* Code was factorized a bit with the help of max_z
* Add an extra optimization if test is ZTST_GEQUAL and min z value is
the biggest value. Z test will always be pass.
Note: due to float rounding (23 bits mantissa vs 24 bits depth) the test
is done against 0xFF_FFFE and not 0xFF_FFFF. It is wrong but GPU will
also use float so impact will be null.
This reverts commit 53690cf9d0.
Quoting user:
For aliasing, the option allow of reduce a little but always very
visible compared with DX11 even with anisotropic OFF, , furthermore
many textures bug added with option activated (predictable but not see
on DX11 with anisotropic ON).
TL;DR doesn't worth it.
Note: it seem to work on DX because DX uses HW texturing in clamp region
mode (and others invalid case). OpenGL uses SW texturing to ensure accuracy
By default, anisotropic filtering was disabled when textures aren't countinuous.
This hack allows to force it. It can help to reduce aliasing but it would create
unexpected effect on texture boundaries.
Again, someone ought to add the option on Windows too
It would be on by default. Unsafe & fast path.
The hack is a security if someone encounters any issue
v2: update Windows gui file
v3: fix typo in tooltip and linux gui
The hack relies on the undefined behavior of the hardware so it can
potentially generate rendering corruption.
This new hack drops the cache flusing when only the alpha channel is masked.
Alpha is a direct copy of the fragment. Normally masked bits will be constant
everywhere (RT, FS output, texture cache) so it would likely work.
Just in case, code is only enabled with the new shiny hack
Intially GSBlendStateOGL was an alias of the m_blendMapD3D9 array
The object was replaced by an index in the array. Save 2k of memory duplication.
And too much useless code.
v2: push/pop blending state in DATE stuff
v3: remove m_state which is useless now
The purpose is to emulate correctly destination alpha factor
An alpha channel of 128 is 1.0 in the GS but only ~0.5 in the GPU
I think few draw call use destination alpha so impact on perf must remains small.
The idea is to use a floating texture to accumulate the data and
then do a final postprocessing pass to apply the modulo
v2:
* use bounding box to
* fix vertex corruption issue
* use negative number in shader which allow to use half float (+12
fps@4x)
The updated medium level will run for all sprites. It helps sotc blooming effect and it remains
fast enough to be enabled by default (at least on 3D games)
The new high level will run for all sprites + color clipping
The idea is that sprites are often use for post-processing effect (ofc except 2D games)
Most of the time post-processing supports SW blending with a small speed penality. SW
blending is more accurate so it is better to use it.
Accurate options do a better jobs. Technically it can still
be useful for old gpu/driver that doesn't support the GL4.5 extension.
On Windows, you can still rely on Dx
On linux, free driver support it (except Intel)
It might help to fix a bit the color on a couple of games
accurate_fbmask = 1
Code uses GL4.5 extensions. So far it seems the effect is ony used a couple
of time and often in non-overlapping primitive. Speed impact will likely remain small
No barrier => draw all primitives
Barrier but without overlap => draw all primitives
Barrier with overlap => draw primitive by primitve
It will ease the implementation of accurate blending and why not date too
If there is no overlap, it is allowed to directly read from the render target.
On SotC testcase with 6x scaling: 30fps -> 40fps
Note: it requires GL_ARB_texture_barrier extension so be sure to have a recent driver
Note2: it requires a lots of testing too
Open question: in case of complex date (written alpha)
Will it be faster to split the draw call into multiple call with no
primitive overlap
UserHacks_UnscaleSprite = 1 will unscale flat sprites
UserHacks_UnscaleSprite = 2 will unscale all sprites (don't work well so far)
The idea of the hack is to redo the interpolation of texture coordinate
based on the non-upscaled pixel position.
It avoids various glitches but sprites aren't upscaled anymore (so no
more anti-aliasing, potentially a coefficient can be added).
* add a non-working hack: UserHacks_DateGL4, goal was to replace UserHacks_AlphaStencil
+ Detection of good/bad samples is based on primitive ID variable. However I'm not sure
the behavior is always the same between draw call...Anyway let's keep a copy of the current
work
* Dump integer texture into text csv
* add gl4.2 ARB_shader_image_load_store extension (needed by UserHacks_DateGL4)
git-svn-id: http://pcsx2.googlecode.com/svn/trunk@5707 96395faa-99c1-11dd-bbfe-3dabce05a288
* use gles header file, disable opengl code (mainly GLX, ARB_sso, geometry shader)
* Define properly the function pointer, GLES use basic linking whereas GL must get the symbol dynamically
* cmake: properly search and set libglesv2.so
* don't use dual source blending => HW renderer work (only miss unimportant FBA)
git-svn-id: http://pcsx2.googlecode.com/svn/trunk@5701 96395faa-99c1-11dd-bbfe-3dabce05a288
Now the brach is ready to be merged :)
Dears Window users. If you can test that:
1/ still compile
2/ still running on DX
3/ can run with opengl
git-svn-id: http://pcsx2.googlecode.com/svn/branches/gsdx-ogl-wnd@5663 96395faa-99c1-11dd-bbfe-3dabce05a288
* Emulate Geometry Shader from the CPU.
* add some option to override opengl extension detection
* redo shader interface (again) to compile on the free driver
SW renderer is now working on the free driver.
To test it on your linux box use this cmake option -DEGL_API=TRUE
Note: (need opengl 3.0) I test mesa 9.2 git
git-svn-id: http://pcsx2.googlecode.com/svn/branches/gsdx-ogl-wnd@5646 96395faa-99c1-11dd-bbfe-3dabce05a288
* port KrossX patch from r5556 to openGL
* add a basic gui entry, would love an additional description
* also add the pointsampler hack but don't activate it yet
git-svn-id: http://pcsx2.googlecode.com/svn/trunk@5570 96395faa-99c1-11dd-bbfe-3dabce05a288