pcsx2/pcsx2/Interpreter.cpp

425 lines
8.3 KiB
C++

/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2002-2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "PrecompiledHeader.h"
#include "Common.h"
#include "R5900.h"
#include "R5900OpcodeTables.h"
#include <float.h>
using namespace R5900; // for OPCODE and OpcodeImpl
extern int vu0branch, vu1branch;
static int branch2 = 0;
static u32 cpuBlockCycles = 0; // 3 bit fixed point version of cycle count
static std::string disOut;
// These macros are used to assemble the repassembler functions
static void debugI()
{
if( !IsDevBuild ) return;
if( cpuRegs.GPR.n.r0.UD[0] || cpuRegs.GPR.n.r0.UD[1] ) Console::Error("R0 is not zero!!!!");
}
//long int runs=0;
static void execI()
{
cpuRegs.code = memRead32( cpuRegs.pc );
if( IsDebugBuild )
debugI();
const OPCODE& opcode = GetCurrentInstruction();
//use this to find out what opcodes your game uses. very slow! (rama)
//runs++;
//if (runs > 1599999999){ //leave some time to startup the testgame
// if (opcode.Name[0] == 'L') { //find all opcodes beginning with "L"
// Console::WriteLn ("Load %s", params opcode.Name);
// }
//}
// Another method of instruction dumping:
/*if( cpuRegs.cycle > 0x4f24d714 )
{
//CPU_LOG( "%s", disR5900Current.getCString());
disOut.clear();
opcode.disasm( disOut );
disOut += '\n';
CPU_LOG( disOut.c_str() );
}*/
cpuBlockCycles += opcode.cycles;
cpuRegs.pc += 4;
opcode.interpret();
}
static bool EventRaised = false;
static __forceinline void _doBranch_shared(u32 tar)
{
branch2 = cpuRegs.branch = 1;
execI();
// branch being 0 means an exception was thrown, since only the exception
// handler should ever clear it.
if( cpuRegs.branch != 0 )
{
cpuRegs.pc = tar;
cpuRegs.branch = 0;
}
}
static void __fastcall doBranch( u32 target )
{
_doBranch_shared( target );
cpuRegs.cycle += cpuBlockCycles >> 3;
cpuBlockCycles &= (1<<3)-1;
EventRaised |= intEventTest();
}
void __fastcall intDoBranch(u32 target)
{
//Console::WriteLn("Interpreter Branch ");
_doBranch_shared( target );
if( Cpu == &intCpu )
{
cpuRegs.cycle += cpuBlockCycles >> 3;
cpuBlockCycles &= (1<<3)-1;
EventRaised |= intEventTest();
}
}
void intSetBranch()
{
branch2 = /*cpuRegs.branch =*/ 1;
}
////////////////////////////////////////////////////////////////////
// R5900 Branching Instructions!
// These are the interpreter versions of the branch instructions. Unlike other
// types of interpreter instructions which can be called safely from the recompilers,
// these instructions are not "recSafe" because they may not invoke the
// necessary branch test logic that the recs need to maintain sync with the
// cpuRegs.pc and delaySlot instruction and such.
namespace R5900 {
namespace Interpreter {
namespace OpcodeImpl {
/*********************************************************
* Jump to target *
* Format: OP target *
*********************************************************/
// fixme: looking at the other branching code, shouldn't those _SetLinks in BGEZAL and such only be set
// if the condition is true? --arcum42
void J()
{
doBranch(_JumpTarget_);
}
void JAL()
{
_SetLink(31);
doBranch(_JumpTarget_);
}
/*********************************************************
* Register branch logic *
* Format: OP rs, rt, offset *
*********************************************************/
void BEQ() // Branch if Rs == Rt
{
if (cpuRegs.GPR.r[_Rs_].SD[0] == cpuRegs.GPR.r[_Rt_].SD[0])
doBranch(_BranchTarget_);
else
intEventTest();
}
void BNE() // Branch if Rs != Rt
{
if (cpuRegs.GPR.r[_Rs_].SD[0] != cpuRegs.GPR.r[_Rt_].SD[0])
doBranch(_BranchTarget_);
else
intEventTest();
}
/*********************************************************
* Register branch logic *
* Format: OP rs, offset *
*********************************************************/
void BGEZ() // Branch if Rs >= 0
{
if(cpuRegs.GPR.r[_Rs_].SD[0] >= 0)
{
doBranch(_BranchTarget_);
}
}
void BGEZAL() // Branch if Rs >= 0 and link
{
if (cpuRegs.GPR.r[_Rs_].SD[0] >= 0)
{
_SetLink(31);
doBranch(_BranchTarget_);
}
}
void BGTZ() // Branch if Rs > 0
{
if (cpuRegs.GPR.r[_Rs_].SD[0] > 0)
{
doBranch(_BranchTarget_);
}
}
void BLEZ() // Branch if Rs <= 0
{
if (cpuRegs.GPR.r[_Rs_].SD[0] <= 0)
{
doBranch(_BranchTarget_);
}
}
void BLTZ() // Branch if Rs < 0
{
if (cpuRegs.GPR.r[_Rs_].SD[0] < 0)
{
doBranch(_BranchTarget_);
}
}
void BLTZAL() // Branch if Rs < 0 and link
{
if (cpuRegs.GPR.r[_Rs_].SD[0] < 0)
{
_SetLink(31);
doBranch(_BranchTarget_);
}
}
/*********************************************************
* Register branch logic Likely *
* Format: OP rs, offset *
*********************************************************/
void BEQL() // Branch if Rs == Rt
{
if(cpuRegs.GPR.r[_Rs_].SD[0] == cpuRegs.GPR.r[_Rt_].SD[0])
{
doBranch(_BranchTarget_);
}
else
{
cpuRegs.pc +=4;
intEventTest();
}
}
void BNEL() // Branch if Rs != Rt
{
if(cpuRegs.GPR.r[_Rs_].SD[0] != cpuRegs.GPR.r[_Rt_].SD[0])
{
doBranch(_BranchTarget_);
}
else
{
cpuRegs.pc +=4;
intEventTest();
}
}
void BLEZL() // Branch if Rs <= 0
{
if(cpuRegs.GPR.r[_Rs_].SD[0] <= 0)
{
doBranch(_BranchTarget_);
}
else
{
cpuRegs.pc +=4;
intEventTest();
}
}
void BGTZL() // Branch if Rs > 0
{
if(cpuRegs.GPR.r[_Rs_].SD[0] > 0)
{
doBranch(_BranchTarget_);
}
else
{
cpuRegs.pc +=4;
intEventTest();
}
}
void BLTZL() // Branch if Rs < 0
{
if(cpuRegs.GPR.r[_Rs_].SD[0] < 0)
{
doBranch(_BranchTarget_);
}
else
{
cpuRegs.pc +=4;
intEventTest();
}
}
void BGEZL() // Branch if Rs >= 0
{
if(cpuRegs.GPR.r[_Rs_].SD[0] >= 0)
{
doBranch(_BranchTarget_);
}
else
{
cpuRegs.pc +=4;
intEventTest();
}
}
void BLTZALL() // Branch if Rs < 0 and link
{
if(cpuRegs.GPR.r[_Rs_].SD[0] < 0)
{
_SetLink(31);
doBranch(_BranchTarget_);
}
else
{
cpuRegs.pc +=4;
intEventTest();
}
}
void BGEZALL() // Branch if Rs >= 0 and link
{
if(cpuRegs.GPR.r[_Rs_].SD[0] >= 0)
{
_SetLink(31);
doBranch(_BranchTarget_);
}
else
{
cpuRegs.pc +=4;
intEventTest();
}
}
/*********************************************************
* Register jump *
* Format: OP rs, rd *
*********************************************************/
void JR()
{
doBranch(cpuRegs.GPR.r[_Rs_].UL[0]);
}
void JALR()
{
u32 temp = cpuRegs.GPR.r[_Rs_].UL[0];
if (_Rd_) _SetLink(_Rd_);
doBranch(temp);
}
} } } // end namespace R5900::Interpreter::OpcodeImpl
////////////////////////////////////////////////////////
void intAlloc()
{
// fixme : detect cpu for use the optimize asm code
}
void intReset()
{
cpuRegs.branch = 0;
branch2 = 0;
}
bool intEventTest()
{
// Perform counters, ints, and IOP updates:
return _cpuBranchTest_Shared();
}
void intExecute()
{
g_EEFreezeRegs = false;
// Mem protection should be handled by the caller here so that it can be
// done in a more optimized fashion.
EventRaised = false;
while( !EventRaised )
{
execI();
}
}
static void intExecuteBlock()
{
g_EEFreezeRegs = false;
branch2 = 0;
while (!branch2) execI();
}
static void intStep()
{
g_EEFreezeRegs = false;
execI();
}
static void intClear(u32 Addr, u32 Size)
{
}
static void intShutdown() {
}
R5900cpu intCpu = {
intAlloc,
intReset,
intStep,
intExecute,
intExecuteBlock,
intClear,
intShutdown
};