc != 0xffffffff )
{
xCMP(ptr32[&psxRegs.pc], newpc);
xJNE(iopDispatcherReg);
}
}
else
{
xMOV(eax, ptr32[&psxRegs.cycle]);
xADD(eax, blockCycles);
xMOV(ptr32[&psxRegs.cycle], eax); // update cycles
// jump if iopCycleEE <= 0 (iop's timeslice timed out, so time to return control to the EE)
xSUB(ptr32[&iopCycleEE], blockCycles*8);
xJLE(iopExitRecompiledCode);
// check if an event is pending
xSUB(eax, ptr32[&g_iopNextEventCycle]);
xForwardJS<u8> nointerruptpending;
xCALL(iopEventTest);
if( newpc != 0xffffffff ) {
xCMP(ptr32[&psxRegs.pc], newpc);
xJNE(iopDispatcherReg);
}
nointerruptpending.SetTarget();
}
}
#if 0
//static const int *s_pCode;
#if !defined(_MSC_VER)
static void checkcodefn()
{
int pctemp;
#ifdef _MSC_VER
__asm mov pctemp, eax;
#else
__asm__ __volatile__("movl %%eax, %[pctemp]" : [pctemp]"m="(pctemp) );
#endif
Console.WriteLn("iop code changed! %x", pctemp);
}
#endif
#endif
void rpsxSYSCALL()
{
MOV32ItoM( (uptr)&psxRegs.code, psxRegs.code );
MOV32ItoM((uptr)&psxRegs.pc, psxpc - 4);
_psxFlushCall(FLUSH_NODESTROY);
xMOV( ecx, 0x20 ); // exception code
xMOV( edx, psxbranch==1 ); // branch delay slot?
xCALL( psxException );
CMP32ItoM((uptr)&psxRegs.pc, psxpc-4);
j8Ptr[0] = JE8(0);
ADD32ItoM((uptr)&psxRegs.cycle, psxScaleBlockCycles() );
SUB32ItoM((uptr)&iopCycleEE, psxScaleBlockCycles()*8 );
JMP32((uptr)iopDispatcherReg - ( (uptr)x86Ptr + 5 ));
// jump target for skipping blockCycle updates
x86SetJ8(j8Ptr[0]);
//if (!psxbranch) psxbranch = 2;
}
void rpsxBREAK()
{
MOV32ItoM( (uptr)&psxRegs.code, psxRegs.code );
MOV32ItoM((uptr)&psxRegs.pc, psxpc - 4);
_psxFlushCall(FLUSH_NODESTROY);
xMOV( ecx, 0x24 ); // exception code
xMOV( edx, psxbranch==1 ); // branch delay slot?
xCALL( psxException );
CMP32ItoM((uptr)&psxRegs.pc, psxpc-4);
j8Ptr[0] = JE8(0);
ADD32ItoM((uptr)&psxRegs.cycle, psxScaleBlockCycles() );
SUB32ItoM((uptr)&iopCycleEE, psxScaleBlockCycles()*8 );
JMP32((uptr)iopDispatcherReg - ( (uptr)x86Ptr + 5 ));
x86SetJ8(j8Ptr[0]);
//if (!psxbranch) psxbranch = 2;
}
void psxRecompileNextInstruction(int delayslot)
{
static u8 s_bFlushReg = 1;
// pblock isn't used elsewhere in this function.
//BASEBLOCK* pblock = PSX_GETBLOCK(psxpc);
if( IsDebugBuild )
MOV32ItoR(EAX, psxpc);
psxRegs.code = iopMemRead32( psxpc );
s_psxBlockCycles++;
psxpc += 4;
g_pCurInstInfo++;
g_iopCyclePenalty = 0;
rpsxBSC[ psxRegs.code >> 26 ]();
s_psxBlockCycles += g_iopCyclePenalty;
if( !delayslot ) {
if( s_bFlushReg ) {
//_psxFlushUnusedConstReg();
}
else s_bFlushReg = 1;
}
else s_bFlushReg = 1;
_clearNeededX86regs();
}
static void __fastcall PreBlockCheck( u32 blockpc )
{
#ifdef PCSX2_DEBUG
extern void iDumpPsxRegisters(u32 startpc, u32 temp);
static int lastrec = 0;
static int curcount = 0;
const int skip = 0;
//*(int*)PSXM(0x27990) = 1; // enables cdvd bios output for scph10000
if( (psxdump&2) && lastrec != blockpc )
{
curcount++;
if( curcount > skip ) {
iDumpPsxRegisters(blockpc, 1);
curcount = 0;
}
lastrec = blockpc;
}
#endif
}
static void __fastcall iopRecRecompile( const u32 startpc )
{
u32 i;
u32 willbranch3 = 0;
if( IsDebugBuild && (psxdump & 4) )
{
extern void iDumpPsxRegisters(u32 startpc, u32 temp);
iDumpPsxRegisters(startpc, 0);
}
pxAssert( startpc );
// if recPtr reached the mem limit reset whole mem
if (recPtr >= (recMem->GetPtrEnd() - _64kb)) {
recResetIOP();
}
x86SetPtr( recPtr );
x86Align(16);
recPtr = x86Ptr;
s_pCurBlock = PSX_GETBLOCK(startpc);
pxAssert(s_pCurBlock->GetFnptr() == (uptr)iopJITCompile
|| s_pCurBlock->GetFnptr() == (uptr)iopJITCompileInBlock);
s_pCurBlockEx = recBlocks.Get(HWADDR(startpc));
if(!s_pCurBlockEx || s_pCurBlockEx->startpc != HWADDR(startpc))
s_pCurBlockEx = recBlocks.New(HWADDR(startpc), (uptr)recPtr);
psxbranch = 0;
s_pCurBlock->SetFnptr( (uptr)x86Ptr );
s_psxBlockCycles = 0;
// reset recomp state variables
psxpc = startpc;
g_psxHasConstReg = g_psxFlushedConstReg = 1;
_initX86regs();
if( IsDebugBuild )
{
xMOV(ecx, psxpc);
xCALL(PreBlockCheck);
}
// go until the next branch
i = startpc;
s_nEndBlock = 0xffffffff;
s_branchTo = -1;
while(1) {
BASEBLOCK* pblock = PSX_GETBLOCK(i);
if (i != startpc
&& pblock->GetFnptr() != (uptr)iopJITCompile
&& pblock->GetFnptr() != (uptr)iopJITCompileInBlock) {
// branch = 3
willbranch3 = 1;
s_nEndBlock = i;
break;
}
psxRegs.code = iopMemRead32(i);
switch(psxRegs.code >> 26) {
case 0: // special
if( _Funct_ == 8 || _Funct_ == 9 ) { // JR, JALR
s_nEndBlock = i + 8;
goto StartRecomp;
}
break;
case 1: // regimm
if( _Rt_ == 0 || _Rt_ == 1 || _Rt_ == 16 || _Rt_ == 17 ) {
s_branchTo = _Imm_ * 4 + i + 4;
if( s_branchTo > startpc && s_branchTo < i ) s_nEndBlock = s_branchTo;
else s_nEndBlock = i+8;
goto StartRecomp;
}
break;
case 2: // J
case 3: // JAL
s_branchTo = _Target_ << 2 | (i + 4) & 0xf0000000;
s_nEndBlock = i + 8;
goto StartRecomp;
// branches
case 4: case 5: case 6: case 7:
s_branchTo = _Imm_ * 4 + i + 4;
if( s_branchTo > startpc && s_branchTo < i ) s_nEndBlock = s_branchTo;
else s_nEndBlock = i+8;
goto StartRecomp;
}
i += 4;
}
StartRecomp:
s_nBlockFF = false;
if (s_branchTo == startpc) {
s_nBlockFF = true;
for (i = startpc; i < s_nEndBlock; i += 4) {
if (i != s_nEndBlock - 8) {
switch (iopMemRead32(i)) {
case 0: // nop
break;
default:
s_nBlockFF = false;
}
}
}
}
// rec info //
{
EEINST* pcur;
if( s_nInstCacheSize < (s_nEndBlock-startpc)/4+1 ) {
free(s_pInstCache);
s_nInstCacheSize = (s_nEndBlock-startpc)/4+10;
s_pInstCache = (EEINST*)malloc(sizeof(EEINST)*s_nInstCacheSize);
pxAssert( s_pInstCache != NULL );
}
pcur = s_pInstCache + (s_nEndBlock-startpc)/4;
_recClearInst(pcur);
pcur->info = 0;
for(i = s_nEndBlock; i > startpc; i -= 4 ) {
psxRegs.code = iopMemRead32(i-4);
pcur[-1] = pcur[0];
rpsxpropBSC(pcur-1, pcur);
pcur--;
}
}
// dump code
if( IsDebugBuild )
{
for(i = 0; i < ArraySize(s_psxrecblocks); ++i) {
if( startpc == s_psxrecblocks[i] ) {
iIopDumpBlock(startpc, recPtr);
}
}
if( (psxdump & 1) )
iIopDumpBlock(startpc, recPtr);
}
g_pCurInstInfo = s_pInstCache;
while (!psxbranch && psxpc < s_nEndBlock) {
psxRecompileNextInstruction(0);
}
if( IsDebugBuild && (psxdump & 1) )
iIopDumpBlock(startpc, recPtr);
pxAssert( (psxpc-startpc)>>2 <= 0xffff );
s_pCurBlockEx->size = (psxpc-startpc)>>2;
for(i = 1; i < (u32)s_pCurBlockEx->size; ++i) {
if (s_pCurBlock[i].GetFnptr() == (uptr)iopJITCompile)
s_pCurBlock[i].SetFnptr((uptr)iopJITCompileInBlock);
}
if( !(psxpc&0x10000000) )
g_psxMaxRecMem = std::max( (psxpc&~0xa0000000), g_psxMaxRecMem );
if( psxbranch == 2 ) {
_psxFlushCall(FLUSH_EVERYTHING);
iPsxBranchTest(0xffffffff, 1);
JMP32((uptr)iopDispatcherReg - ( (uptr)x86Ptr + 5 ));
}
else {
if( psxbranch ) pxAssert( !willbranch3 );
else
{
ADD32ItoM((uptr)&psxRegs.cycle, psxScaleBlockCycles() );
SUB32ItoM((uptr)&iopCycleEE, psxScaleBlockCycles()*8 );
}
if (willbranch3 || !psxbranch) {
pxAssert( psxpc == s_nEndBlock );
_psxFlushCall(FLUSH_EVERYTHING);
MOV32ItoM((uptr)&psxRegs.pc, psxpc);
recBlocks.Link(HWADDR(s_nEndBlock), xJcc32() );
psxbranch = 3;
}
}
pxAssert( xGetPtr() < recMem->GetPtrEnd() );
pxAssert(xGetPtr() - recPtr < _64kb);
s_pCurBlockEx->x86size = xGetPtr() - recPtr;
recPtr = xGetPtr();
pxAssert( (g_psxHasConstReg&g_psxFlushedConstReg) == g_psxHasConstReg );
s_pCurBlock = NULL;
s_pCurBlockEx = NULL;
}
static void recSetCacheReserve( uint reserveInMegs )
{
m_ConfiguredCacheReserve = reserveInMegs;
}
static uint recGetCacheReserve()
{
return m_ConfiguredCacheReserve;
}
R3000Acpu psxRec = {
recReserve,
recResetIOP,
recExecute,
recExecuteBlock,
recClearIOP,
recShutdown,
recGetCacheReserve,
recSetCacheReserve
};