wxgui: another sync with trunk to pick up more of those cdvd fixes.

git-svn-id: http://pcsx2.googlecode.com/svn/branches/wxgui@1711 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
Jake.Stine 2009-08-30 01:48:08 +00:00
commit 635596c412
44 changed files with 4627 additions and 12481 deletions

View File

@ -592,8 +592,22 @@ typedef void (CALLBACK* _SPU2async)(u32 cycles);
// NOTE: The read/write functions CANNOT use XMM/MMX regs
// If you want to use them, need to save and restore current ones
typedef s32 (CALLBACK* _CDVDopen)(const char* pTitleFilename);
// Initiates an asynchronous track read operation.
// Returns -1 on error (invalid track)
// Returns 0 on success.
typedef s32 (CALLBACK* _CDVDreadTrack)(u32 lsn, int mode);
// *OBSOLETE* returns a pointer to the buffer, or NULL if data hasn't finished
// loading yet.
typedef u8* (CALLBACK* _CDVDgetBuffer)();
// Copies loaded data to the target buffer.
// Returns -2 if the asynchronous read is still pending.
// Returns -1 if the asyncronous read failed.
// Returns 0 on success.
typedef s32 (CALLBACK* _CDVDgetBuffer2)(u8* buffer);
typedef s32 (CALLBACK* _CDVDreadSubQ)(u32 lsn, cdvdSubQ* subq);
typedef s32 (CALLBACK* _CDVDgetTN)(cdvdTN *Buffer);
typedef s32 (CALLBACK* _CDVDgetTD)(u8 Track, cdvdTD *Buffer);
@ -603,7 +617,6 @@ typedef s32 (CALLBACK* _CDVDgetTrayStatus)();
typedef s32 (CALLBACK* _CDVDctrlTrayOpen)();
typedef s32 (CALLBACK* _CDVDctrlTrayClose)();
typedef s32 (CALLBACK* _CDVDreadSector)(u8* buffer, u32 lsn, int mode);
typedef s32 (CALLBACK* _CDVDgetBuffer2)(u8* buffer);
typedef s32 (CALLBACK* _CDVDgetDualInfo)(s32* dualType, u32* _layer1start);
typedef void (CALLBACK* _CDVDnewDiskCB)(void (*callback)());

View File

@ -59,7 +59,7 @@ extern SessionOverrideFlags g_Session;
//------------ CPU Options!!! ---------------
#define CHECK_MICROVU0 (Config.Options&PCSX2_MICROVU0)
#define CHECK_MICROVU1 (Config.Options&PCSX2_MICROVU1)
//#define CHECK_MACROVU0 // ifndef = Use sVU for VU macro, ifdef = Use mVU for VU macro
#define CHECK_MACROVU0 // ifndef = Use sVU for VU macro, ifdef = Use mVU for VU macro
#define CHECK_EEREC (!g_Session.ForceDisableEErec && Config.Options&PCSX2_EEREC)
#define CHECK_VU0REC (!g_Session.ForceDisableVU0rec && Config.Options&PCSX2_VU0REC)
#define CHECK_VU1REC (!g_Session.ForceDisableVU1rec && (Config.Options&PCSX2_VU1REC))

View File

@ -1,10 +1,45 @@
Instruction for installations:
Install NSIS (tested with 2.45)
Install NSIS Script Advanced Uninstall Log NSIS Header (you can find it opn NSIS wiki)
Create a folder
Put the nsis script in said folder
Put vcredist_x86.exe in said folder
Put the pcsx2 folder in said folder (warning, leave only the files you want in the installer. All files from the pcsx2 folder will be added to the installer )
Edit the NSIS script with a text editor, changing the installer name and putting the correct name for the menu item (2 times, both filename and link name)
Compile the NSIS script
-------------------------------------
PCSX2 NSIS Installer Instructions
-------------------------------------
* Install NSIS (tested with 2.45)
* Install NSIS Script: Advanced Uninstall Log (you can find it on NSIS wiki)
* Download the latest Visual C++ Redistributable (currently 2008 SP1 as of this writing) and
save it to this nsis/ folder.
* Load the PCSX2 Suite solution and rebuild all in the following targets:
* Release SSE2
* Release SSSE3 (only needed if packaging plugins)
* Release SSE4 (only needed if packaging plugins)
* Devel (optional)
You may selectively unload plugins you do not wish to package prior to running the NSIS
script.
* Compile script, and Enjoy :)
--------------------------------------------
Compilation Targets and Plugin Inclusion
--------------------------------------------
pcsx2-dev.exe is included into the installer as well *if* present (but is not required).
The Release mode (without -dev) is required, and the script errors if it's missing.
To include non-NULL plugins into the installer you must specify /DINC_PLUGINS on the command
line when compiling the script. The installer will include plugins only if they are present.
If you do not build plugins, or remove some (or all) plugins before running the nsis script,
only PCSX2 and whatever remaining plugins will be packaged.
GSdx SSE2, SSSE3, and SSE4 versions are all included into the installer *if* they are present.
You will need to follow the above instructions and compile all release targets to get all the
GSdx DLLs.
--------------------------------------------
TODO / Wish List!!
--------------------------------------------
* pcsx2-dev should probably be an optional section, conditionally scripted only if the
file is present at compilation time, and packaged.

View File

@ -1,147 +1,242 @@
; Pcsx2 NSIS installer script
; loosely based on a collection of examples and on information from the wikipedia
!define APP_NAME "Pcsx2 - A Playstation 2 Emulator"
!define INSTDIR_REG_ROOT "HKLM"
!define INSTDIR_REG_KEY "Software\Microsoft\Windows\CurrentVersion\Uninstall\${APP_NAME}"
;--------------------------------
;Include Modern UI 2 and advanced log uninstaller. all credits to the respective authors
!include "MUI2.nsh"
!include "AdvUninstLog.nsh"
;--------------------------------
; The name of the installer
Name "Pcsx2"
; The file to write. To change each release
OutFile "Pcsx2-beta-1474-setup.exe"
; The default installation directory
InstallDir "$PROGRAMFILES\Pcsx2"
; Registry key to check for directory (so if you install again, it will
; overwrite the old one automatically)
InstallDirRegKey HKLM "Software\Pcsx2" "Install_Dir"
; Request application privileges for Windows Vista
RequestExecutionLevel admin
; Pages
!insertmacro UNATTENDED_UNINSTALL
!define MUI_COMPONENTSPAGE_NODESC ;no decription is really necessary at this stage...
!insertmacro MUI_PAGE_COMPONENTS
!insertmacro MUI_PAGE_DIRECTORY
!insertmacro MUI_PAGE_INSTFILES
!insertmacro MUI_UNPAGE_CONFIRM
!insertmacro MUI_UNPAGE_COMPONENTS
!insertmacro MUI_UNPAGE_INSTFILES
;--------------------------------
; Basic section (emulation proper)
Section "Pcsx2 (required)"
SectionIn RO
; Set output path to the installation directory.
SetOutPath $INSTDIR
; Put file there. It's catched by the uninstaller script
!insertmacro UNINSTALL.LOG_OPEN_INSTALL
File /r "Pcsx2\"
!insertmacro UNINSTALL.LOG_CLOSE_INSTALL
; Write the installation path into the registry
WriteRegStr HKLM Software\Pcsx2 "Install_Dir" "$INSTDIR"
; Write the uninstall keys for Windows
WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\Pcsx2" "DisplayName" "Pcsx2 - Playstation 2 Emulator"
WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\Pcsx2" "UninstallString" '"$INSTDIR\uninstall.exe"'
WriteRegDWORD HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\Pcsx2" "NoModify" 1
WriteRegDWORD HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\Pcsx2" "NoRepair" 1
WriteUninstaller "uninstall.exe"
SectionEnd
; Optional sections (can be disabled by the user)
Section "Start Menu Shortcuts"
; Need to change name too, for each version
CreateDirectory "$SMPROGRAMS\Pcsx2"
CreateShortCut "$SMPROGRAMS\Pcsx2\Uninstall.lnk" "$INSTDIR\uninstall.exe" "" "$INSTDIR\uninstall.exe" 0
CreateShortCut "$SMPROGRAMS\Pcsx2\Pcsx2.lnk" "$INSTDIR\pcsx2-beta-1474.exe" "" "$INSTDIR\pcsx2-beta-1474.exe" 0
SectionEnd
; Optional, but required if you don't already have it
Section "Microsoft Visual C++ 2008 SP1 Redist(Required)"
SetOutPath $TEMP
File "vcredist_x86.exe"
ExecWait "$TEMP\vcredist_x86.exe"
SectionEnd
;--------------------------------
Function .onInit
;prepare log always within .onInit function
!insertmacro UNINSTALL.LOG_PREPARE_INSTALL
FunctionEnd
Function .onInstSuccess
;create/update log always within .onInstSuccess function
!insertmacro UNINSTALL.LOG_UPDATE_INSTALL
FunctionEnd
;--------------------------------
; Uninstaller
Section "Un.Standard uninstallation (Leaves user created files untouched)"
; Remove registry keys
DeleteRegKey HKLM Software\Microsoft\Windows\CurrentVersion\Uninstall\Pcsx2
DeleteRegKey HKLM Software\Pcsx2
; Remove shortcuts, if any
Delete "$SMPROGRAMS\Pcsx2\*.*"
RMDir "$SMPROGRAMS\Pcsx2"
!insertmacro UNINSTALL.LOG_UNINSTALL "$INSTDIR"
DeleteRegKey ${INSTDIR_REG_ROOT} "${INSTDIR_REG_KEY}"
SectionEnd
; This option lets you COMPLETELY uninstall by deleting the main folder. Caution! :)
Section /o "Un.Complete Uninstall. WARNING, this will delete every file in the program folder"
MessageBox MB_YESNO "You have chosen to remove ALL files in the installation folder. This will remove all your saves, screenshots, patches and bios as well. Do you want to proceed?" IDYES true IDNO false
true:
Delete "$SMPROGRAMS\Pcsx2\*.*"
RMDir "$SMPROGRAMS\Pcsx2"
RMDir /r "$INSTDIR"
DeleteRegKey ${INSTDIR_REG_ROOT} "${INSTDIR_REG_KEY}"
false:
SectionEnd
Function UN.onInit
;begin uninstall, could be added on top of uninstall section instead
!insertmacro UNINSTALL.LOG_BEGIN_UNINSTALL
FunctionEnd
; PCSX2 NSIS installer script
; loosely based on a collection of examples and on information from the wikipedia
; Application version, changed for each release to match the verision
; ----------------------------------------
; Determine the revision numbers of the various components
!system 'SubWCRev.exe ..\pcsx2 templates\svnrev_pcsx2.nsh svnrev_pcsx2.nsh'
!ifdef INC_PLUGINS
!system 'SubWCRev.exe ..\plugins\gsdx templates\svnrev_gsdx.nsh svnrev_gsdx.nsh'
!system 'SubWCRev.exe ..\plugins\spu2-x templates\svnrev_spu2x.nsh svnrev_spu2x.nsh'
!system 'SubWCRev.exe ..\plugins\cdvdiso templates\svnrev_cdvdiso.nsh svnrev_cdvdiso.nsh'
!system 'SubWCRev.exe ..\plugins\lilypad templates\svnrev_lilypad.nsh svnrev_lilypad.nsh'
!system 'SubWCRev.exe ..\plugins\zerogs\dx templates\svnrev_zerogs.nsh svnrev_zerogs.nsh'
!system 'SubWCRev.exe ..\plugins\zerospu2 templates\svnrev_zerospu2.nsh svnrev_zerospu2.nsh'
!endif
!include "svnrev_pcsx2.nsh"
!ifdef INC_PLUGINS
!include "svnrev_gsdx.nsh"
!include "svnrev_spu2x.nsh"
!include "svnrev_cdvdiso.nsh"
!include "svnrev_lilypad.nsh"
!include "svnrev_zerogs.nsh"
!include "svnrev_zerospu2.nsh"
!endif
; ----------------------------------------
!define APP_NAME "PCSX2 Beta r${SVNREV}"
!define INSTDIR_REG_ROOT "HKLM"
!define INSTDIR_REG_KEY "Software\Microsoft\Windows\CurrentVersion\Uninstall\PCSX2-beta-r${SVNREV}"
; ----------------------------------------
; Include Modern UI 2 and advanced log uninstaller.
!include "MUI2.nsh"
!include "AdvUninstLog.nsh"
; -------------------------------------
; Test if Visual Studio Redistributables 2008 SP1 installed
; Returns -1 if there is no VC redistributables intstalled
;
Function CheckVCRedist
Push $R0
ClearErrors
ReadRegDword $R0 HKLM "SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{9A25302D-30C0-39D9-BD6F-21E6EC160475}" "Version"
; if VS 2005+ redist SP1 not installed, install it
IfErrors 0 VSRedistInstalled
StrCpy $R0 "-1"
VSRedistInstalled:
Exch $R0
FunctionEnd
; ----------------------------------------
; The name of the installer
Name "PCSX2 Beta r${SVNREV}"
OutFile "pcsx2-beta-${SVNREV}-setup.exe"
; The default installation directory
InstallDir "$PROGRAMFILES\pcsx2-r${SVNREV}"
; Registry key to check for directory (so if you install again, it will
; overwrite the old one automatically)
InstallDirRegKey HKLM "Software\pcsx2" "Install_Dir"
; Request application privileges for Windows Vista
RequestExecutionLevel admin
; Pages
!insertmacro UNATTENDED_UNINSTALL
!define MUI_COMPONENTSPAGE_NODESC ;no decription is really necessary at this stage...
!insertmacro MUI_PAGE_COMPONENTS
!insertmacro MUI_PAGE_DIRECTORY
!insertmacro MUI_PAGE_INSTFILES
!insertmacro MUI_UNPAGE_CONFIRM
!insertmacro MUI_UNPAGE_COMPONENTS
!insertmacro MUI_UNPAGE_INSTFILES
; ----------------------------------------
; Basic section (emulation proper)
Section "PCSX2 Beta r${SVNREV} (required)"
SectionIn RO
; Put file there. It's catched by the uninstaller script
SetOutPath $INSTDIR
!insertmacro UNINSTALL.LOG_OPEN_INSTALL
SetOutPath $INSTDIR
File /oname=pcsx2-r${SVNREV}.exe ..\bin\pcsx2.exe
File ..\bin\w32pthreads.dll
File ..\bin\gnu_gettext.dll
File /nonfatal /oname=pcsx2-dev-r${SVNREV}.exe ..\bin\pcsx2-dev.exe
SetOutPath $INSTDIR\Langs
File /r ..\bin\Langs\*.mo
SetOutPath $INSTDIR\Patches
File /r ..\bin\Patches\*.pnach
; NULL plugins are required, and really there should be more but we don't have working
; SPU2 or GS null plugins right now.
File ..\bin\Plugins\USBnull.dll
File ..\bin\Plugins\DEV9null.dll
File ..\bin\Plugins\FWnull.dll
File ..\bin\Plugins\CDVDnull.dll
!ifdef INC_PLUGINS
SetOutPath $INSTDIR\Plugins
File /nonfatal /oname=gsdx-sse2-r${SVNREV_GSDX}.dll ..\bin\Plugins\gsdx-sse2.dll
File /nonfatal /oname=gsdx-ssse3-r${SVNREV_GSDX}.dll ..\bin\Plugins\gsdx-ssse3.dll
File /nonfatal /oname=gsdx-sse4-r${SVNREV_GSDX}.dll ..\bin\Plugins\gsdx-sse4.dll
File /nonfatal /oname=spu2-x-r${SVNREV_SPU2X}.dll ..\bin\Plugins\spu2-x.dll
File /nonfatal /oname=cdvdiso-r${SVNREV_CDVDISO}.dll ..\bin\Plugins\cdvdiso.dll
File /nonfatal /oname=lilypad-r${SVNREV_LILYPAD}.dll ..\bin\Plugins\lilypad.dll
File /nonfatal /oname=zerogs-r${SVNREV_ZEROGS}.dll ..\bin\Plugins\zerogs.dll
File /nonfatal /oname=zerospu2-r${SVNREV_ZEROSPU2}.dll ..\bin\Plugins\zerospu2.dll
!endif
SetOutPath $INSTDIR
!insertmacro UNINSTALL.LOG_CLOSE_INSTALL
; Write the installation path into the registry
WriteRegStr HKLM Software\pcsx2 "Install_Dir" "$INSTDIR"
; Write the uninstall keys for Windows
WriteRegStr HKLM "${INSTDIR_REG_KEY}" "DisplayName" "PCSX2 - Playstation 2 Emulator"
WriteRegStr HKLM "${INSTDIR_REG_KEY}" "UninstallString" '"$INSTDIR\uninstall-r${SVNREV}.exe"'
WriteRegDWORD HKLM "${INSTDIR_REG_KEY}" "NoModify" 1
WriteRegDWORD HKLM "${INSTDIR_REG_KEY}" "NoRepair" 1
WriteUninstaller "uninstall-r${SVNREV}.exe"
SectionEnd
; ----------------------------------------
; MSVC Redistributable - required if the user des not already have it
; Note: if your NSIS generates an error here it means you need to download the latest
; visual studio redist package from microsoft. Any redist 2008/SP1 or newer will do.
Section "Microsoft Visual C++ 2008 SP1 Redist (required)"
SectionIn RO
SetOutPath $TEMP
File "vcredist_x86.exe"
Call CheckVCRedist
StrCmp $R0 "-1" installRedist
DetailPrint "Visual C++ 2008 SP1 Redistributable already installed, skipping..."
Goto skipRedist
installRedist:
ExecWait "$TEMP\vcredist_x86.exe"
SkipRedist:
SectionEnd
; ----------------------------------------
; Optional sections (can be disabled by the user)
Section "Start Menu Shortcuts"
SetOutPath $INSTDIR
; Need to change name too, for each version
CreateDirectory "$SMPROGRAMS\pcsx2"
CreateShortCut "$SMPROGRAMS\pcsx2\Uninstall-r${SVNREV}.lnk" "$INSTDIR\uninstall-r${SVNREV}.exe" "" "$INSTDIR\uninstall-r${SVNREV}.exe" 0
CreateShortCut "$SMPROGRAMS\pcsx2\pcsx2-r${SVNREV}.lnk" "$INSTDIR\pcsx2-r${SVNREV}.exe" "" "$INSTDIR\pcsx2-r${SVNREV}.exe" 0
CreateShortCut "$SMPROGRAMS\pcsx2\pcsx2-dev-r${SVNREV}.lnk" "$INSTDIR\pcsx2-dev-r${SVNREV}.exe" "" "$INSTDIR\pcsx2-dev-r${SVNREV}.exe" 0 "" "" \
"PCSX2 Devel (has debugging and memory dumping)"
SectionEnd
;--------------------------------
Function .onInit
;prepare log always within .onInit function
!insertmacro UNINSTALL.LOG_PREPARE_INSTALL
FunctionEnd
Function .onInstSuccess
;create/update log always within .onInstSuccess function
!insertmacro UNINSTALL.LOG_UPDATE_INSTALL
FunctionEnd
; --------------------------------------
; Uninstaller
Section "Un.Safe uninstall (Removes only files installed by this installer)"
; Remove registry keys
DeleteRegKey HKLM ${INSTDIR_REG_KEY}
DeleteRegKey HKLM Software\pcsx2
; Remove shortcuts, if any
Delete "$SMPROGRAMS\pcsx2\*.*"
RMDir "$SMPROGRAMS\pcsx2"
!insertmacro UNINSTALL.LOG_UNINSTALL "$INSTDIR"
DeleteRegKey ${INSTDIR_REG_ROOT} "${INSTDIR_REG_KEY}"
SectionEnd
; This option lets you COMPLETELY uninstall by deleting the main folder. Caution! :)
Section /o "Un.Complete Uninstall. *Completely* removes all files and folders."
MessageBox MB_YESNO "WANRING! You have chosen to remove ALL files in the installation folder, including all saves, screenshots, plugins, patches, and bios files. Do you want to proceed?" IDYES true IDNO false
true:
Delete "$SMPROGRAMS\pcsx2\*.*"
RMDir "$SMPROGRAMS\pcsx2"
RMDir /r "$INSTDIR"
DeleteRegKey ${INSTDIR_REG_ROOT} "${INSTDIR_REG_KEY}"
false:
SectionEnd
Function UN.onInit
;begin uninstall, could be added on top of uninstall section instead
!insertmacro UNINSTALL.LOG_BEGIN_UNINSTALL
FunctionEnd

View File

@ -0,0 +1 @@
!define SVNREV_CDVDISO $WCREV$

View File

@ -0,0 +1 @@
!define SVNREV_GSDX $WCREV$

View File

@ -0,0 +1 @@
!define SVNREV_LILYPAD $WCREV$

View File

@ -0,0 +1,3 @@
!define SVNREV $WCREV$
!define SVN_MODS $WCMODS?1:0$

View File

@ -0,0 +1 @@
!define SVNREV_SPU2X $WCREV$

View File

@ -0,0 +1 @@
!define SVNREV_ZEROGS $WCREV$

View File

@ -0,0 +1 @@
!define SVNREV_ZEROSPU2 $WCREV$

View File

@ -722,35 +722,49 @@ __forceinline void cdvdReadInterrupt()
}
else
{
if (cdvd.RErr == 0)
if( cdvd.RErr == 0 )
{
cdr.RErr = DoCDVDgetBuffer(cdr.Transfer);
while( (cdvd.RErr = DoCDVDgetBuffer(cdr.Transfer)), cdvd.RErr == -2 )
{
// not finished yet ... block on the read until it finishes.
Threading::Sleep( 0 );
Threading::SpinWait();
}
}
else if (cdr.RErr == -1)
if (cdvd.RErr == -1)
{
cdvd.RetryCntP++;
Console::Error("CDVD READ ERROR, sector=%d", params cdvd.Sector);
if (cdvd.RetryCntP <= cdvd.RetryCnt)
{
CDVD_LOG( "CDVD read err, retrying... (attempt %d of %d)", cdvd.RetryCntP, cdvd.RetryCnt );
cdvd.RErr = DoCDVDreadTrack(cdvd.Sector, cdvd.ReadMode);
CDVDREAD_INT(cdvd.ReadTime);
return;
}
}
else if(cdr.RErr == -2)
{
// not finished yet ... give it a bit more time
CDVDREAD_INT(cdvd.ReadTime);
else
Console::Error("CDVD READ ERROR, sector = 0x%08x", params cdvd.Sector);
return;
}
cdvd.Reading = false;
// Any other value besides 0 should be considered invalid here (wtf is that wacky
// plugin trying to do?)
jASSUME( cdvd.RErr == 0 );
}
if (cdvdReadSector() == -1)
{
// This means that the BCR/DMA hasn't finished yet, and rather than fire off the
// sector-finished notice too early (which might overwrite game data) we delay a
// bit and try to read the sector again later.
// An arbitrary delay of some number of cycles probably makes more sense here,
// but for now it's based on the cdvd.ReadTime value. -- air
assert((int)cdvd.ReadTime > 0 );
CDVDREAD_INT(cdvd.ReadTime);
CDVDREAD_INT(cdvd.ReadTime/4);
return;
}
@ -772,7 +786,7 @@ __forceinline void cdvdReadInterrupt()
cdvd.RetryCntP = 0;
cdvd.Reading = 1;
cdr.RErr = DoCDVDreadTrack(cdvd.Sector, cdvd.ReadMode);
cdvd.RErr = DoCDVDreadTrack(cdvd.Sector, cdvd.ReadMode);
CDVDREAD_INT(cdvd.ReadTime);
return;

View File

@ -22,7 +22,7 @@
#include "IopCommon.h"
#include "CDVD/CDVDaccess.h"
extern char isoFileName[];
//extern char isoFileName[];
#define btoi(b) ((b)/16*10 + (b)%16) /* BCD to u_char */
#define itob(i) ((i)/10*16 + (i)%10) /* u_char to BCD */

View File

@ -45,6 +45,7 @@ static int diskTypeCached = -1;
// used to bridge the gap between the old getBuffer api and the new getBuffer2 api.
int lastReadSize;
int lastLSN; // needed for block dumping
// Records last read block length for block dumping
static int plsn = 0;
@ -57,11 +58,9 @@ static void CheckNullCDVD()
DevAssert( CDVD != NULL, "Invalid CDVD object state (null pointer exception)" );
}
/////////////////////////////////////////////////
//
//////////////////////////////////////////////////////////////////////////////////////////
// Disk Type detection stuff (from cdvdGigaherz)
//
int CheckDiskTypeFS(int baseType)
{
int f;
@ -119,7 +118,7 @@ static int FindDiskType(int mType)
}
else if (mType < 0)
{
static u8 bleh[2352];
static u8 bleh[CD_FRAMESIZE_RAW];
cdvdTD td;
CDVD->getTD(0,&td);
@ -314,26 +313,26 @@ s32 DoCDVDopen(const char* pTitleFilename)
cdvdTD td;
CDVD->getTD(0, &td);
int blockofs = 0, blocksize = 0, blocks = td.lsn;
blockDumpFile = isoCreate(temp.ToAscii().data(), ISOFLAGS_BLOCKDUMP_V3);
switch(cdtype)
if( blockDumpFile != NULL )
{
case CDVD_TYPE_PS2DVD:
case CDVD_TYPE_DVDV:
case CDVD_TYPE_DETCTDVDS:
case CDVD_TYPE_DETCTDVDD:
blockofs = 24;
blocksize = 2048;
break;
default:
blockofs = 0;
blocksize= 2352;
break;
}
int blockofs = 0, blocksize = CD_FRAMESIZE_RAW, blocks = td.lsn;
blockDumpFile = isoCreate(temp.ToAscii().data(), ISOFLAGS_BLOCKDUMP);
if (blockDumpFile) isoSetFormat(blockDumpFile, blockofs, blocksize, blocks);
// hack: Because of limitations of the current cdvd design, we can't query the blocksize
// of the underlying media. So lets make a best guess:
switch(cdtype)
{
case CDVD_TYPE_PS2DVD:
case CDVD_TYPE_DVDV:
case CDVD_TYPE_DETCTDVDS:
case CDVD_TYPE_DETCTDVDD:
blocksize = 2048;
break;
}
isoSetFormat(blockDumpFile, blockofs, blocksize, blocks);
}
}
else
{
@ -388,7 +387,7 @@ s32 DoCDVDreadTrack(u32 lsn, int mode)
}
//DevCon::Notice("CDVD readTrack(lsn=%d,mode=%d)",params lsn, lastReadSize);
lastLSN = lsn;
return CDVD->readTrack(lsn,mode);
}
@ -399,7 +398,7 @@ s32 DoCDVDgetBuffer(u8* buffer)
if (ret == 0 && blockDumpFile != NULL)
{
isoWriteBlock(blockDumpFile, buffer, lastReadSize);
isoWriteBlock(blockDumpFile, buffer, lastLSN);
}
return ret;
@ -524,5 +523,5 @@ CDVD_API CDVDapi_NoDisc =
NODISCgetBuffer2,
NODISCgetDualInfo,
NULL
NODISCgetUniqueFilename
};

View File

@ -295,9 +295,10 @@ s32 CALLBACK ISOreadSector(u8* tempbuffer, u32 lsn, int mode)
return 0;
}
isoReadBlock(iso, cdbuffer + iso->blockofs, lsn);
isoReadBlock(iso, cdbuffer, lsn);
pbuffer = cdbuffer;
switch (mode)
{
case CDVD_MODE_2352:
@ -317,6 +318,11 @@ s32 CALLBACK ISOreadSector(u8* tempbuffer, u32 lsn, int mode)
break;
}
// version 3 blockdumps have no pbuffer header, so lets reset back to the
// original pointer. :)
if( iso->flags & ISOFLAGS_BLOCKDUMP_V3 )
pbuffer = cdbuffer;
memcpy_fast(tempbuffer,pbuffer,psize);
return 0;
@ -329,9 +335,9 @@ s32 CALLBACK ISOreadTrack(u32 lsn, int mode)
if (_lsn < 0) lsn = iso->blocks + _lsn;
if (lsn > iso->blocks) return -1;
isoReadBlock(iso, cdbuffer + iso->blockofs, lsn);
isoReadBlock(iso, cdbuffer, lsn);
pbuffer = cdbuffer;
switch (mode)
{
case CDVD_MODE_2352:
@ -351,6 +357,11 @@ s32 CALLBACK ISOreadTrack(u32 lsn, int mode)
break;
}
// version 3 blockdumps have no pbuffer header, so lets reset back to the
// original pointer. :)
if( iso->flags & ISOFLAGS_BLOCKDUMP_V3 )
pbuffer = cdbuffer;
return 0;
}
@ -415,5 +426,5 @@ CDVD_API CDVDapi_Iso =
ISOgetBuffer2,
ISOgetDualInfo,
NULL
ISOgetUniqueFilename
};

View File

@ -497,24 +497,26 @@ void cdrReadInterrupt() {
cdr.StatP|= 0x22;
cdr.Result[0] = cdr.StatP;
Console::Status("Reading From CDR");
cdr.RErr = DoCDVDgetBuffer(cdr.Transfer);
if( cdr.RErr == 0 )
{
while( (cdr.RErr = DoCDVDgetBuffer(cdr.Transfer)), cdr.RErr == -2 )
{
// not finished yet ... block on the read until it finishes.
Threading::Sleep( 0 );
Threading::SpinWait();
}
}
if (cdr.RErr == -1)
{
CDR_LOG(" err\n");
memzero_ptr<2340>(cdr.Transfer);
memzero_obj(cdr.Transfer);
cdr.Stat = DiskError;
cdr.Result[0]|= 0x01;
cdr.Result[0] |= 0x01;
ReadTrack();
CDREAD_INT((cdr.Mode & 0x80) ? (cdReadTime / 2) : cdReadTime);
return;
}
else if(cdr.RErr == -2)
{
// async mode is not finished yet ... give it a bit more time
CDREAD_INT(cdReadTime / 4);
return;
}
cdr.Stat = DataReady;

View File

@ -29,12 +29,12 @@
int detect(isoFile *iso)
{
u8 buf[2448];
struct cdVolDesc *volDesc;
cdVolDesc *volDesc;
if (isoReadBlock(iso, buf + iso->blockofs, 16) == -1) return -1;
volDesc = (struct cdVolDesc *)(buf + 24);
if (isoReadBlock(iso, buf, 16) == -1) return -1;
volDesc = (cdVolDesc *) (( iso->flags & ISOFLAGS_BLOCKDUMP_V3 ) ? buf : (buf + 24));
if (strncmp((char*)volDesc->volID, "CD001", 5)) return 0;
if (volDesc->rootToc.tocSize == 2048)
@ -87,7 +87,16 @@ int isoDetect(isoFile *iso) // based on florin's CDVDbin detection code :)
if (strncmp(buf, "BDV2", 4) == 0)
{
iso->flags = ISOFLAGS_BLOCKDUMP;
iso->flags = ISOFLAGS_BLOCKDUMP_V2;
_readfile(iso->handle, &iso->blocksize, 4);
_readfile(iso->handle, &iso->blocks, 4);
_readfile(iso->handle, &iso->blockofs, 4);
_isoReadDtable(iso);
return (detect(iso) == 1) ? 0 : -1;
}
else if (strncmp(buf, "BDV3", 4) == 0)
{
iso->flags = ISOFLAGS_BLOCKDUMP_V3;
_readfile(iso->handle, &iso->blocksize, 4);
_readfile(iso->handle, &iso->blocks, 4);
_readfile(iso->handle, &iso->blockofs, 4);
@ -111,7 +120,7 @@ int isoDetect(isoFile *iso) // based on florin's CDVDbin detection code :)
if (tryIsoType(iso, 2448, -8, 0)) return 0; // RAWQ 2448
iso->offset = 0;
iso->blocksize = 2352;
iso->blocksize = CD_FRAMESIZE_RAW;
iso->blockofs = 0;
iso->type = ISOTYPE_AUDIO;
return 0;
@ -232,13 +241,19 @@ int isoSetFormat(isoFile *iso, int blockofs, int blocksize, int blocks)
Console::WriteLn("blocksize = %d", params iso->blocksize);
Console::WriteLn("blocks = %d", params iso->blocks);
if (iso->flags & ISOFLAGS_BLOCKDUMP)
if (iso->flags & ISOFLAGS_BLOCKDUMP_V2)
{
if (_writefile(iso->handle, "BDV2", 4) < 4) return -1;
if (_writefile(iso->handle, &blocksize, 4) < 4) return -1;
if (_writefile(iso->handle, &blocks, 4) < 4) return -1;
if (_writefile(iso->handle, &blockofs, 4) < 4) return -1;
}
else if (iso->flags & ISOFLAGS_BLOCKDUMP_V3)
{
if (_writefile(iso->handle, "BDV3", 4) < 4) return -1;
if (_writefile(iso->handle, &blocksize, 4) < 4) return -1;
if (_writefile(iso->handle, &blocks, 4) < 4) return -1;
}
return 0;
}
@ -275,7 +290,7 @@ int _isoReadBlock(isoFile *iso, u8 *dst, int lsn)
memset(dst, 0, iso->blockofs);
_seekfile(iso->handle, ofs, SEEK_SET);
ret = _readfile(iso->handle, dst, iso->blocksize);
ret = _readfile(iso->handle, dst + iso->blockofs, iso->blocksize);
if (ret < iso->blocksize)
{
@ -293,13 +308,13 @@ int _isoReadBlockD(isoFile *iso, u8 *dst, int lsn)
// Console::WriteLn("_isoReadBlockD %d, blocksize=%d, blockofs=%d\n", params lsn, iso->blocksize, iso->blockofs);
memset(dst, 0, iso->blockofs);
for (int i = 0; i < iso->dtablesize;i++)
for (int i = 0; i < iso->dtablesize; i++)
{
if (iso->dtable[i] != lsn) continue;
_seekfile(iso->handle, 16 + i * (iso->blocksize + 4) + 4, SEEK_SET);
ret = _readfile(iso->handle, dst, iso->blocksize);
ret = _readfile(iso->handle, dst + iso->blockofs, iso->blocksize);
if (ret < iso->blocksize) return -1;
return 0;
@ -330,7 +345,7 @@ int _isoReadBlockM(isoFile *iso, u8 *dst, int lsn)
memset(dst, 0, iso->blockofs);
_seekfile(iso->multih[i].handle, ofs, SEEK_SET);
ret = _readfile(iso->multih[i].handle, dst, iso->blocksize);
ret = _readfile(iso->multih[i].handle, dst + iso->blockofs, iso->blocksize);
if (ret < iso->blocksize)
{
@ -351,7 +366,9 @@ int isoReadBlock(isoFile *iso, u8 *dst, int lsn)
return -1;
}
if (iso->flags & ISOFLAGS_BLOCKDUMP)
if (iso->flags & ISOFLAGS_BLOCKDUMP_V2)
ret = _isoReadBlockD(iso, dst, lsn);
else if( iso->flags & ISOFLAGS_BLOCKDUMP_V3 )
ret = _isoReadBlockD(iso, dst, lsn);
else if (iso->flags & ISOFLAGS_MULTI)
ret = _isoReadBlockM(iso, dst, lsn);
@ -376,7 +393,7 @@ int _isoWriteBlock(isoFile *iso, u8 *src, int lsn)
u64 ofs = (u64)lsn * iso->blocksize + iso->offset;
_seekfile(iso->handle, ofs, SEEK_SET);
ret = _writefile(iso->handle, src, iso->blocksize);
ret = _writefile(iso->handle, src + iso->blockofs, iso->blocksize);
if (ret < iso->blocksize) return -1;
return 0;
@ -390,7 +407,7 @@ int _isoWriteBlockD(isoFile *iso, u8 *src, int lsn)
ret = _writefile(iso->handle, &lsn, 4);
if (ret < 4) return -1;
ret = _writefile(iso->handle, src, iso->blocksize);
ret = _writefile(iso->handle, src + iso->blockofs, iso->blocksize);
// Console::WriteLn("_isoWriteBlock %d", params ret);
@ -401,15 +418,10 @@ int _isoWriteBlockD(isoFile *iso, u8 *src, int lsn)
int isoWriteBlock(isoFile *iso, u8 *src, int lsn)
{
int ret;
if (iso->flags & ISOFLAGS_BLOCKDUMP)
ret = _isoWriteBlockD(iso, src, lsn);
if (iso->flags & ISOFLAGS_BLOCKDUMP_V3)
return _isoWriteBlockD(iso, src, lsn);
else
ret = _isoWriteBlock(iso, src, lsn);
if (ret == -1) return -1;
return 0;
return _isoWriteBlock(iso, src, lsn);
}
void isoClose(isoFile *iso)

View File

@ -33,30 +33,31 @@ enum isoType
enum isoFlags
{
ISOFLAGS_Z = 0x0001,
ISOFLAGS_Z2 = 0x0002,
ISOFLAGS_BLOCKDUMP = 0x0004,
ISOFLAGS_MULTI = 0x0008,
ISOFLAGS_BZ2 = 0x0010
ISOFLAGS_Z = 0x0001,
ISOFLAGS_Z2 = 0x0002,
ISOFLAGS_BLOCKDUMP_V2 = 0x0004,
ISOFLAGS_MULTI = 0x0008,
ISOFLAGS_BZ2 = 0x0010,
ISOFLAGS_BLOCKDUMP_V3 = 0x0020
};
#define CD_FRAMESIZE_RAW 2352
#define DATA_SIZE (CD_FRAMESIZE_RAW-12)
static const int CD_FRAMESIZE_RAW = 2352;
static const int CD_DATA_SIZE = CD_FRAMESIZE_RAW - 12;
//#define itob(i) ((i)/10*16 + (i)%10) /* u_char to BCD */
//#define btoi(b) ((b)/16*10 + (b)%16) /* BCD to u_char */
typedef struct
struct _multih
{
u32 slsn;
u32 elsn;
void *handle;
} _multih;
};
typedef struct
struct isoFile
{
char filename[256];
u32 type;
isoType type;
u32 flags;
u32 offset;
u32 blockofs;
@ -70,15 +71,15 @@ typedef struct
_multih multih[8];
int buflsn;
u8 *buffer;
} isoFile;
};
isoFile *isoOpen(const char *filename);
isoFile *isoCreate(const char *filename, int mode);
int isoSetFormat(isoFile *iso, int blockofs, int blocksize, int blocks);
int isoDetect(isoFile *iso);
int isoReadBlock(isoFile *iso, u8 *dst, int lsn);
int isoWriteBlock(isoFile *iso, u8 *src, int lsn);
void isoClose(isoFile *iso);
extern isoFile *isoOpen(const char *filename);
extern isoFile *isoCreate(const char *filename, int mode);
extern int isoSetFormat(isoFile *iso, int blockofs, int blocksize, int blocks);
extern int isoDetect(isoFile *iso);
extern int isoReadBlock(isoFile *iso, u8 *dst, int lsn);
extern int isoWriteBlock(isoFile *iso, u8 *src, int lsn);
extern void isoClose(isoFile *iso);
#endif /* __LIBISO_H__ */

View File

@ -38,7 +38,7 @@ void *_openfile(const char *filename, int flags)
handle = CreateFile(wxString::FromAscii(filename).c_str(), GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);
}
return handle == INVALID_HANDLE_VALUE ? NULL : handle;
return (handle == INVALID_HANDLE_VALUE) ? NULL : handle;
}
u64 _tellfile(void *handle)

View File

@ -133,7 +133,7 @@ void iDumpRegisters(u32 startpc, u32 temp)
for(i = 0; i < ArraySize(dmacs); ++i) {
DMACh* p = (DMACh*)(PS2MEM_HW+dmacs[i]);
__Log("dma%d c%x m%x q%x t%x s%x", i, p->chcr, p->madr, p->qwc, p->tadr, p->sadr);
__Log("dma%d c%x m%x q%x t%x s%x", i, p->chcr._u32, p->madr, p->qwc, p->tadr, p->sadr);
}
__Log("dmac %x %x %x %x", psHu32(DMAC_CTRL), psHu32(DMAC_STAT), psHu32(DMAC_RBSR), psHu32(DMAC_RBOR));
__Log("intc %x %x", psHu32(INTC_STAT), psHu32(INTC_MASK));

View File

@ -57,9 +57,9 @@ __forceinline void gsInterrupt()
{
GIF_LOG("gsInterrupt: %8.8x", cpuRegs.cycle);
if (!(CHCR::STR(gif)))
if (!(gif->chcr.STR))
{
//Console::WriteLn("Eh? why are you still interrupting! chcr %x, qwc %x, done = %x", params gif->chcr, gif->qwc, done);
//Console::WriteLn("Eh? why are you still interrupting! chcr %x, qwc %x, done = %x", params gif->chcr._u32, gif->qwc, done);
return;
}
@ -86,7 +86,7 @@ __forceinline void gsInterrupt()
gspath3done = 0;
gscycles = 0;
CHCR::clearSTR(gif);
gif->chcr.STR = 0;
vif1Regs->stat &= ~VIF1_STAT_VGW;
psHu32(GIF_STAT) &= ~(GIF_STAT_APATH3 | GIF_STAT_OPH | GIF_STAT_P3Q | GIF_STAT_FQC);
@ -150,7 +150,7 @@ static __forceinline void GIFchain()
static __forceinline bool checkTieBit(u32* &ptag)
{
if ((CHCR::TIE(gif)) && (Tag::IRQ(ptag))) //Check TIE bit of CHCR and IRQ bit of tag
if (gif->chcr.TIE && (Tag::IRQ(ptag))) //Check TIE bit of CHCR and IRQ bit of tag
{
GIF_LOG("dmaIrq Set");
gspath3done = 1;
@ -228,7 +228,7 @@ void GIFdma()
{
if (gif->qwc == 0)
{
if ((CHCR::MOD(gif) == CHAIN_MODE) && CHCR::STR(gif))
if ((gif->chcr.MOD == CHAIN_MODE) && gif->chcr.STR)
{
if (!ReadTag(ptag, id)) return;
GIF_LOG("PTH3 MASK gifdmaChain %8.8x_%8.8x size=%d, id=%d, addr=%lx", ptag[1], ptag[0], gif->qwc, id, gif->madr);
@ -251,10 +251,10 @@ void GIFdma()
}
// Transfer Dn_QWC from Dn_MADR to GIF
if ((CHCR::MOD(gif) == NORMAL_MODE) || (gif->qwc > 0)) // Normal Mode
if ((gif->chcr.MOD == NORMAL_MODE) || (gif->qwc > 0)) // Normal Mode
{
if (((psHu32(DMAC_CTRL) & 0xC0) == 0x80) && (CHCR::MOD(gif) == NORMAL_MODE))
if (((psHu32(DMAC_CTRL) & 0xC0) == 0x80) && (gif->chcr.MOD == NORMAL_MODE))
{
Console::WriteLn("DMA Stall Control on GIF normal");
}
@ -265,7 +265,7 @@ void GIFdma()
return;
}
if ((CHCR::MOD(gif) == CHAIN_MODE) && (gspath3done == 0)) // Chain Mode
if ((gif->chcr.MOD == CHAIN_MODE) && (gspath3done == 0)) // Chain Mode
{
if (!ReadTag(ptag, id)) return;
GIF_LOG("gifdmaChain %8.8x_%8.8x size=%d, id=%d, addr=%lx", ptag[1], ptag[0], gif->qwc, id, gif->madr);
@ -316,7 +316,7 @@ void dmaGIF()
{
//We used to add wait time for the buffer to fill here, fixing some timing problems in path 3 masking
//It takes the time of 24 QW for the BUS to become ready - The Punisher And Streetball
GIF_LOG("dmaGIFstart chcr = %lx, madr = %lx, qwc = %lx\n tadr = %lx, asr0 = %lx, asr1 = %lx", gif->chcr, gif->madr, gif->qwc, gif->tadr, gif->asr0, gif->asr1);
GIF_LOG("dmaGIFstart chcr = %lx, madr = %lx, qwc = %lx\n tadr = %lx, asr0 = %lx, asr1 = %lx", gif->chcr._u32, gif->madr, gif->qwc, gif->tadr, gif->asr0, gif->asr1);
Path3progress = STOPPED_MODE;
gspath3done = 0; // For some reason this doesn't clear? So when the system starts the thread, we will clear it :)
@ -331,7 +331,7 @@ void dmaGIF()
return;
}
if ((gif->qwc == 0) && ((CHCR::MOD(gif) != NORMAL_MODE)))
if ((gif->qwc == 0) && (gif->chcr.MOD != NORMAL_MODE))
{
u32 *ptag;
@ -437,7 +437,7 @@ void mfifoGIFtransfer(int qwc)
gifstate &= ~GIF_STATE_EMPTY;
}
GIF_LOG("mfifoGIFtransfer %x madr %x, tadr %x", gif->chcr, gif->madr, gif->tadr);
GIF_LOG("mfifoGIFtransfer %x madr %x, tadr %x", gif->chcr._u32, gif->madr, gif->tadr);
if (gif->qwc == 0)
{
@ -495,7 +495,7 @@ void mfifoGIFtransfer(int qwc)
break;
}
if ((CHCR::TIE(gif)) && (Tag::IRQ(ptag)))
if ((gif->chcr.TIE) && (Tag::IRQ(ptag)))
{
SPR_LOG("dmaIrq Set");
gifstate = GIF_STATE_DONE;
@ -515,7 +515,7 @@ void mfifoGIFtransfer(int qwc)
if ((gif->qwc == 0) && (gifstate == GIF_STATE_DONE)) gifstate = GIF_STATE_STALL;
CPU_INT(11,mfifocycles);
SPR_LOG("mfifoGIFtransfer end %x madr %x, tadr %x", gif->chcr, gif->madr, gif->tadr);
SPR_LOG("mfifoGIFtransfer end %x madr %x, tadr %x", gif->chcr._u32, gif->madr, gif->tadr);
}
void gifMFIFOInterrupt()
@ -523,13 +523,13 @@ void gifMFIFOInterrupt()
mfifocycles = 0;
if (Path3progress == STOPPED_MODE) psHu32(GIF_STAT)&= ~(GIF_STAT_APATH3 | GIF_STAT_OPH); // OPH=0 | APATH=0
if ((CHCR::STR(spr0)) && (spr0->qwc == 0))
if ((spr0->chcr.STR) && (spr0->qwc == 0))
{
CHCR::clearSTR(spr0);
spr0->chcr.STR = 0;
hwDmacIrq(DMAC_FROM_SPR);
}
if (!(CHCR::STR(gif)))
if (!(gif->chcr.STR))
{
Console::WriteLn("WTF GIFMFIFO");
cpuRegs.interrupt &= ~(1 << 11);
@ -573,7 +573,7 @@ void gifMFIFOInterrupt()
psHu32(GIF_STAT) &= ~(GIF_STAT_APATH3 | GIF_STAT_OPH | GIF_STAT_P3Q | GIF_STAT_FQC); // OPH, APATH, P3Q, FQC = 0
vif1Regs->stat &= ~VIF1_STAT_VGW;
CHCR::clearSTR(gif);
gif->chcr.STR = 0;
gifstate = GIF_STATE_READY;
hwDmacIrq(DMAC_GIF);
clearFIFOstuff(false);

View File

@ -46,9 +46,9 @@ union tGIF_CTRL
u32 PSE : 1;
u32 reserved2 : 28;
};
u32 value;
u32 _u32;
tGIF_CTRL( u32 val ) : value( val )
tGIF_CTRL( u32 val ) : _u32( val )
{
}
};
@ -62,9 +62,9 @@ union tGIF_MODE
u32 IMT : 1;
u32 reserved2 : 29;
};
u32 value;
u32 _u32;
tGIF_MODE( u32 val ) : value( val )
tGIF_MODE( u32 val ) : _u32( val )
{
}
};
@ -89,9 +89,9 @@ union tGIF_STAT
u32 FQC : 5;
u32 reserved3 : 3;
};
u32 value;
u32 _u32;
tGIF_STAT( u32 val ) : value( val )
tGIF_STAT( u32 val ) : _u32( val )
{
}
};
@ -104,9 +104,9 @@ union tGIF_TAG0
u32 EOP : 1;
u32 TAG : 16;
};
u32 value;
u32 _u32;
tGIF_TAG0( u32 val ) : value( val )
tGIF_TAG0( u32 val ) : _u32( val )
{
}
};
@ -121,9 +121,9 @@ union tGIF_TAG1
u32 FLG : 2;
u32 NREG : 4;
};
u32 value;
u32 _u32;
tGIF_TAG1( u32 val ) : value( val )
tGIF_TAG1( u32 val ) : _u32( val )
{
}
};
@ -139,9 +139,9 @@ union tGIF_CNT
u32 reserved2 : 10;
};
u32 value;
u32 _u32;
tGIF_CNT( u32 val ) : value( val )
tGIF_CNT( u32 val ) : _u32( val )
{
}
};
@ -153,9 +153,9 @@ union tGIF_P3CNT
u32 P3CNT : 15;
u32 reserved1 : 17;
};
u32 value;
u32 _u32;
tGIF_P3CNT( u32 val ) : value( val )
tGIF_P3CNT( u32 val ) : _u32( val )
{
}
};
@ -168,9 +168,9 @@ union tGIF_P3TAG
u32 EOP : 1;
u32 reserved1 : 16;
};
u32 value;
u32 _u32;
tGIF_P3TAG( u32 val ) : value( val )
tGIF_P3TAG( u32 val ) : _u32( val )
{
}
};

View File

@ -177,15 +177,15 @@ bool hwDmacSrcChainWithStack(DMACh *dma, int id) {
dma->madr = dma->tadr + 16; //Set MADR to data following the tag
switch(CHCR::ASP(dma))
switch(dma->chcr.ASP)
{
case 0: { //Check if ASR0 is empty
dma->asr0 = dma->madr + (dma->qwc << 4); //If yes store Succeeding tag
dma->chcr = (dma->chcr & 0xffffffcf) | 0x10; //1 Address in call stack
dma->chcr._u32 = (dma->chcr._u32 & 0xffffffcf) | 0x10; //1 Address in call stack
break;
}
case 1: {
dma->chcr = (dma->chcr & 0xffffffcf) | 0x20; //2 Addresses in call stack
dma->chcr._u32 = (dma->chcr._u32 & 0xffffffcf) | 0x20; //2 Addresses in call stack
dma->asr1 = dma->madr + (dma->qwc << 4); //If no store Succeeding tag in ASR1
break;
}
@ -200,17 +200,17 @@ bool hwDmacSrcChainWithStack(DMACh *dma, int id) {
}
case TAG_RET: // Ret - Transfer QWC following the tag, load next tag
dma->madr = dma->tadr + 16; //Set MADR to data following the tag
switch(CHCR::ASP(dma))
switch(dma->chcr.ASP)
{
case 2: { //If ASR1 is NOT equal to 0 (Contains address)
dma->chcr = (dma->chcr & 0xffffffcf) | 0x10; //1 Address left in call stack
dma->chcr._u32 = (dma->chcr._u32 & 0xffffffcf) | 0x10; //1 Address left in call stack
dma->tadr = dma->asr1; //Read ASR1 as next tag
dma->asr1 = 0; //Clear ASR1
break;
}
//If ASR1 is empty (No address held)
case 1:{ //Check if ASR0 is NOT equal to 0 (Contains address)
dma->chcr = (dma->chcr & 0xffffffcf); //No addresses left in call stack
dma->chcr._u32 = (dma->chcr._u32 & 0xffffffcf); //No addresses left in call stack
dma->tadr = dma->asr0; //Read ASR0 as next tag
dma->asr0 = 0; //Clear ASR0
break;

View File

@ -47,8 +47,23 @@ void __fastcall WriteFIFO_page_7(u32 mem, const mem128_t *value);
// --- DMA ---
//
union tDMA_CHCR {
struct {
u32 DIR : 1;
u32 reserved1 : 1;
u32 MOD : 2;
u32 ASP : 2;
u32 TTE : 1;
u32 TIE : 1;
u32 STR : 1;
u32 reserved2 : 7;
u32 TAG : 16;
};
u32 _u32;
};
struct DMACh {
u32 chcr;
tDMA_CHCR chcr;
u32 null0[3];
u32 madr;
u32 null1[3];
@ -418,6 +433,137 @@ enum DMAInter
MEISintr = 0x40004000
};
union tDMAC_CTRL {
struct {
u32 DMAE : 1;
u32 RELE : 1;
u32 MFD : 2;
u32 STS : 2;
u32 STD : 2;
u32 RCYC : 3;
u32 reserved1 : 21;
};
u32 _u32;
};
union tDMAC_STAT {
struct {
u32 CIS0 : 1;
u32 CIS1 : 1;
u32 CIS2 : 1;
u32 CIS3 : 1;
u32 CIS4 : 1;
u32 CIS5 : 1;
u32 CIS6 : 1;
u32 CIS7 : 1;
u32 CIS8 : 1;
u32 CIS9 : 1;
u32 reserved1 : 3;
u32 SIS : 1;
u32 MEIS : 1;
u32 BEIS : 1;
u32 CIM0 : 1;
u32 CIM1 : 1;
u32 CIM2 : 1;
u32 CIM3 : 1;
u32 CIM4 : 1;
u32 CIM5 : 1;
u32 CIM6 : 1;
u32 CIM7 : 1;
u32 CIM8 : 1;
u32 CIM9 : 1;
u32 reserved2 : 3;
u32 SIM : 1;
u32 MEIM : 1;
u32 reserved3 : 1;
};
u32 _u32;
};
union tDMAC_PCR {
struct {
u32 CPC0 : 1;
u32 CPC1 : 1;
u32 CPC2 : 1;
u32 CPC3 : 1;
u32 CPC4 : 1;
u32 CPC5 : 1;
u32 CPC6 : 1;
u32 CPC7 : 1;
u32 CPC8 : 1;
u32 CPC9 : 1;
u32 reserved1 : 6;
u32 CDE0 : 1;
u32 CDE1 : 1;
u32 CDE2 : 1;
u32 CDE3 : 1;
u32 CDE4 : 1;
u32 CDE5 : 1;
u32 CDE6 : 1;
u32 CDE7 : 1;
u32 CDE8 : 1;
u32 CDE9 : 1;
u32 reserved2 : 5;
u32 PCE : 1;
};
u32 _u32;
};
union tDMAC_SQWC {
struct {
u32 SQWC : 8;
u32 reserved1 : 8;
u32 TQWC : 8;
u32 reserved2 : 8;
};
u32 _u32;
};
union tDMAC_RBSR {
struct {
u32 RMSK : 31;
u32 reserved1 : 1;
};
u32 _u32;
};
union tDMAC_RBOR {
struct {
u32 ADDR : 31;
u32 reserved1 : 1;
};
u32 _u32;
};
union tDMAC_STADR {
struct {
u32 ADDR : 31;
u32 reserved1 : 1;
};
u32 _u32;
};
struct DMACregisters
{
// Note: not yet tested.
tDMAC_CTRL ctrl;
u32 padding[3];
tDMAC_STAT stat;
u32 padding1[3];
tDMAC_PCR pcr;
u32 padding2[3];
tDMAC_SQWC sqwc;
u32 padding3[3];
tDMAC_RBSR rbsr;
u32 padding4[3];
tDMAC_RBOR rbor;
u32 padding5[3];
tDMAC_STADR stadr;
};
#define dmacRegs ((DMACregisters*)(PS2MEM_HW+0xE000))
#ifdef PCSX2_VIRTUAL_MEM
#define dmaGetAddrBase(addr) (((addr) & 0x80000000) ? (void*)&PS2MEM_SCRATCH[(addr) & 0x3ff0] : (void*)(PS2MEM_BASE+TRANSFORM_ADDR(addr)))
@ -485,7 +631,7 @@ static __forceinline u32 *_dmaGetAddr(DMACh *dma, u32 addr, u32 num)
// DMA End
psHu32(DMAC_STAT) |= 1<<num;
dma->chcr &= ~0x100;
dma->chcr.STR = 0;
}
return ptr;

View File

@ -811,7 +811,7 @@ void IPUCMD_WRITE(u32 val)
case SCE_IPU_FDEC:
IPU_LOG("IPU FDEC command. Skip 0x%X bits, FIFO 0x%X qwords, BP 0x%X, FP %d, CHCR 0x%x, %x",
val & 0x3f, g_BP.IFC, (int)g_BP.BP, g_BP.FP, ipu1dma->chcr, cpuRegs.pc);
val & 0x3f, g_BP.IFC, (int)g_BP.BP, g_BP.FP, ipu1dma->chcr._u32, cpuRegs.pc);
g_BP.BP += val & 0x3F;
if (ipuFDEC(val)) return;
ipuRegs->cmd.BUSY = 0x80000000;
@ -840,7 +840,7 @@ void IPUCMD_WRITE(u32 val)
if (ipuCSC(ipuRegs->cmd.DATA))
{
if (ipu0dma->qwc > 0 && (CHCR::STR(ipu0dma))) IPU_INT0_FROM();
if (ipu0dma->qwc > 0 && ipu0dma->chcr.STR) IPU_INT0_FROM();
return;
}
break;
@ -855,7 +855,7 @@ void IPUCMD_WRITE(u32 val)
if (ipuIDEC(val))
{
// idec done, ipu0 done too
if (ipu0dma->qwc > 0 && (CHCR::STR(ipu0dma))) IPU_INT0_FROM();
if (ipu0dma->qwc > 0 && ipu0dma->chcr.STR) IPU_INT0_FROM();
return;
}
ipuRegs->topbusy = 0x80000000;
@ -867,7 +867,7 @@ void IPUCMD_WRITE(u32 val)
case SCE_IPU_BDEC:
if (ipuBDEC(val))
{
if (ipu0dma->qwc > 0 && (CHCR::STR(ipu0dma))) IPU_INT0_FROM();
if (ipu0dma->qwc > 0 && ipu0dma->chcr.STR) IPU_INT0_FROM();
if (ipuRegs->ctrl.SCD || ipuRegs->ctrl.ECD) hwIntcIrq(INTC_IPU);
return;
}
@ -931,7 +931,7 @@ void IPUWorker()
hwIntcIrq(INTC_IPU);
return;
}
if ((ipu0dma->qwc > 0) && (CHCR::STR(ipu0dma))) IPU_INT0_FROM();
if (ipu0dma->qwc > 0 && ipu0dma->chcr.STR) IPU_INT0_FROM();
break;
case SCE_IPU_PACK:
@ -957,7 +957,7 @@ void IPUWorker()
ipuCurCmd = 0xffffffff;
// CHECK!: IPU0dma remains when IDEC is done, so we need to clear it
if ((ipu0dma->qwc > 0) && (CHCR::STR(ipu0dma))) IPU_INT0_FROM();
if (ipu0dma->qwc > 0 && ipu0dma->chcr.STR) IPU_INT0_FROM();
s_routine = NULL;
break;
@ -974,7 +974,7 @@ void IPUWorker()
ipuRegs->cmd.BUSY = 0;
ipuCurCmd = 0xffffffff;
if ((ipu0dma->qwc > 0) && (CHCR::STR(ipu0dma))) IPU_INT0_FROM();
if (ipu0dma->qwc > 0 && ipu0dma->chcr.STR) IPU_INT0_FROM();
s_routine = NULL;
if (ipuRegs->ctrl.SCD || ipuRegs->ctrl.ECD) hwIntcIrq(INTC_IPU);
return;
@ -1450,9 +1450,9 @@ static __forceinline bool ipuDmacSrcChain(DMACh *tag, u32 *ptag)
static __forceinline void flushGIF()
{
while(CHCR::STR(gif) && (vif1Regs->mskpath3 == 0))
while(gif->chcr.STR && (vif1Regs->mskpath3 == 0))
{
GIF_LOG("Flushing gif chcr %x tadr %x madr %x qwc %x", gif->chcr, gif->tadr, gif->madr, gif->qwc);
GIF_LOG("Flushing gif chcr %x tadr %x madr %x qwc %x", gif->chcr._u32, gif->tadr, gif->madr, gif->qwc);
gsInterrupt();
}
}
@ -1463,9 +1463,9 @@ int IPU1dma()
bool done = false;
int ipu1cycles = 0, totalqwc = 0;
assert(!(CHCR::TTE(ipu1dma)));
assert(!ipu1dma->chcr.TTE);
if (!(CHCR::STR(ipu1dma)) || (cpuRegs.interrupt & (1 << DMAC_TO_IPU))) return 0;
if (!(ipu1dma->chcr.STR) || (cpuRegs.interrupt & (1 << DMAC_TO_IPU))) return 0;
assert(!(g_nDMATransfer & IPU_DMA_TIE1));
@ -1478,7 +1478,7 @@ int IPU1dma()
if (IPU1chain(totalqwc)) return totalqwc;
//Check TIE bit of CHCR and IRQ bit of tag
if (CHCR::TIE(ipu1dma) && (g_nDMATransfer & IPU_DMA_DOTIE1))
if (ipu1dma->chcr.TIE && (g_nDMATransfer & IPU_DMA_DOTIE1))
{
Console::WriteLn("IPU1 TIE");
@ -1488,7 +1488,7 @@ int IPU1dma()
return totalqwc;
}
if (CHCR::MOD(ipu1dma) == NORMAL_MODE) // If mode is normal mode.
if (ipu1dma->chcr.MOD == NORMAL_MODE) // If mode is normal mode.
{
IPU_INT_TO(totalqwc * BIAS);
return totalqwc;
@ -1496,9 +1496,9 @@ int IPU1dma()
else
{
// Chain mode.
u32 tag = ipu1dma->chcr; // upper bits describe current tag
u32 tag = ipu1dma->chcr._u32; // upper bits describe current tag
if (CHCR::TIE(ipu1dma) && Tag::IRQ(tag))
if (ipu1dma->chcr.TIE && Tag::IRQ(tag))
{
ptag = (u32*)dmaGetAddr(ipu1dma->tadr);
@ -1523,7 +1523,7 @@ int IPU1dma()
}
// Normal Mode & qwc is finished
if ((CHCR::MOD(ipu1dma) == NORMAL_MODE) && (ipu1dma->qwc == 0))
if ((ipu1dma->chcr.MOD == NORMAL_MODE) && (ipu1dma->qwc == 0))
{
//Console::WriteLn("ipu1 normal empty qwc?");
return totalqwc;
@ -1555,7 +1555,7 @@ int IPU1dma()
ptag[1], ptag[0], ipu1dma->qwc, ipu1dma->madr, 8 - g_BP.IFC);
if (CHCR::TIE(ipu1dma) && Tag::IRQ(ptag))
if (ipu1dma->chcr.TIE && Tag::IRQ(ptag))
g_nDMATransfer |= IPU_DMA_DOTIE1;
else
g_nDMATransfer &= ~IPU_DMA_DOTIE1;
@ -1672,15 +1672,15 @@ int IPU0dma()
int readsize;
void* pMem;
if ((!(CHCR::STR(ipu0dma)) || (cpuRegs.interrupt & (1 << DMAC_FROM_IPU))) || (ipu0dma->qwc == 0))
if ((!(ipu0dma->chcr.STR) || (cpuRegs.interrupt & (1 << DMAC_FROM_IPU))) || (ipu0dma->qwc == 0))
return 0;
assert(!(CHCR::TTE(ipu0dma)));
assert(!(ipu0dma->chcr.TTE));
IPU_LOG("dmaIPU0 chcr = %lx, madr = %lx, qwc = %lx",
ipu0dma->chcr, ipu0dma->madr, ipu0dma->qwc);
ipu0dma->chcr._u32, ipu0dma->madr, ipu0dma->qwc);
assert((ipu0dma->chcr & 0xC) == 0);
assert((ipu0dma->chcr._u32 & 0xC) == 0);
pMem = (u32*)dmaGetAddr(ipu0dma->madr);
readsize = min(ipu0dma->qwc, (u16)ipuRegs->ctrl.OFC);
FIFOfrom_read(pMem, readsize);
@ -1734,14 +1734,14 @@ void ipu0Interrupt()
{
// gif
g_nDMATransfer &= ~IPU_DMA_GIFSTALL;
if (CHCR::STR(gif)) GIFdma();
if (gif->chcr.STR) GIFdma();
}
if (g_nDMATransfer & IPU_DMA_VIFSTALL)
{
// vif
g_nDMATransfer &= ~IPU_DMA_VIFSTALL;
if (CHCR::STR(vif1ch)) dmaVIF1();
if (vif1ch->chcr.STR) dmaVIF1();
}
if (g_nDMATransfer & IPU_DMA_TIE0)
@ -1749,7 +1749,7 @@ void ipu0Interrupt()
g_nDMATransfer &= ~IPU_DMA_TIE0;
}
CHCR::clearSTR(ipu0dma);
ipu0dma->chcr.STR = 0;
hwDmacIrq(DMAC_FROM_IPU);
}
@ -1767,7 +1767,7 @@ IPU_FORCEINLINE void ipu1Interrupt()
if (g_nDMATransfer & IPU_DMA_TIE1)
g_nDMATransfer &= ~IPU_DMA_TIE1;
else
CHCR::clearSTR(ipu1dma);
ipu1dma->chcr.STR = 0;
hwDmacIrq(DMAC_TO_IPU);
}

View File

@ -60,40 +60,6 @@ union tIPU_CMD {
};
};
enum ipu_ctrl_m_flags
{
IPU_CTRL_IFC_M = (0x0f<< 0),
IPU_CTRL_OFC_M = (0x0f<< 4),
IPU_CTRL_CBP_M = (0x3f<< 8),
IPU_CTRL_ECD_M = (0x01<<14),
IPU_CTRL_SCD_M = (0x01<<15),
IPU_CTRL_IDP_M = (0x03<<16),
IPU_CTRL_AS_M = (0x01<<20),
IPU_CTRL_IVF_M = (0x01<<21),
IPU_CTRL_QST_M = (0x01<<22),
IPU_CTRL_MP1_M = (0x01<<23),
IPU_CTRL_PCT_M = (0x07<<24),
IPU_CTRL_RST_M = (0x01<<30),
IPU_CTRL_BUSY_M = (0x01<<31)
};
enum ipu_ctrl_o_flags
{
IPU_CTRL_IFC_O = ( 0),
IPU_CTRL_OFC_O = ( 4),
IPU_CTRL_CBP_O = ( 8),
IPU_CTRL_ECD_O = (14),
IPU_CTRL_SCD_O = (15),
IPU_CTRL_IDP_O = (16),
IPU_CTRL_AS_O = (20),
IPU_CTRL_IVF_O = (21),
IPU_CTRL_QST_O = (22),
IPU_CTRL_MP1_O = (23),
IPU_CTRL_PCT_O = (24),
IPU_CTRL_RST_O = (30),
IPU_CTRL_BUSY_O = (31)
};
//
// Bitfield Structure
//
@ -118,20 +84,6 @@ union tIPU_CTRL {
u32 _u32;
};
enum ipu_bp_m_flags
{
IPU_BP_BP_M = (0x7f<< 0),
IPU_BP_IFC_M = (0x0f<< 8),
IPU_BP_FP_M = (0x03<<16)
};
enum ipu_bp_o_flags
{
IPU_BP_BP_O = ( 0),
IPU_BP_IFC_O = ( 8),
IPU_BP_FP_O = (16)
};
//
// Bitfield Structure
//

View File

@ -321,21 +321,15 @@ static const LegacyApi_OptMethod s_MethMessOpt_PAD[] =
// ----------------------------------------------------------------------------
void CALLBACK CDVD_newDiskCB(void (*callback)()) {}
extern int lastReadSize;
extern int lastReadSize, lastLSN;
static s32 CALLBACK CDVD_getBuffer2(u8* buffer)
{
int ret;
// TEMP: until I fix all the plugins to use this function style
u8* pb = CDVD->getBuffer();
if(pb != NULL)
{
memcpy(buffer,pb,lastReadSize);
ret = 0;
}
else ret = -2;
if(pb == NULL) return -2;
return ret;
memcpy_fast( buffer, pb, lastReadSize );
return 0;
}
static s32 CALLBACK CDVD_readSector(u8* buffer, u32 lsn, int mode)
@ -359,6 +353,8 @@ static s32 CALLBACK CDVD_readSector(u8* buffer, u32 lsn, int mode)
lastReadSize = 2048;
break;
}
lastLSN = lsn;
return CDVD->getBuffer2(buffer);
}

View File

@ -140,7 +140,7 @@ static __forceinline void _dmaSPR0()
}
// Transfer Dn_QWC from SPR to Dn_MADR
switch(CHCR::MOD(spr0))
switch(spr0->chcr.MOD)
{
case NORMAL_MODE:
{
@ -192,7 +192,7 @@ static __forceinline void _dmaSPR0()
break;
}
SPR0chain();
if (CHCR::TIE(spr0) && Tag::IRQ(ptag)) //Check TIE bit of CHCR and IRQ bit of tag
if (spr0->chcr.TIE && Tag::IRQ(ptag)) //Check TIE bit of CHCR and IRQ bit of tag
{
//Console::WriteLn("SPR0 TIE");
done = TRUE;
@ -229,23 +229,23 @@ void SPRFROMinterrupt()
{
if ((spr0->madr & ~psHu32(DMAC_RBSR)) != psHu32(DMAC_RBOR)) Console::WriteLn("GIF MFIFO Write outside MFIFO area");
spr0->madr = psHu32(DMAC_RBOR) + (spr0->madr & psHu32(DMAC_RBSR));
//Console::WriteLn("mfifoGIFtransfer %x madr %x, tadr %x", params gif->chcr, gif->madr, gif->tadr);
//Console::WriteLn("mfifoGIFtransfer %x madr %x, tadr %x", params gif->chcr._u32, gif->madr, gif->tadr);
mfifoGIFtransfer(mfifotransferred);
mfifotransferred = 0;
if (CHCR::STR(gif)) return;
if (gif->chcr.STR) return;
}
else if ((psHu32(DMAC_CTRL) & 0xC) == 0x8) // VIF1 MFIFO
{
if ((spr0->madr & ~psHu32(DMAC_RBSR)) != psHu32(DMAC_RBOR)) Console::WriteLn("VIF MFIFO Write outside MFIFO area");
spr0->madr = psHu32(DMAC_RBOR) + (spr0->madr & psHu32(DMAC_RBSR));
//Console::WriteLn("mfifoVIF1transfer %x madr %x, tadr %x", params vif1ch->chcr, vif1ch->madr, vif1ch->tadr);
//Console::WriteLn("mfifoVIF1transfer %x madr %x, tadr %x", params vif1ch->chcr._u32, vif1ch->madr, vif1ch->tadr);
mfifoVIF1transfer(mfifotransferred);
mfifotransferred = 0;
if (CHCR::STR(vif1ch)) return;
if (vif1ch->chcr.STR) return;
}
}
if (spr0finished == 0) return;
CHCR::clearSTR(spr0);
spr0->chcr.STR = 0;
hwDmacIrq(DMAC_FROM_SPR);
}
@ -253,9 +253,9 @@ void SPRFROMinterrupt()
void dmaSPR0() // fromSPR
{
SPR_LOG("dmaSPR0 chcr = %lx, madr = %lx, qwc = %lx, sadr = %lx",
spr0->chcr, spr0->madr, spr0->qwc, spr0->sadr);
spr0->chcr._u32, spr0->madr, spr0->qwc, spr0->sadr);
if ((CHCR::MOD(spr0) == CHAIN_MODE) && spr0->qwc == 0)
if ((spr0->chcr.MOD == CHAIN_MODE) && spr0->qwc == 0)
{
u32 *ptag;
ptag = (u32*) & PS2MEM_SCRATCH[spr0->sadr & 0x3fff]; //Set memory pointer to SADR
@ -324,7 +324,7 @@ void _SPR1interleave()
void _dmaSPR1() // toSPR work function
{
switch(CHCR::MOD(spr1))
switch(spr1->chcr.MOD)
{
case NORMAL_MODE:
{
@ -338,7 +338,7 @@ void _dmaSPR1() // toSPR work function
{
u32 *ptag;
int id;
bool done = FALSE;
bool done = false;
if (spr1->qwc > 0)
{
@ -353,7 +353,7 @@ void _dmaSPR1() // toSPR work function
if (!(Tag::Transfer("SPR1 Tag", spr1, ptag)))
{
done = TRUE;
done = true;
spr1finished = (done) ? 1: 0;
}
@ -361,7 +361,7 @@ void _dmaSPR1() // toSPR work function
spr1->madr = ptag[1]; //MADR = ADDR field
// Transfer dma tag if tte is set
if (CHCR::TTE(spr1))
if (spr1->chcr.TTE)
{
SPR_LOG("SPR TTE: %x_%x\n", ptag[3], ptag[2]);
SPR1transfer(ptag, 4); //Transfer Tag
@ -373,12 +373,12 @@ void _dmaSPR1() // toSPR work function
done = (hwDmacSrcChain(spr1, id) == 1);
SPR1chain(); //Transfers the data set by the switch
if (CHCR::TIE(spr1) && Tag::IRQ(ptag)) //Check TIE bit of CHCR and IRQ bit of tag
if (spr1->chcr.TIE && Tag::IRQ(ptag)) //Check TIE bit of CHCR and IRQ bit of tag
{
SPR_LOG("dmaIrq Set");
//Console::WriteLn("SPR1 TIE");
done = TRUE;
done = true;
}
spr1finished = done;
@ -403,10 +403,10 @@ void dmaSPR1() // toSPR
SPR_LOG("dmaSPR1 chcr = 0x%x, madr = 0x%x, qwc = 0x%x\n"
" tadr = 0x%x, sadr = 0x%x",
spr1->chcr, spr1->madr, spr1->qwc,
spr1->chcr._u32, spr1->madr, spr1->qwc,
spr1->tadr, spr1->sadr);
if ((CHCR::MOD(spr1) == CHAIN_MODE) && (spr1->qwc == 0))
if ((spr1->chcr.MOD == CHAIN_MODE) && (spr1->qwc == 0))
{
u32 *ptag;
ptag = (u32*)dmaGetAddr(spr1->tadr); //Set memory pointer to TADR
@ -423,7 +423,7 @@ void SPRTOinterrupt()
{
_dmaSPR1();
if (spr1finished == 0) return;
CHCR::clearSTR(spr1);
spr1->chcr.STR = 0;
hwDmacIrq(DMAC_TO_SPR);
}

View File

@ -222,7 +222,7 @@ __forceinline void SIF0Dma()
if (sif0dma->qwc == 0)
{
// Stop if TIE & the IRQ are set, or at the end. (I'll try to convert this to use the tags code later.)
if (((sif0dma->chcr & 0x80000080) == 0x80000080) || (sif0.end))
if (((sif0dma->chcr._u32 & 0x80000080) == 0x80000080) || (sif0.end))
{
if (sif0.end)
SIF_LOG(" EE SIF end");
@ -241,7 +241,7 @@ __forceinline void SIF0Dma()
sif0dma->qwc = (u16)tag[0];
sif0dma->madr = tag[1];
sif0dma->chcr = (sif0dma->chcr & 0xffff) | (tag[0] & 0xffff0000);
sif0dma->chcr._u32 = (sif0dma->chcr._u32 & 0xffff) | (tag[0] & 0xffff0000);
SIF_LOG(" EE SIF dest chain tag madr:%08X qwc:%04X id:%X irq:%d(%08X_%08X)", sif0dma->madr, sif0dma->qwc, (tag[0] >> 28)&3, (tag[0] >> 31)&1, tag[1], tag[0]);
@ -274,7 +274,7 @@ __forceinline void SIF1Dma()
if (sif1dma->qwc == 0) // If there's no more to transfer
{
if ((CHCR::MOD(sif1dma) == NORMAL_MODE) || sif1.end) // If NORMAL mode or end of CHAIN then stop DMA
if ((sif1dma->chcr.MOD == NORMAL_MODE) || sif1.end) // If NORMAL mode or end of CHAIN then stop DMA
{
// Stop & signal interrupts on EE
SIF_LOG("EE SIF1 End %x", sif1.end);
@ -294,10 +294,10 @@ __forceinline void SIF1Dma()
//_dmaGetAddr(sif1dma, *ptag, sif1dma->tadr, 6);
sif1dma->chcr = (sif1dma->chcr & 0xFFFF) | ((*ptag) & 0xFFFF0000); // Copy the tag
sif1dma->chcr._u32 = (sif1dma->chcr._u32 & 0xFFFF) | ((*ptag) & 0xFFFF0000); // Copy the tag
sif1dma->qwc = (u16)ptag[0];
if (CHCR::TTE(sif1dma))
if (sif1dma->chcr.TTE)
{
Console::WriteLn("SIF1 TTE");
SIF1write(ptag + 2, 2);
@ -343,7 +343,7 @@ __forceinline void SIF1Dma()
default:
Console::WriteLn("Bad addr1 source chain");
}
if ((CHCR::TIE(sif1dma)) && (Tag::IRQ(ptag)))
if ((sif1dma->chcr.TIE) && (Tag::IRQ(ptag)))
{
Console::WriteLn("SIF1 TIE");
sif1.end = 1;
@ -435,19 +435,19 @@ __forceinline void sif1Interrupt()
__forceinline void EEsif0Interrupt()
{
hwDmacIrq(DMAC_SIF0);
CHCR::clearSTR(sif0dma);
sif0dma->chcr.STR = 0;
}
__forceinline void EEsif1Interrupt()
{
hwDmacIrq(DMAC_SIF1);
CHCR::clearSTR(sif1dma);
sif1dma->chcr.STR = 0;
}
__forceinline void dmaSIF0()
{
SIF_LOG("EE: dmaSIF0 chcr = %lx, madr = %lx, qwc = %lx, tadr = %lx",
sif0dma->chcr, sif0dma->madr, sif0dma->qwc, sif0dma->tadr);
sif0dma->chcr._u32, sif0dma->madr, sif0dma->qwc, sif0dma->tadr);
if (sif0.fifoReadPos != sif0.fifoWritePos)
{
@ -470,7 +470,7 @@ __forceinline void dmaSIF0()
__forceinline void dmaSIF1()
{
SIF_LOG("EE: dmaSIF1 chcr = %lx, madr = %lx, qwc = %lx, tadr = %lx",
sif1dma->chcr, sif1dma->madr, sif1dma->qwc, sif1dma->tadr);
sif1dma->chcr._u32, sif1dma->madr, sif1dma->qwc, sif1dma->tadr);
if (sif1.fifoReadPos != sif1.fifoWritePos)
{
@ -494,9 +494,9 @@ __forceinline void dmaSIF1()
__forceinline void dmaSIF2()
{
SIF_LOG("dmaSIF2 chcr = %lx, madr = %lx, qwc = %lx",
sif2dma->chcr, sif2dma->madr, sif2dma->qwc);
sif2dma->chcr._u32, sif2dma->madr, sif2dma->qwc);
CHCR::clearSTR(sif2dma);
sif2dma->chcr.STR = 0;
hwDmacIrq(DMAC_SIF2);
Console::WriteLn("*PCSX2*: dmaSIF2");
}

View File

@ -107,7 +107,7 @@ namespace Tag
static __forceinline void UpperTransfer(DMACh *tag, u32* ptag)
{
// Transfer upper part of tag to CHCR bits 31-15
tag->chcr = (tag->chcr & 0xFFFF) | ((*ptag) & 0xFFFF0000);
tag->chcr._u32 = (tag->chcr._u32 & 0xFFFF) | ((*ptag) & 0xFFFF0000);
}
static __forceinline void LowerTransfer(DMACh *tag, u32* ptag)
@ -193,100 +193,28 @@ namespace Tag
}
}
namespace CHCR
// Print information about a chcr tag.
static __forceinline void PrintCHCR(const char* s, DMACh *tag)
{
// Query the flags in the channel control register.
static __forceinline bool STR(DMACh *tag) { return !!(tag->chcr & CHCR_STR); }
static __forceinline bool TIE(DMACh *tag) { return !!(tag->chcr & CHCR_TIE); }
static __forceinline bool TTE(DMACh *tag) { return !!(tag->chcr & CHCR_TTE); }
static __forceinline u8 DIR(DMACh *tag) { return (tag->chcr & CHCR_DIR); }
u8 num_addr = tag->chcr.ASP;
u32 mode = tag->chcr.MOD;
static __forceinline TransferMode MOD(DMACh *tag)
{
return (TransferMode)((tag->chcr & CHCR_MOD) >> 2);
}
static __forceinline u8 ASP(DMACh *tag)
{
return (TransferMode)((tag->chcr & CHCR_ASP) >> 4);
}
// Clear the individual flags.
static __forceinline void clearSTR(DMACh *tag) { tag->chcr &= ~CHCR_STR; }
static __forceinline void clearTIE(DMACh *tag) { tag->chcr &= ~CHCR_TIE; }
static __forceinline void clearTTE(DMACh *tag) { tag->chcr &= ~CHCR_TTE; }
static __forceinline void clearDIR(DMACh *tag) { tag->chcr &= ~CHCR_DIR; }
// Set them.
static __forceinline void setSTR(DMACh *tag) { tag->chcr |= CHCR_STR; }
static __forceinline void setTIE(DMACh *tag) { tag->chcr |= CHCR_TIE; }
static __forceinline void setTTE(DMACh *tag) { tag->chcr |= CHCR_TTE; }
static __forceinline void setDIR(DMACh *tag) { tag->chcr |= CHCR_DIR; }
static __forceinline void setMOD(DMACh *tag, TransferMode mode)
{
if (mode & (1 << 0))
tag->chcr |= CHCR_MOD1;
else
tag->chcr &= CHCR_MOD1;
if (mode & (1 << 1))
tag->chcr |= CHCR_MOD2;
else
tag->chcr &= CHCR_MOD2;
}
static __forceinline void setASP(DMACh *tag, u8 num)
{
if (num & (1 << 0))
tag->chcr |= CHCR_ASP1;
else
tag->chcr &= CHCR_ASP2;
if (num & (1 << 1))
tag->chcr |= CHCR_ASP1;
else
tag->chcr &= CHCR_ASP2;
}
// Print information about a chcr tag.
static __forceinline void Print(const char* s, DMACh *tag)
{
u8 num_addr = ASP(tag);
TransferMode mode = MOD(tag);
Console::Write("%s chcr %s mem: ", params s, CHCR::DIR(tag) ? "from" : "to");
if (mode == NORMAL_MODE)
Console::Write(" normal mode; ");
else if (mode == CHAIN_MODE)
Console::Write(" chain mode; ");
else if (mode == INTERLEAVE_MODE)
Console::Write(" interleave mode; ");
else
Console::Write(" ?? mode; ");
if (num_addr != 0) Console::Write("ASP = %d;", params num_addr);
if (TTE(tag)) Console::Write("TTE;");
if (TIE(tag)) Console::Write("TIE;");
if (STR(tag)) Console::Write(" (DMA started)."); else Console::Write(" (DMA stopped).");
Console::WriteLn("");
}
}
namespace QWC
{
static __forceinline bool Empty(DMACh *tag)
{
return (tag->qwc == 0);
}
static __forceinline void Clear(DMACh *tag)
{
tag->qwc = 0;
}
Console::Write("%s chcr %s mem: ", params s, (tag->chcr.DIR) ? "from" : "to");
if (mode == NORMAL_MODE)
Console::Write(" normal mode; ");
else if (mode == CHAIN_MODE)
Console::Write(" chain mode; ");
else if (mode == INTERLEAVE_MODE)
Console::Write(" interleave mode; ");
else
Console::Write(" ?? mode; ");
if (num_addr != 0) Console::Write("ASP = %d;", params num_addr);
if (tag->chcr.TTE) Console::Write("TTE;");
if (tag->chcr.TIE) Console::Write("TIE;");
if (tag->chcr.STR) Console::Write(" (DMA started)."); else Console::Write(" (DMA stopped).");
Console::WriteLn("");
}
namespace D_CTRL

View File

@ -66,35 +66,31 @@ void COP2_Unknown()
}
//****************************************************************************
void _vu0WaitMicro() {
int startcycle;
__forceinline void _vu0run(bool breakOnMbit) {
if ((VU0.VI[REG_VPU_STAT].UL & 0x1) == 0) {
return;
}
if (!(VU0.VI[REG_VPU_STAT].UL & 1)) return;
startcycle = VU0.cycle;
int startcycle = VU0.cycle;
VU0.flags &= ~VUFLAG_MFLAGSET;
VU0.flags|= VUFLAG_BREAKONMFLAG;
VU0.flags&= ~VUFLAG_MFLAGSET;
if (!CHECK_MICROVU0) {
do {
CpuVU0.ExecuteBlock();
// knockout kings 2002 loops here
if( VU0.cycle-startcycle > 0x1000 ) {
Console::Notice("VU0 perma-stall, breaking execution..."); // (email zero if gfx are bad)
break;
}
} while ((VU0.VI[REG_VPU_STAT].UL & 0x1) && (VU0.flags & VUFLAG_MFLAGSET) == 0);
}
else CpuVU0.ExecuteBlock(); // Note: Need to test Knockout Kings 2002 with mVU!
do {
// knockout kings 2002 loops here with sVU
if (breakOnMbit && (VU0.cycle-startcycle > 0x1000)) {
Console::Notice("VU0 perma-stall, breaking execution...");
break; // mVU will never get here (it handles mBit internally)
}
CpuVU0.ExecuteBlock();
} while ((VU0.VI[REG_VPU_STAT].UL & 1) // E-bit Termination
&& (!breakOnMbit || !(VU0.flags & VUFLAG_MFLAGSET))); // M-bit Break
//NEW
cpuRegs.cycle += (VU0.cycle-startcycle)*2;
VU0.flags&= ~VUFLAG_BREAKONMFLAG;
}
void _vu0WaitMicro() { _vu0run(1); } // Runs VU0 Micro Until E-bit or M-Bit End
void _vu0FinishMicro() { _vu0run(0); } // Runs VU0 Micro Until E-Bit End
namespace R5900 {
namespace Interpreter{
namespace OpcodeImpl

View File

@ -434,7 +434,7 @@ void mfifoVIF1transfer(int qwc)
if (qwc > 0)
{
vifqwc += qwc;
SPR_LOG("Added %x qw to mfifo, total now %x - Vif CHCR %x Stalled %x done %x", qwc, vifqwc, vif1ch->chcr, vif1.vifstalled, vif1.done);
SPR_LOG("Added %x qw to mfifo, total now %x - Vif CHCR %x Stalled %x done %x", qwc, vifqwc, vif1ch->chcr._u32, vif1.vifstalled, vif1.done);
if (vif1.inprogress & 0x10)
{
if (vif1ch->madr >= psHu32(DMAC_RBOR) && vif1ch->madr <= (psHu32(DMAC_RBOR) + psHu32(DMAC_RBSR)))
@ -453,7 +453,7 @@ void mfifoVIF1transfer(int qwc)
{
ptag = (u32*)dmaGetAddr(vif1ch->tadr);
if (CHCR::TTE(vif1ch))
if (vif1ch->chcr.TTE)
{
if (vif1.stallontag)
ret = VIF1transfer(ptag + (2 + vif1.irqoffset), 2 - vif1.irqoffset, 1); //Transfer Tag on Stall
@ -513,7 +513,7 @@ void mfifoVIF1transfer(int qwc)
break;
}
if ((CHCR::TIE(vif1ch)) && (Tag::IRQ(ptag)))
if ((vif1ch->chcr.TIE) && (Tag::IRQ(ptag)))
{
VIF_LOG("dmaIrq Set");
vif1.done = true;
@ -522,7 +522,7 @@ void mfifoVIF1transfer(int qwc)
vif1.inprogress |= 1;
SPR_LOG("mfifoVIF1transfer end %x madr %x, tadr %x vifqwc %x", vif1ch->chcr, vif1ch->madr, vif1ch->tadr, vifqwc);
SPR_LOG("mfifoVIF1transfer end %x madr %x, tadr %x vifqwc %x", vif1ch->chcr._u32, vif1ch->madr, vif1ch->tadr, vifqwc);
}
void vifMFIFOInterrupt()
@ -533,7 +533,7 @@ void vifMFIFOInterrupt()
if ((vif1Regs->stat & VIF1_STAT_VGW))
{
if (CHCR::STR(gif))
if (gif->chcr.STR)
{
CPU_INT(10, 16);
return;
@ -545,9 +545,9 @@ void vifMFIFOInterrupt()
}
if ((CHCR::STR(spr0)) && (spr0->qwc == 0))
if ((spr0->chcr.STR) && (spr0->qwc == 0))
{
CHCR::clearSTR(spr0);
spr0->chcr.STR = 0;
hwDmacIrq(DMAC_FROM_SPR);
}
@ -559,7 +559,7 @@ void vifMFIFOInterrupt()
if (vif1Regs->stat & (VIF1_STAT_VSS | VIF1_STAT_VIS | VIF1_STAT_VFS))
{
vif1Regs->stat &= ~VIF1_STAT_FQC; // FQC=0
CHCR::clearSTR(vif1ch);
vif1ch->chcr.STR = 0;
return;
}
}
@ -606,7 +606,7 @@ void vifMFIFOInterrupt()
vif1.done = 1;
g_vifCycles = 0;
CHCR::clearSTR(vif1ch);
vif1ch->chcr.STR = 0;
hwDmacIrq(DMAC_VIF1);
VIF_LOG("vif mfifo dma end");

View File

@ -29,32 +29,52 @@ struct vifCycle {
//
union tVIF_STAT {
struct {
u32 VPS : 2;
u32 VEW : 1;
u32 VGW : 1;
u32 VPS : 2; // Vif(0/1) status.
u32 VEW : 1; // E-bit wait (1 - wait, 0 - don't wait)
u32 VGW : 1; // Status waiting for the end of gif transfer (Vif1 only)
u32 reserved : 2;
u32 MRK : 1;
u32 DBF : 1;
u32 VSS : 1;
u32 VFS : 1;
u32 VIS : 1;
u32 INT : 1;
u32 ER0 : 1;
u32 ER1 : 1;
u32 MRK : 1; // Mark Detect
u32 DBF : 1; // Double Buffer Flag
u32 VSS : 1; // Stopped by STOP
u32 VFS : 1; // Stopped by ForceBreak
u32 VIS : 1; // Vif Interrupt Stall
u32 INT : 1; // Intereupt by the i bit.
u32 ER0 : 1; // DmaTag Mismatch error.
u32 ER1 : 1; // VifCode error
u32 reserved2 : 9;
u32 FDR : 1;
u32 FQC : 5;
u32 FDR : 1; // VIF/FIFO transfer direction. (0 - memory -> Vif, 1 - Vif -> memory)
u32 FQC : 5; // Amount of data. Up to 8 qwords on Vif0, 16 on Vif1.
};
u32 _u32;
};
union tVIF_FBRST {
struct {
u32 RST : 1; // Resets Vif(0/1) when written.
u32 FBK : 1; // Causes a Forcebreak to Vif((0/1) when 1 is written. (Stall)
u32 STP : 1; // Stops after the end of the Vifcode in progress when written. (Stall)
u32 STC : 1; // Cancels the Vif(0/1) stall and clears Vif Stats VSS, VFS, VIS, INT, ER0 & ER1.
u32 reserved : 28;
};
u32 _u32;
};
union tVIF_ERR {
struct {
u32 MII : 1; // Masks Stat INT.
u32 ME0 : 1; // Masks Stat Err0.
u32 ME1 : 1; // Masks Stat Err1.
u32 reserved : 29;
};
u32 _u32;
};
// r0-r3 and c0-c3 would be more managable as arrays.
struct VIFregisters {
u32 stat;
u32 pad0[3];
u32 fbrst;
u32 pad1[3];
u32 err;
tVIF_ERR err;
u32 pad2[3];
u32 mark;
u32 pad3[3];
@ -102,7 +122,7 @@ struct VIFregisters {
u32 addr;
};
enum vif_errors
/*enum vif_errors
{
VIF_ERR_MII = 0x1,
VIF_ERR_ME0 = 0x2,
@ -120,7 +140,7 @@ namespace VIF_ERR
// If true, VifCode errors are masked.
static __forceinline bool ME1(VIFregisters *tag) { return !!(tag->err & VIF_ERR_ME1); }
}
}*/
extern "C"
{

View File

@ -1222,7 +1222,7 @@ static void Vif0CMDMPGTransfer() // MPG
static void Vif0CMDNull() // invalid opcode
{
// if ME1, then force the vif to interrupt
if (!(VIF_ERR::ME1(vif0Regs))) //Ignore vifcode and tag mismatch error
if (!(vif0Regs->err.ME1)) //Ignore vifcode and tag mismatch error
{
Console::WriteLn("UNKNOWN VifCmd: %x", params vif0.cmd);
vif0Regs->stat |= VIF0_STAT_ER1;
@ -1274,7 +1274,7 @@ int VIF0transfer(u32 *data, int size, int istag)
if ((vif0.cmd & 0x7f) > 0x4A)
{
if (!(VIF_ERR::ME1(vif0Regs))) //Ignore vifcode and tag mismatch error
if (!(vif0Regs->err.ME1)) //Ignore vifcode and tag mismatch error
{
Console::WriteLn("UNKNOWN VifCmd: %x", params vif0.cmd);
vif0Regs->stat |= VIF0_STAT_ER1;
@ -1294,7 +1294,7 @@ int VIF0transfer(u32 *data, int size, int istag)
{
vif0.cmd &= 0x7f;
if (!(VIF_ERR::MII(vif0Regs))) //i bit on vifcode and not masked by VIF0_ERR
if (!(vif0Regs->err.MII)) //i bit on vifcode and not masked by VIF0_ERR
{
VIF_LOG("Interrupt on VIFcmd: %x (INTC_MASK = %x)", vif0.cmd, psHu32(INTC_MASK));
@ -1385,7 +1385,7 @@ int _chainVIF0()
vif0ptag[1], vif0ptag[0], vif0ch->qwc, id, vif0ch->madr, vif0ch->tadr);
// Transfer dma tag if tte is set
if (CHCR::TTE(vif0ch))
if (vif0ch->chcr.TTE)
{
if (vif0.vifstalled)
ret = VIF0transfer(vif0ptag + (2 + vif0.irqoffset), 2 - vif0.irqoffset, 1); //Transfer Tag on stall
@ -1403,7 +1403,7 @@ int _chainVIF0()
ret = _VIF0chain(); //Transfers the data set by the switch
if (CHCR::TIE(vif0ch) && Tag::IRQ(vif0ptag)) //Check TIE bit of CHCR and IRQ bit of tag
if (vif0ch->chcr.TIE && Tag::IRQ(vif0ptag)) //Check TIE bit of CHCR and IRQ bit of tag
{
VIF_LOG("dmaIrq Set\n");
@ -1426,7 +1426,7 @@ void vif0Interrupt()
if (vif0Regs->stat & (VIF0_STAT_VSS | VIF0_STAT_VIS | VIF0_STAT_VFS))
{
vif0Regs->stat &= ~VIF0_STAT_FQC; // FQC=0
CHCR::clearSTR(vif0ch);
vif0ch->chcr.STR = 0;
return;
}
@ -1442,9 +1442,9 @@ void vif0Interrupt()
}
}
if (!CHCR::STR(vif0ch)) Console::WriteLn("Vif0 running when CHCR = %x", params vif0ch->chcr);
if (!vif0ch->chcr.STR) Console::WriteLn("Vif0 running when CHCR = %x", params vif0ch->chcr._u32);
if ((CHCR::MOD(vif0ch) == CHAIN_MODE) && (!vif0.done) && (!vif0.vifstalled))
if ((vif0ch->chcr.MOD == CHAIN_MODE) && (!vif0.done) && (!vif0.vifstalled))
{
if (!(psHu32(DMAC_CTRL) & 0x1))
@ -1465,7 +1465,7 @@ void vif0Interrupt()
if (vif0ch->qwc > 0) Console::WriteLn("VIF0 Ending with QWC left");
if (vif0.cmd != 0) Console::WriteLn("vif0.cmd still set %x", params vif0.cmd);
CHCR::clearSTR(vif0ch);
vif0ch->chcr.STR = 0;
hwDmacIrq(DMAC_VIF0);
vif0Regs->stat &= ~VIF0_STAT_FQC; // FQC=0
}
@ -1510,14 +1510,14 @@ void dmaVIF0()
{
VIF_LOG("dmaVIF0 chcr = %lx, madr = %lx, qwc = %lx\n"
" tadr = %lx, asr0 = %lx, asr1 = %lx\n",
vif0ch->chcr, vif0ch->madr, vif0ch->qwc,
vif0ch->chcr._u32, vif0ch->madr, vif0ch->qwc,
vif0ch->tadr, vif0ch->asr0, vif0ch->asr1);
g_vifCycles = 0;
vif0Regs->stat |= 0x8000000; // FQC=8
if (!(vif0ch->chcr & 0x4) || vif0ch->qwc > 0) // Normal Mode
if (!(vif0ch->chcr.MOD & 0x1) || vif0ch->qwc > 0) // Normal Mode
{
if (_VIF0chain() == -2)
{
@ -1561,7 +1561,7 @@ void vif0Write32(u32 mem, u32 value)
psHu64(VIF0_FIFO) = 0;
psHu64(VIF0_FIFO + 8) = 0; // VIF0_FIFO + 8
vif0.done = true;
vif0Regs->err = 0;
vif0Regs->err._u32 = 0;
vif0Regs->stat &= ~(VIF0_STAT_FQC | VIF0_STAT_INT | VIF0_STAT_VSS | VIF0_STAT_VIS | VIF0_STAT_VFS | VIF0_STAT_VPS); // FQC=0
}
@ -1608,7 +1608,7 @@ void vif0Write32(u32 mem, u32 value)
else
_VIF0chain();
CHCR::setSTR(vif0ch);
vif0ch->chcr.STR = 1;
CPU_INT(0, g_vifCycles); // Gets the timing right - Flatout
}
}
@ -1620,7 +1620,7 @@ void vif0Write32(u32 mem, u32 value)
VIF_LOG("VIF0_ERR write32 0x%8.8x", value);
/* Set VIF0_ERR with 'value' */
vif0Regs->err = value;
vif0Regs->err._u32 = value;
break;
case VIF0_R0:
@ -1862,7 +1862,7 @@ static int __fastcall Vif1TransDirectHL(u32 *data)
if ((vif1.cmd & 0x7f) == 0x51)
{
if (CHCR::STR(gif) && (!vif1Regs->mskpath3 && (Path3progress == IMAGE_MODE))) //PATH3 is in image mode, so wait for end of transfer
if (gif->chcr.STR && (!vif1Regs->mskpath3 && (Path3progress == IMAGE_MODE))) //PATH3 is in image mode, so wait for end of transfer
{
vif1Regs->stat |= VIF1_STAT_VGW;
return 0;
@ -2055,7 +2055,7 @@ void Vif1MskPath3() // MSKPATH3
}
static void Vif1CMDMskPath3() // MSKPATH3
{
if (CHCR::STR(vif1ch))
if (vif1ch->chcr.STR)
{
schedulepath3msk = 0x10 | ((vif1Regs->code >> 15) & 0x1);
vif1.vifstalled = true;
@ -2083,7 +2083,7 @@ static void Vif1CMDFlush() // FLUSH/E/A
if ((vif1.cmd & 0x7f) == 0x13)
{
// Gif is already transferring so wait for it.
if (((Path3progress != STOPPED_MODE) || !vif1Regs->mskpath3) && CHCR::STR(gif))
if (((Path3progress != STOPPED_MODE) || !vif1Regs->mskpath3) && gif->chcr.STR)
{
vif1Regs->stat |= VIF1_STAT_VGW;
CPU_INT(2, 4);
@ -2144,7 +2144,7 @@ static void Vif1CMDNull() // invalid opcode
{
// if ME1, then force the vif to interrupt
if (!(VIF_ERR::ME1(vif1Regs))) //Ignore vifcode and tag mismatch error
if (!(vif1Regs->err.ME1)) //Ignore vifcode and tag mismatch error
{
Console::WriteLn("UNKNOWN VifCmd: %x\n", params vif1.cmd);
vif1Regs->stat |= VIF1_STAT_ER1;
@ -2242,7 +2242,7 @@ int VIF1transfer(u32 *data, int size, int istag)
if ((vif1.cmd & 0x7f) > 0x51)
{
if (!(VIF_ERR::ME1(vif1Regs))) //Ignore vifcode and tag mismatch error
if (!(vif0Regs->err.ME1)) //Ignore vifcode and tag mismatch error
{
Console::WriteLn("UNKNOWN VifCmd: %x", params vif1.cmd);
vif1Regs->stat |= VIF1_STAT_ER1;
@ -2260,7 +2260,7 @@ int VIF1transfer(u32 *data, int size, int istag)
{
vif1.cmd &= 0x7f;
if (!(VIF_ERR::MII(vif1Regs))) //i bit on vifcode and not masked by VIF1_ERR
if (!(vif1Regs->err.MII)) //i bit on vifcode and not masked by VIF1_ERR
{
VIF_LOG("Interrupt on VIFcmd: %x (INTC_MASK = %x)", vif1.cmd, psHu32(INTC_MASK));
@ -2461,7 +2461,7 @@ __forceinline void vif1SetupTransfer()
vif1.inprogress = 1;
if (CHCR::TTE(vif1ch))
if (vif1ch->chcr.TTE)
{
if (vif1.vifstalled)
@ -2480,7 +2480,7 @@ __forceinline void vif1SetupTransfer()
vif1.done |= hwDmacSrcChainWithStack(vif1ch, id);
//Check TIE bit of CHCR and IRQ bit of tag
if ((CHCR::TIE(vif1ch)) && (Tag::IRQ(vif1ptag)))
if (vif1ch->chcr.TIE && (Tag::IRQ(vif1ptag)))
{
VIF_LOG("dmaIrq Set");
@ -2501,7 +2501,7 @@ __forceinline void vif1Interrupt()
if((vif1Regs->stat & VIF1_STAT_VGW))
{
if (CHCR::STR(gif))
if (gif->chcr.STR)
{
CPU_INT(1, gif->qwc * BIAS);
return;
@ -2510,7 +2510,7 @@ __forceinline void vif1Interrupt()
}
if (!(CHCR::STR(vif1ch))) Console::WriteLn("Vif1 running when CHCR == %x", params vif1ch->chcr);
if (!(vif1ch->chcr.STR)) Console::WriteLn("Vif1 running when CHCR == %x", params vif1ch->chcr._u32);
if (vif1.irq && vif1.tag.size == 0)
{
@ -2522,7 +2522,7 @@ __forceinline void vif1Interrupt()
vif1Regs->stat &= ~VIF1_STAT_FQC; // FQC=0
// One game doesnt like vif stalling at end, cant remember what. Spiderman isnt keen on it tho
CHCR::clearSTR(vif1ch);
vif1ch->chcr.STR = 0;
return;
}
else if ((vif1ch->qwc > 0) || (vif1.irqoffset > 0))
@ -2567,7 +2567,7 @@ __forceinline void vif1Interrupt()
#endif
vif1Regs->stat &= ~VIF1_STAT_VPS; //Vif goes idle as the stall happened between commands;
CHCR::clearSTR(vif1ch);
vif1ch->chcr.STR = 0;
g_vifCycles = 0;
hwDmacIrq(DMAC_VIF1);
@ -2575,7 +2575,7 @@ __forceinline void vif1Interrupt()
//Games effected by setting, Fatal Frame, KH2, Shox, Crash N Burn, GT3/4 possibly
//Im guessing due to the full gs fifo before the reverse? (Refraction)
//Note also this is only the condition for reverse fifo mode, normal direction clears it as normal
if (!vif1Regs->mskpath3 || (CHCR::DIR(vif1ch))) vif1Regs->stat &= ~0x1F000000; // FQC=0
if (!vif1Regs->mskpath3 || vif1ch->chcr.DIR) vif1Regs->stat &= ~0x1F000000; // FQC=0
}
void dmaVIF1()
@ -2592,7 +2592,7 @@ void dmaVIF1()
{
//Console::WriteLn("VIFMFIFO\n");
// Test changed because the Final Fantasy 12 opening somehow has the tag in *Undefined* mode, which is not in the documentation that I saw.
if (CHCR::MOD(vif1ch) == NORMAL_MODE) Console::WriteLn("MFIFO mode is normal (which isn't normal here)! %x", params vif1ch->chcr);
if (vif1ch->chcr.MOD == NORMAL_MODE) Console::WriteLn("MFIFO mode is normal (which isn't normal here)! %x", params vif1ch->chcr);
vifMFIFOInterrupt();
return;
}
@ -2604,13 +2604,13 @@ void dmaVIF1()
}
#endif
if ((CHCR::MOD(vif1ch) == NORMAL_MODE) || vif1ch->qwc > 0) // Normal Mode
if ((vif1ch->chcr.MOD == NORMAL_MODE) || vif1ch->qwc > 0) // Normal Mode
{
if ((psHu32(DMAC_CTRL) & 0xC0) == 0x40)
Console::WriteLn("DMA Stall Control on VIF1 normal");
if ((CHCR::DIR(vif1ch))) // to Memory
if (vif1ch->chcr.DIR) // to Memory
vif1.dmamode = VIF_NORMAL_TO_MEM_MODE;
else
vif1.dmamode = VIF_NORMAL_FROM_MEM_MODE;
@ -2659,10 +2659,10 @@ void vif1Write32(u32 mem, u32 value)
{
vif1Regs->mskpath3 = 0;
psHu32(GIF_STAT) &= ~GIF_STAT_IMT;
if (CHCR::STR(gif)) CPU_INT(2, 4);
if (gif->chcr.STR) CPU_INT(2, 4);
}
vif1Regs->err = 0;
vif1Regs->err._u32 = 0;
vif1.inprogress = 0;
vif1Regs->stat &= ~(VIF1_STAT_FQC | VIF1_STAT_FDR | VIF1_STAT_INT | VIF1_STAT_VSS | VIF1_STAT_VIS | VIF1_STAT_VFS | VIF1_STAT_VPS); // FQC=0
}
@ -2718,7 +2718,7 @@ void vif1Write32(u32 mem, u32 value)
// Gets the timing right - Flatout
CPU_INT(1, vif1ch->qwc * BIAS);
}
CHCR::setSTR(vif1ch);
vif1ch->chcr.STR = 1;
}
}
}
@ -2728,7 +2728,7 @@ void vif1Write32(u32 mem, u32 value)
VIF_LOG("VIF1_ERR write32 0x%8.8x", value);
/* Set VIF1_ERR with 'value' */
vif1Regs->err = value;
vif1Regs->err._u32 = value;
break;
case VIF1_STAT: // STAT

View File

@ -1,140 +1,165 @@
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
//------------------------------------------------------------------
// Micro VU - Pass 2 Functions
//------------------------------------------------------------------
//------------------------------------------------------------------
// Flag Allocators
//------------------------------------------------------------------
#define getFlagReg(regX, fInst) { \
switch (fInst) { \
case 0: regX = gprF0; break; \
case 1: regX = gprF1; break; \
case 2: regX = gprF2; break; \
case 3: regX = gprF3; break; \
default: \
Console::Error("microVU Error: fInst = %d", params fInst); \
regX = gprF0; \
break; \
} \
}
#define setBitSFLAG(bitTest, bitSet) { \
TEST32ItoR(regT, bitTest); \
pjmp = JZ8(0); \
OR32ItoR(reg, bitSet); \
x86SetJ8(pjmp); \
}
#define setBitFSEQ(bitX) { \
TEST32ItoR(gprT1, bitX); \
pjmp = JZ8(0); \
OR32ItoR(gprT1, bitX); \
x86SetJ8(pjmp); \
}
microVUt(void) mVUallocSFLAGa(int reg, int fInstance) {
getFlagReg(fInstance, fInstance);
MOV32RtoR(reg, fInstance);
}
microVUt(void) mVUallocSFLAGb(int reg, int fInstance) {
getFlagReg(fInstance, fInstance);
MOV32RtoR(fInstance, reg);
}
// Normalize Status Flag
microVUt(void) mVUallocSFLAGc(int reg, int regT, int fInstance) {
u8 *pjmp;
XOR32RtoR(reg, reg);
mVUallocSFLAGa(regT, fInstance);
setBitSFLAG(0x0f00, 0x0001); // Z Bit
setBitSFLAG(0xf000, 0x0002); // S Bit
setBitSFLAG(0x000f, 0x0040); // ZS Bit
setBitSFLAG(0x00f0, 0x0080); // SS Bit
AND32ItoR(regT, 0xffff0000); // DS/DI/OS/US/D/I/O/U Bits
SHR32ItoR(regT, 14);
OR32RtoR(reg, regT);
}
microVUt(void) mVUallocMFLAGa(mV, int reg, int fInstance) {
MOVZX32M16toR(reg, (uptr)&mVU->macFlag[fInstance]);
}
microVUt(void) mVUallocMFLAGb(mV, int reg, int fInstance) {
//AND32ItoR(reg, 0xffff);
MOV32RtoM((uptr)&mVU->macFlag[fInstance], reg);
}
microVUt(void) mVUallocCFLAGa(mV, int reg, int fInstance) {
MOV32MtoR(reg, (uptr)&mVU->clipFlag[fInstance]);
}
microVUt(void) mVUallocCFLAGb(mV, int reg, int fInstance) {
MOV32RtoM((uptr)&mVU->clipFlag[fInstance], reg);
}
//------------------------------------------------------------------
// VI Reg Allocators
//------------------------------------------------------------------
microVUt(void) mVUallocVIa(mV, int GPRreg, int _reg_) {
if (!_reg_) { XOR32RtoR(GPRreg, GPRreg); }
else { MOVZX32Rm16toR(GPRreg, gprR, (_reg_ - 9) * 16); }
}
microVUt(void) mVUallocVIb(mV, int GPRreg, int _reg_) {
if (mVUlow.backupVI) { // Backs up reg to memory (used when VI is modified b4 a branch)
MOVZX32M16toR(gprR, (uptr)&mVU->regs->VI[_reg_].UL);
MOV32RtoM((uptr)&mVU->VIbackup, gprR);
MOV32ItoR(gprR, Roffset);
}
if (_reg_ == 0) { return; }
else if (_reg_ < 16) { MOV16RtoRm(gprR, GPRreg, (_reg_ - 9) * 16); }
}
//------------------------------------------------------------------
// I/P/Q Reg Allocators
//------------------------------------------------------------------
microVUt(void) getPreg(mV, int reg) {
mVUunpack_xyzw(reg, xmmPQ, (2 + mVUinfo.readP));
/*if (CHECK_VU_EXTRA_OVERFLOW) mVUclamp2(reg, xmmT1, 15);*/
}
microVUt(void) getQreg(int reg, int qInstance) {
mVUunpack_xyzw(reg, xmmPQ, qInstance);
/*if (CHECK_VU_EXTRA_OVERFLOW) mVUclamp2<vuIndex>(reg, xmmT1, 15);*/
}
microVUt(void) writeQreg(int reg, int qInstance) {
if (qInstance) {
if (!x86caps.hasStreamingSIMD4Extensions) {
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, 0xe1);
SSE_MOVSS_XMM_to_XMM(xmmPQ, reg);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, 0xe1);
}
else SSE4_INSERTPS_XMM_to_XMM(xmmPQ, reg, _MM_MK_INSERTPS_NDX(0, 1, 0));
}
else SSE_MOVSS_XMM_to_XMM(xmmPQ, reg);
}
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
//------------------------------------------------------------------
// Micro VU - Pass 2 Functions
//------------------------------------------------------------------
//------------------------------------------------------------------
// Flag Allocators
//------------------------------------------------------------------
#define getFlagReg(regX, fInst) { \
switch (fInst) { \
case 0: regX = gprF0; break; \
case 1: regX = gprF1; break; \
case 2: regX = gprF2; break; \
case 3: regX = gprF3; break; \
default: \
Console::Error("microVU Error: fInst = %d", params fInst); \
regX = gprF0; \
break; \
} \
}
#define setBitSFLAG(bitTest, bitSet) { \
TEST32ItoR(regT, bitTest); \
pjmp = JZ8(0); \
OR32ItoR(reg, bitSet); \
x86SetJ8(pjmp); \
}
#define setBitFSEQ(bitX) { \
TEST32ItoR(gprT1, bitX); \
pjmp = JZ8(0); \
OR32ItoR(gprT1, bitX); \
x86SetJ8(pjmp); \
}
microVUt(void) mVUallocSFLAGa(int reg, int fInstance) {
getFlagReg(fInstance, fInstance);
MOV32RtoR(reg, fInstance);
}
microVUt(void) mVUallocSFLAGb(int reg, int fInstance) {
getFlagReg(fInstance, fInstance);
MOV32RtoR(fInstance, reg);
}
// Normalize Status Flag
microVUt(void) mVUallocSFLAGc(int reg, int regT, int fInstance) {
u8 *pjmp;
XOR32RtoR(reg, reg);
mVUallocSFLAGa(regT, fInstance);
setBitSFLAG(0x0f00, 0x0001); // Z Bit
setBitSFLAG(0xf000, 0x0002); // S Bit
setBitSFLAG(0x000f, 0x0040); // ZS Bit
setBitSFLAG(0x00f0, 0x0080); // SS Bit
AND32ItoR(regT, 0xffff0000); // DS/DI/OS/US/D/I/O/U Bits
SHR32ItoR(regT, 14);
OR32RtoR(reg, regT);
}
// Denormalizes Status Flag
microVUt(void) mVUallocSFLAGd(uptr memAddr, bool setAllflags) {
MOV32MtoR(gprF0, memAddr);
MOV32RtoR(gprF1, gprF0);
SHR32ItoR(gprF1, 3);
AND32ItoR(gprF1, 0x18);
MOV32RtoR(gprF2, gprF0);
SHL32ItoR(gprF2, 11);
AND32ItoR(gprF2, 0x1800);
OR32RtoR (gprF1, gprF2);
SHL32ItoR(gprF0, 14);
AND32ItoR(gprF0, 0x3cf0000);
OR32RtoR (gprF1, gprF0);
if (setAllflags) {
MOV32RtoR(gprF0, gprF1);
MOV32RtoR(gprF2, gprF1);
MOV32RtoR(gprF3, gprF1);
}
}
microVUt(void) mVUallocMFLAGa(mV, int reg, int fInstance) {
MOVZX32M16toR(reg, (uptr)&mVU->macFlag[fInstance]);
}
microVUt(void) mVUallocMFLAGb(mV, int reg, int fInstance) {
//AND32ItoR(reg, 0xffff);
if (fInstance < 4) MOV32RtoM((uptr)&mVU->macFlag[fInstance], reg); // microVU
else MOV32RtoM((uptr)&mVU->regs->VI[REG_MAC_FLAG].UL, reg); // macroVU
}
microVUt(void) mVUallocCFLAGa(mV, int reg, int fInstance) {
if (fInstance < 4) MOV32MtoR(reg, (uptr)&mVU->clipFlag[fInstance]); // microVU
else MOV32MtoR(reg, (uptr)&mVU->regs->VI[REG_CLIP_FLAG].UL); // macroVU
}
microVUt(void) mVUallocCFLAGb(mV, int reg, int fInstance) {
if (fInstance < 4) MOV32RtoM((uptr)&mVU->clipFlag[fInstance], reg); // microVU
else MOV32RtoM((uptr)&mVU->regs->VI[REG_CLIP_FLAG].UL, reg); // macroVU
}
//------------------------------------------------------------------
// VI Reg Allocators
//------------------------------------------------------------------
microVUt(void) mVUallocVIa(mV, int GPRreg, int _reg_) {
if (!_reg_) { XOR32RtoR(GPRreg, GPRreg); }
else { MOVZX32M16toR(GPRreg, (uptr)&mVU->regs->VI[_reg_].UL); }
}
microVUt(void) mVUallocVIb(mV, int GPRreg, int _reg_) {
if (mVUlow.backupVI) { // Backs up reg to memory (used when VI is modified b4 a branch)
MOVZX32M16toR(gprT3, (uptr)&mVU->regs->VI[_reg_].UL);
MOV32RtoM((uptr)&mVU->VIbackup, gprT3);
}
if (_reg_ == 0) { return; }
else if (_reg_ < 16) { MOV16RtoM((uptr)&mVU->regs->VI[_reg_].UL, GPRreg); }
}
//------------------------------------------------------------------
// I/P/Q Reg Allocators
//------------------------------------------------------------------
microVUt(void) getPreg(mV, int reg) {
mVUunpack_xyzw(reg, xmmPQ, (2 + mVUinfo.readP));
/*if (CHECK_VU_EXTRA_OVERFLOW) mVUclamp2(reg, xmmT1, 15);*/
}
microVUt(void) getQreg(int reg, int qInstance) {
mVUunpack_xyzw(reg, xmmPQ, qInstance);
/*if (CHECK_VU_EXTRA_OVERFLOW) mVUclamp2<vuIndex>(reg, xmmT1, 15);*/
}
microVUt(void) writeQreg(int reg, int qInstance) {
if (qInstance) {
if (!x86caps.hasStreamingSIMD4Extensions) {
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, 0xe1);
SSE_MOVSS_XMM_to_XMM(xmmPQ, reg);
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, 0xe1);
}
else SSE4_INSERTPS_XMM_to_XMM(xmmPQ, reg, _MM_MK_INSERTPS_NDX(0, 1, 0));
}
else SSE_MOVSS_XMM_to_XMM(xmmPQ, reg);
}

View File

@ -1,194 +1,199 @@
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
microVUt(void) mVUincCycles(mV, int x);
microVUr(void*) mVUcompile(microVU* mVU, u32 startPC, uptr pState);
#define blockCreate(addr) { if (!mVUblocks[addr]) mVUblocks[addr] = new microBlockManager(); }
#define sI ((mVUpBlock->pState.needExactMatch & 1) ? 3 : ((mVUpBlock->pState.flags >> 0) & 3))
#define cI ((mVUpBlock->pState.needExactMatch & 4) ? 3 : ((mVUpBlock->pState.flags >> 2) & 3))
microVUt(void) mVUendProgram(mV, microFlagCycles* mFC, int isEbit) {
int fStatus = (isEbit) ? findFlagInst(mFC->xStatus, 0x7fffffff) : sI;
int fMac = (isEbit) ? findFlagInst(mFC->xMac, 0x7fffffff) : 0;
int fClip = (isEbit) ? findFlagInst(mFC->xClip, 0x7fffffff) : cI;
int qInst = 0;
int pInst = 0;
mVU->regAlloc->flushAll();
if (isEbit) {
mVUprint("mVUcompile ebit");
memset(&mVUinfo, 0, sizeof(mVUinfo));
memset(&mVUregsTemp, 0, sizeof(mVUregsTemp));
mVUincCycles(mVU, 100); // Ensures Valid P/Q instances (And sets all cycle data to 0)
mVUcycles -= 100;
qInst = mVU->q;
pInst = mVU->p;
if (mVUinfo.doDivFlag) {
sFLAG.doFlag = 1;
sFLAG.write = fStatus;
mVUdivSet(mVU);
}
if (mVUinfo.doXGKICK) { mVU_XGKICK_DELAY(mVU, 1); }
}
// Save P/Q Regs
if (qInst) { SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, 0xe5); }
SSE_MOVSS_XMM_to_M32((uptr)&mVU->regs->VI[REG_Q].UL, xmmPQ);
if (isVU1) {
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, pInst ? 3 : 2);
SSE_MOVSS_XMM_to_M32((uptr)&mVU->regs->VI[REG_P].UL, xmmPQ);
}
// Save Flag Instances
mVUallocSFLAGc(gprT1, gprT2, fStatus);
MOV32RtoM((uptr)&mVU->regs->VI[REG_STATUS_FLAG].UL, gprT1);
mVUallocMFLAGa(mVU, gprT1, fMac);
mVUallocCFLAGa(mVU, gprT2, fClip);
MOV32RtoM((uptr)&mVU->regs->VI[REG_MAC_FLAG].UL, gprT1);
MOV32RtoM((uptr)&mVU->regs->VI[REG_CLIP_FLAG].UL, gprT2);
if (isEbit || isVU1) { // Clear 'is busy' Flags
AND32ItoM((uptr)&VU0.VI[REG_VPU_STAT].UL, (isVU1 ? ~0x100 : ~0x001)); // VBS0/VBS1 flag
AND32ItoM((uptr)&mVU->regs->vifRegs->stat, ~VIF1_STAT_VEW); // Clear VU 'is busy' signal for vif
}
if (isEbit != 2) { // Save PC, and Jump to Exit Point
MOV32ItoM((uptr)&mVU->regs->VI[REG_TPC].UL, xPC);
JMP32((uptr)mVU->exitFunct - ((uptr)x86Ptr + 5));
}
}
// Recompiles Code for Proper Flags and Q/P regs on Block Linkings
microVUt(void) mVUsetupBranch(mV, microFlagCycles& mFC) {
mVU->regAlloc->flushAll(); // Flush Allocated Regs
mVUsetupFlags(mVU, mFC); // Shuffle Flag Instances
// Shuffle P/Q regs since every block starts at instance #0
if (mVU->p || mVU->q) { SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, shufflePQ); }
}
void normBranchCompile(microVU* mVU, u32 branchPC) {
using namespace x86Emitter;
microBlock* pBlock;
blockCreate(branchPC/8);
pBlock = mVUblocks[branchPC/8]->search((microRegInfo*)&mVUregs);
if (pBlock) { xJMP(pBlock->x86ptrStart); }
else { mVUcompile(mVU, branchPC, (uptr)&mVUregs); }
}
void normJumpCompile(mV, microFlagCycles& mFC, bool isEvilJump) {
using namespace x86Emitter;
memcpy_fast(&mVUpBlock->pStateEnd, &mVUregs, sizeof(microRegInfo));
mVUsetupBranch(mVU, mFC);
mVUbackupRegs(mVU);
if (isEvilJump) MOV32MtoR(gprT2, (uptr)&mVU->evilBranch);
else MOV32MtoR(gprT2, (uptr)&mVU->branch);
MOV32ItoR(gprR, (u32)&mVUpBlock->pStateEnd);
if (!mVU->index) xCALL(mVUcompileJIT<0>); //(u32 startPC, uptr pState)
else xCALL(mVUcompileJIT<1>);
mVUrestoreRegs(mVU);
JMPR(gprT1); // Jump to rec-code address
}
void normBranch(mV, microFlagCycles& mFC) {
// E-bit Branch
if (mVUup.eBit) { iPC = branchAddr/4; mVUendProgram(mVU, &mFC, 1); return; }
// Normal Branch
mVUsetupBranch(mVU, mFC);
normBranchCompile(mVU, branchAddr);
}
void condBranch(mV, microFlagCycles& mFC, int JMPcc) {
using namespace x86Emitter;
mVUsetupBranch(mVU, mFC);
xCMP(ptr16[&mVU->branch], 0);
incPC(3);
if (mVUup.eBit) { // Conditional Branch With E-Bit Set
mVUendProgram(mVU, &mFC, 2);
xForwardJump8 eJMP((JccComparisonType)JMPcc);
incPC(1); // Set PC to First instruction of Non-Taken Side
xMOV(ptr32[&mVU->regs->VI[REG_TPC].UL], xPC);
xJMP(mVU->exitFunct);
eJMP.SetTarget();
incPC(-4); // Go Back to Branch Opcode to get branchAddr
iPC = branchAddr/4;
xMOV(ptr32[&mVU->regs->VI[REG_TPC].UL], xPC);
xJMP(mVU->exitFunct);
return;
}
else { // Normal Conditional Branch
microBlock* bBlock;
incPC2(1); // Check if Branch Non-Taken Side has already been recompiled
blockCreate(iPC/2);
bBlock = mVUblocks[iPC/2]->search((microRegInfo*)&mVUregs);
incPC2(-1);
if (bBlock) { // Branch non-taken has already been compiled
xJcc(xInvertCond((JccComparisonType)JMPcc), bBlock->x86ptrStart);
incPC(-3); // Go back to branch opcode (to get branch imm addr)
normBranchCompile(mVU, branchAddr);
}
else {
s32* ajmp = xJcc32((JccComparisonType)JMPcc);
u32 bPC = iPC; // mVUcompile can modify iPC, mVUpBlock, and mVUregs so back them up
microBlock* pBlock = mVUpBlock;
memcpy_fast(&pBlock->pStateEnd, &mVUregs, sizeof(microRegInfo));
incPC2(1); // Get PC for branch not-taken
mVUcompile(mVU, xPC, (uptr)&mVUregs);
iPC = bPC;
incPC(-3); // Go back to branch opcode (to get branch imm addr)
uptr jumpAddr = (uptr)mVUblockFetch(mVU, branchAddr, (uptr)&pBlock->pStateEnd);
*ajmp = (jumpAddr - ((uptr)ajmp + 4));
}
}
}
void normJump(mV, microFlagCycles& mFC) {
using namespace x86Emitter;
if (mVUlow.constJump.isValid) { // Jump Address is Constant
if (mVUup.eBit) { // E-bit Jump
iPC = (mVUlow.constJump.regValue*2)&(mVU->progSize-1);
mVUendProgram(mVU, &mFC, 1);
return;
}
int jumpAddr = (mVUlow.constJump.regValue*8)&(mVU->microMemSize-8);
mVUsetupBranch(mVU, mFC);
normBranchCompile(mVU, jumpAddr);
return;
}
if (mVUup.eBit) { // E-bit Jump
mVUendProgram(mVU, &mFC, 2);
MOV32MtoR(gprT1, (uptr)&mVU->branch);
MOV32RtoM((uptr)&mVU->regs->VI[REG_TPC].UL, gprT1);
xJMP(mVU->exitFunct);
}
else normJumpCompile(mVU, mFC, 0);
}
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
microVUt(void) mVUincCycles(mV, int x);
microVUr(void*) mVUcompile(microVU* mVU, u32 startPC, uptr pState);
#define blockCreate(addr) { if (!mVUblocks[addr]) mVUblocks[addr] = new microBlockManager(); }
#define sI ((mVUpBlock->pState.needExactMatch & 1) ? 3 : ((mVUpBlock->pState.flags >> 0) & 3))
#define cI ((mVUpBlock->pState.needExactMatch & 4) ? 3 : ((mVUpBlock->pState.flags >> 2) & 3))
microVUt(void) mVUendProgram(mV, microFlagCycles* mFC, int isEbit) {
int fStatus = (isEbit) ? findFlagInst(mFC->xStatus, 0x7fffffff) : sI;
int fMac = (isEbit) ? findFlagInst(mFC->xMac, 0x7fffffff) : 0;
int fClip = (isEbit) ? findFlagInst(mFC->xClip, 0x7fffffff) : cI;
int qInst = 0;
int pInst = 0;
mVU->regAlloc->flushAll();
if (isEbit) {
mVUprint("mVUcompile ebit");
memset(&mVUinfo, 0, sizeof(mVUinfo));
memset(&mVUregsTemp, 0, sizeof(mVUregsTemp));
mVUincCycles(mVU, 100); // Ensures Valid P/Q instances (And sets all cycle data to 0)
mVUcycles -= 100;
qInst = mVU->q;
pInst = mVU->p;
if (mVUinfo.doDivFlag) {
sFLAG.doFlag = 1;
sFLAG.write = fStatus;
mVUdivSet(mVU);
}
if (mVUinfo.doXGKICK) { mVU_XGKICK_DELAY(mVU, 1); }
}
// Save P/Q Regs
if (qInst) { SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, 0xe5); }
SSE_MOVSS_XMM_to_M32((uptr)&mVU->regs->VI[REG_Q].UL, xmmPQ);
if (isVU1) {
SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, pInst ? 3 : 2);
SSE_MOVSS_XMM_to_M32((uptr)&mVU->regs->VI[REG_P].UL, xmmPQ);
}
// Save Flag Instances
#ifdef CHECK_MACROVU0
getFlagReg(fStatus, fStatus);
MOV32RtoM((uptr)&mVU->regs->VI[REG_STATUS_FLAG].UL, fStatus);
#else
mVUallocSFLAGc(gprT1, gprT2, fStatus);
MOV32RtoM((uptr)&mVU->regs->VI[REG_STATUS_FLAG].UL, gprT1);
#endif
mVUallocMFLAGa(mVU, gprT1, fMac);
mVUallocCFLAGa(mVU, gprT2, fClip);
MOV32RtoM((uptr)&mVU->regs->VI[REG_MAC_FLAG].UL, gprT1);
MOV32RtoM((uptr)&mVU->regs->VI[REG_CLIP_FLAG].UL, gprT2);
if (isEbit || isVU1) { // Clear 'is busy' Flags
AND32ItoM((uptr)&VU0.VI[REG_VPU_STAT].UL, (isVU1 ? ~0x100 : ~0x001)); // VBS0/VBS1 flag
AND32ItoM((uptr)&mVU->regs->vifRegs->stat, ~VIF1_STAT_VEW); // Clear VU 'is busy' signal for vif
}
if (isEbit != 2) { // Save PC, and Jump to Exit Point
MOV32ItoM((uptr)&mVU->regs->VI[REG_TPC].UL, xPC);
JMP32((uptr)mVU->exitFunct - ((uptr)x86Ptr + 5));
}
}
// Recompiles Code for Proper Flags and Q/P regs on Block Linkings
microVUt(void) mVUsetupBranch(mV, microFlagCycles& mFC) {
mVU->regAlloc->flushAll(); // Flush Allocated Regs
mVUsetupFlags(mVU, mFC); // Shuffle Flag Instances
// Shuffle P/Q regs since every block starts at instance #0
if (mVU->p || mVU->q) { SSE2_PSHUFD_XMM_to_XMM(xmmPQ, xmmPQ, shufflePQ); }
}
void normBranchCompile(microVU* mVU, u32 branchPC) {
using namespace x86Emitter;
microBlock* pBlock;
blockCreate(branchPC/8);
pBlock = mVUblocks[branchPC/8]->search((microRegInfo*)&mVUregs);
if (pBlock) { xJMP(pBlock->x86ptrStart); }
else { mVUcompile(mVU, branchPC, (uptr)&mVUregs); }
}
void normJumpCompile(mV, microFlagCycles& mFC, bool isEvilJump) {
using namespace x86Emitter;
memcpy_fast(&mVUpBlock->pStateEnd, &mVUregs, sizeof(microRegInfo));
mVUsetupBranch(mVU, mFC);
mVUbackupRegs(mVU);
if (isEvilJump) MOV32MtoR(gprT2, (uptr)&mVU->evilBranch);
else MOV32MtoR(gprT2, (uptr)&mVU->branch);
MOV32ItoR(gprT3, (u32)&mVUpBlock->pStateEnd);
if (!mVU->index) xCALL(mVUcompileJIT<0>); //(u32 startPC, uptr pState)
else xCALL(mVUcompileJIT<1>);
mVUrestoreRegs(mVU);
JMPR(gprT1); // Jump to rec-code address
}
void normBranch(mV, microFlagCycles& mFC) {
// E-bit Branch
if (mVUup.eBit) { iPC = branchAddr/4; mVUendProgram(mVU, &mFC, 1); return; }
// Normal Branch
mVUsetupBranch(mVU, mFC);
normBranchCompile(mVU, branchAddr);
}
void condBranch(mV, microFlagCycles& mFC, int JMPcc) {
using namespace x86Emitter;
mVUsetupBranch(mVU, mFC);
xCMP(ptr16[&mVU->branch], 0);
incPC(3);
if (mVUup.eBit) { // Conditional Branch With E-Bit Set
mVUendProgram(mVU, &mFC, 2);
xForwardJump8 eJMP((JccComparisonType)JMPcc);
incPC(1); // Set PC to First instruction of Non-Taken Side
xMOV(ptr32[&mVU->regs->VI[REG_TPC].UL], xPC);
xJMP(mVU->exitFunct);
eJMP.SetTarget();
incPC(-4); // Go Back to Branch Opcode to get branchAddr
iPC = branchAddr/4;
xMOV(ptr32[&mVU->regs->VI[REG_TPC].UL], xPC);
xJMP(mVU->exitFunct);
return;
}
else { // Normal Conditional Branch
microBlock* bBlock;
incPC2(1); // Check if Branch Non-Taken Side has already been recompiled
blockCreate(iPC/2);
bBlock = mVUblocks[iPC/2]->search((microRegInfo*)&mVUregs);
incPC2(-1);
if (bBlock) { // Branch non-taken has already been compiled
xJcc(xInvertCond((JccComparisonType)JMPcc), bBlock->x86ptrStart);
incPC(-3); // Go back to branch opcode (to get branch imm addr)
normBranchCompile(mVU, branchAddr);
}
else {
s32* ajmp = xJcc32((JccComparisonType)JMPcc);
u32 bPC = iPC; // mVUcompile can modify iPC, mVUpBlock, and mVUregs so back them up
microBlock* pBlock = mVUpBlock;
memcpy_fast(&pBlock->pStateEnd, &mVUregs, sizeof(microRegInfo));
incPC2(1); // Get PC for branch not-taken
mVUcompile(mVU, xPC, (uptr)&mVUregs);
iPC = bPC;
incPC(-3); // Go back to branch opcode (to get branch imm addr)
uptr jumpAddr = (uptr)mVUblockFetch(mVU, branchAddr, (uptr)&pBlock->pStateEnd);
*ajmp = (jumpAddr - ((uptr)ajmp + 4));
}
}
}
void normJump(mV, microFlagCycles& mFC) {
using namespace x86Emitter;
if (mVUlow.constJump.isValid) { // Jump Address is Constant
if (mVUup.eBit) { // E-bit Jump
iPC = (mVUlow.constJump.regValue*2)&(mVU->progSize-1);
mVUendProgram(mVU, &mFC, 1);
return;
}
int jumpAddr = (mVUlow.constJump.regValue*8)&(mVU->microMemSize-8);
mVUsetupBranch(mVU, mFC);
normBranchCompile(mVU, jumpAddr);
return;
}
if (mVUup.eBit) { // E-bit Jump
mVUendProgram(mVU, &mFC, 2);
MOV32MtoR(gprT1, (uptr)&mVU->branch);
MOV32RtoM((uptr)&mVU->regs->VI[REG_TPC].UL, gprT1);
xJMP(mVU->exitFunct);
}
else normJumpCompile(mVU, mFC, 0);
}

View File

@ -1,434 +1,433 @@
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
//------------------------------------------------------------------
// Helper Macros
//------------------------------------------------------------------
#define calcCycles(reg, x) { reg = ((reg > x) ? (reg - x) : 0); }
#define optimizeReg(rState) { rState = (rState==1) ? 0 : rState; }
#define tCycles(dest, src) { dest = aMax(dest, src); }
#define incP() { mVU->p = (mVU->p+1) & 1; }
#define incQ() { mVU->q = (mVU->q+1) & 1; }
#define doUpperOp() { mVUopU(mVU, 1); mVUdivSet(mVU); }
#define doLowerOp() { incPC(-1); mVUopL(mVU, 1); incPC(1); }
//------------------------------------------------------------------
// Helper Functions
//------------------------------------------------------------------
// Used by mVUsetupRange
microVUt(void) mVUcheckIsSame(mV) {
if (mVU->prog.isSame == -1) {
mVU->prog.isSame = !memcmp_mmx((u8*)mVUcurProg.data, mVU->regs->Micro, mVU->microMemSize);
}
if (mVU->prog.isSame == 0) {
if (!isVU1) mVUcacheProg<0>(mVU->prog.cur);
else mVUcacheProg<1>(mVU->prog.cur);
mVU->prog.isSame = 1;
}
}
// Sets up microProgram PC ranges based on whats been recompiled
microVUt(void) mVUsetupRange(mV, s32 pc, bool isStartPC) {
if (isStartPC || !(mVUrange[1] == -1)) {
for (int i = 0; i <= mVUcurProg.ranges.total; i++) {
if ((pc >= mVUcurProg.ranges.range[i][0])
&& (pc <= mVUcurProg.ranges.range[i][1])) { return; }
}
}
mVUcheckIsSame(mVU);
if (isStartPC) {
if (mVUcurProg.ranges.total < mVUcurProg.ranges.max) {
mVUcurProg.ranges.total++;
mVUrange[0] = pc;
}
else {
mVUcurProg.ranges.total = 0;
mVUrange[0] = 0;
mVUrange[1] = mVU->microMemSize - 8;
DevCon::Status("microVU%d: Prog Range List Full", params mVU->index);
}
}
else {
if (mVUrange[0] <= pc) {
mVUrange[1] = pc;
bool mergedRange = 0;
for (int i = 0; i <= (mVUcurProg.ranges.total-1); i++) {
int rStart = (mVUrange[0] < 8) ? 0 : (mVUrange[0] - 8);
int rEnd = pc;
if((mVUcurProg.ranges.range[i][1] >= rStart)
&& (mVUcurProg.ranges.range[i][1] <= rEnd)){
mVUcurProg.ranges.range[i][1] = pc;
mergedRange = 1;
//DevCon::Status("microVU%d: Prog Range Merging", params mVU->index);
}
}
if (mergedRange) {
mVUrange[0] = -1;
mVUrange[1] = -1;
mVUcurProg.ranges.total--;
}
}
else {
DevCon::Status("microVU%d: Prog Range Wrap [%04x] [%d]", params mVU->index, mVUrange[0], mVUrange[1]);
mVUrange[1] = mVU->microMemSize - 8;
if (mVUcurProg.ranges.total < mVUcurProg.ranges.max) {
mVUcurProg.ranges.total++;
mVUrange[0] = 0;
mVUrange[1] = pc;
}
else {
mVUcurProg.ranges.total = 0;
mVUrange[0] = 0;
mVUrange[1] = mVU->microMemSize - 8;
DevCon::Status("microVU%d: Prog Range List Full", params mVU->index);
}
}
}
}
microVUt(void) startLoop(mV) {
if (curI & _Mbit_) { Console::Status("microVU%d: M-bit set!", params getIndex); }
if (curI & _Dbit_) { DevCon::Status ("microVU%d: D-bit set!", params getIndex); }
if (curI & _Tbit_) { DevCon::Status ("microVU%d: T-bit set!", params getIndex); }
memset(&mVUinfo, 0, sizeof(mVUinfo));
memset(&mVUregsTemp, 0, sizeof(mVUregsTemp));
}
microVUt(void) doIbit(mV) {
if (mVUup.iBit) {
incPC(-1);
u32 tempI;
mVU->regAlloc->clearRegVF(33);
if (CHECK_VU_OVERFLOW && ((curI & 0x7fffffff) >= 0x7f800000)) {
Console::Status("microVU%d: Clamping I Reg", params mVU->index);
tempI = (0x80000000 & curI) | 0x7f7fffff; // Clamp I Reg
}
else tempI = curI;
MOV32ItoM((uptr)&mVU->regs->VI[REG_I].UL, tempI);
incPC(1);
}
}
microVUt(void) doSwapOp(mV) {
if (mVUinfo.backupVF && !mVUlow.noWriteVF) {
DevCon::Status("microVU%d: Backing Up VF Reg [%04x]", params getIndex, xPC);
int t1 = mVU->regAlloc->allocReg(mVUlow.VF_write.reg);
int t2 = mVU->regAlloc->allocReg();
SSE_MOVAPS_XMM_to_XMM(t2, t1);
mVU->regAlloc->clearNeeded(t1);
mVUopL(mVU, 1);
t1 = mVU->regAlloc->allocReg(mVUlow.VF_write.reg, mVUlow.VF_write.reg, 0xf, 0);
SSE_XORPS_XMM_to_XMM(t2, t1);
SSE_XORPS_XMM_to_XMM(t1, t2);
SSE_XORPS_XMM_to_XMM(t2, t1);
mVU->regAlloc->clearNeeded(t1);
incPC(1);
doUpperOp();
t1 = mVU->regAlloc->allocReg(-1, mVUlow.VF_write.reg, 0xf);
SSE_MOVAPS_XMM_to_XMM(t1, t2);
mVU->regAlloc->clearNeeded(t1);
mVU->regAlloc->clearNeeded(t2);
}
else { mVUopL(mVU, 1); incPC(1); doUpperOp(); }
}
microVUt(void) branchWarning(mV) {
incPC(-2);
if (mVUup.eBit && mVUbranch) {
incPC(2);
Console::Error("microVU%d Warning: Branch in E-bit delay slot! [%04x]", params mVU->index, xPC);
mVUlow.isNOP = 1;
}
else incPC(2);
if (mVUinfo.isBdelay) { // Check if VI Reg Written to on Branch Delay Slot Instruction
if (mVUlow.VI_write.reg && mVUlow.VI_write.used && !mVUlow.readFlags) {
mVUlow.backupVI = 1;
mVUregs.viBackUp = mVUlow.VI_write.reg;
}
}
}
microVUt(void) eBitPass1(mV, int& branch) {
if (mVUregs.blockType != 1) {
branch = 1;
mVUup.eBit = 1;
}
}
microVUt(void) eBitWarning(mV) {
if (mVUpBlock->pState.blockType == 1) Console::Error("microVU%d Warning: Branch, E-bit, Branch! [%04x]", params mVU->index, xPC);
if (mVUpBlock->pState.blockType == 2) Console::Error("microVU%d Warning: Branch, Branch, Branch! [%04x]", params mVU->index, xPC);
incPC(2);
if (curI & _Ebit_) {
DevCon::Status("microVU%d: E-bit in Branch delay slot! [%04x]", params mVU->index, xPC);
mVUregs.blockType = 1;
}
incPC(-2);
}
// Optimizes the End Pipeline State Removing Unnecessary Info
microVUt(void) mVUoptimizePipeState(mV) {
for (int i = 0; i < 32; i++) {
optimizeReg(mVUregs.VF[i].x);
optimizeReg(mVUregs.VF[i].y);
optimizeReg(mVUregs.VF[i].z);
optimizeReg(mVUregs.VF[i].w);
}
for (int i = 0; i < 16; i++) {
optimizeReg(mVUregs.VI[i]);
}
if (mVUregs.q) { optimizeReg(mVUregs.q); if (!mVUregs.q) { incQ(); } }
if (mVUregs.p) { optimizeReg(mVUregs.p); if (!mVUregs.p) { incP(); } }
mVUregs.r = 0; // There are no stalls on the R-reg, so its Safe to discard info
}
microVUt(void) mVUincCycles(mV, int x) {
mVUcycles += x;
for (int z = 31; z > 0; z--) {
calcCycles(mVUregs.VF[z].x, x);
calcCycles(mVUregs.VF[z].y, x);
calcCycles(mVUregs.VF[z].z, x);
calcCycles(mVUregs.VF[z].w, x);
}
for (int z = 16; z > 0; z--) {
calcCycles(mVUregs.VI[z], x);
}
if (mVUregs.q) {
if (mVUregs.q > 4) { calcCycles(mVUregs.q, x); if (mVUregs.q <= 4) { mVUinfo.doDivFlag = 1; } }
else { calcCycles(mVUregs.q, x); }
if (!mVUregs.q) { incQ(); }
}
if (mVUregs.p) {
calcCycles(mVUregs.p, x);
if (!mVUregs.p || mVUregsTemp.p) { incP(); }
}
if (mVUregs.xgkick) {
calcCycles(mVUregs.xgkick, x);
if (!mVUregs.xgkick) { mVUinfo.doXGKICK = 1; }
}
calcCycles(mVUregs.r, x);
}
#define cmpVFregs(VFreg1, VFreg2, xVar) { \
if (VFreg1.reg == VFreg2.reg) { \
if ((VFreg1.x && VFreg2.x) \
|| (VFreg1.y && VFreg2.y) \
|| (VFreg1.z && VFreg2.z) \
|| (VFreg1.w && VFreg2.w)) \
{ xVar = 1; } \
} \
}
microVUt(void) mVUsetCycles(mV) {
mVUincCycles(mVU, mVUstall);
// If upper Op && lower Op write to same VF reg:
if ((mVUregsTemp.VFreg[0] == mVUregsTemp.VFreg[1]) && mVUregsTemp.VFreg[0]) {
if (mVUregsTemp.r || mVUregsTemp.VI) mVUlow.noWriteVF = 1;
else mVUlow.isNOP = 1; // If lower Op doesn't modify anything else, then make it a NOP
}
// If lower op reads a VF reg that upper Op writes to:
if ((mVUlow.VF_read[0].reg || mVUlow.VF_read[1].reg) && mVUup.VF_write.reg) {
cmpVFregs(mVUup.VF_write, mVUlow.VF_read[0], mVUinfo.swapOps);
cmpVFregs(mVUup.VF_write, mVUlow.VF_read[1], mVUinfo.swapOps);
}
// If above case is true, and upper op reads a VF reg that lower Op Writes to:
if (mVUinfo.swapOps && ((mVUup.VF_read[0].reg || mVUup.VF_read[1].reg) && mVUlow.VF_write.reg)) {
cmpVFregs(mVUlow.VF_write, mVUup.VF_read[0], mVUinfo.backupVF);
cmpVFregs(mVUlow.VF_write, mVUup.VF_read[1], mVUinfo.backupVF);
}
tCycles(mVUregs.VF[mVUregsTemp.VFreg[0]].x, mVUregsTemp.VF[0].x);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[0]].y, mVUregsTemp.VF[0].y);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[0]].z, mVUregsTemp.VF[0].z);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[0]].w, mVUregsTemp.VF[0].w);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[1]].x, mVUregsTemp.VF[1].x);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[1]].y, mVUregsTemp.VF[1].y);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[1]].z, mVUregsTemp.VF[1].z);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[1]].w, mVUregsTemp.VF[1].w);
tCycles(mVUregs.VI[mVUregsTemp.VIreg], mVUregsTemp.VI);
tCycles(mVUregs.q, mVUregsTemp.q);
tCycles(mVUregs.p, mVUregsTemp.p);
tCycles(mVUregs.r, mVUregsTemp.r);
tCycles(mVUregs.xgkick, mVUregsTemp.xgkick);
}
void __fastcall mVUwarning0(mV) { Console::Error("microVU0 Warning: Exiting from Possible Infinite Loop [%04x] [%x]", params xPC, mVU->prog.cur); }
void __fastcall mVUwarning1(mV) { Console::Error("microVU1 Warning: Exiting from Possible Infinite Loop [%04x] [%x]", params xPC, mVU->prog.cur); }
void __fastcall mVUprintPC1(u32 PC) { Console::Write("Block PC [%04x] ", params PC); }
void __fastcall mVUprintPC2(u32 PC) { Console::Write("[%04x]\n", params PC); }
microVUt(void) mVUtestCycles(mV) {
u32* vu0jmp;
iPC = mVUstartPC;
mVUdebugNOW(0);
SUB32ItoM((uptr)&mVU->cycles, mVUcycles);
if (IsDevBuild || !isVU1) {
u32* jmp32 = JG32(0);
if (!isVU1) { TEST32ItoM((uptr)&mVU->regs->flags, VUFLAG_MFLAGSET); vu0jmp = JZ32(0); }
MOV32ItoR(gprT2, (uptr)mVU);
if (isVU1) CALLFunc((uptr)mVUwarning1);
//else CALLFunc((uptr)mVUwarning0); // VU0 is allowed early exit for COP2 Interlock Simulation
MOV32ItoR(gprR, Roffset); // Restore gprR
mVUendProgram(mVU, NULL, 0);
if (!isVU1) x86SetJ32(vu0jmp);
x86SetJ32(jmp32);
}
}
// Initialize VI Constants (vi15 propagates through blocks)
microVUt(void) mVUinitConstValues(microVU* mVU) {
for (int i = 0; i < 16; i++) {
mVUconstReg[i].isValid = 0;
mVUconstReg[i].regValue = 0;
}
mVUconstReg[15].isValid = mVUregs.vi15 >> 31;
mVUconstReg[15].regValue = mVUconstReg[15].isValid ? (mVUregs.vi15&0xffff) : 0;
}
// Initialize Variables
microVUt(void) mVUinitFirstPass(microVU* mVU, uptr pState, u8* thisPtr) {
mVUstartPC = iPC; // Block Start PC
mVUbranch = 0; // Branch Type
mVUcount = 0; // Number of instructions ran
mVUcycles = 0; // Skips "M" phase, and starts counting cycles at "T" stage
mVU->p = 0; // All blocks start at p index #0
mVU->q = 0; // All blocks start at q index #0
memcpy_fast(&mVUregs, (microRegInfo*)pState, sizeof(microRegInfo)); // Loads up Pipeline State Info
mVUblock.x86ptrStart = thisPtr;
mVUpBlock = mVUblocks[mVUstartPC/2]->add(&mVUblock); // Add this block to block manager
mVUregs.blockType = 0;
mVUregs.viBackUp = 0;
mVUregs.flags = 0;
mVUregs.needExactMatch = 0;
mVUsFlagHack = CHECK_VU_FLAGHACK;
mVUinitConstValues(mVU);
}
//------------------------------------------------------------------
// Recompiler
//------------------------------------------------------------------
microVUr(void*) mVUcompile(microVU* mVU, u32 startPC, uptr pState) {
using namespace x86Emitter;
microFlagCycles mFC;
u8* thisPtr = x86Ptr;
const u32 endCount = (((microRegInfo*)pState)->blockType) ? 1 : (mVU->microMemSize / 8);
// First Pass
iPC = startPC / 4;
mVUsetupRange(mVU, startPC, 1); // Setup Program Bounds/Range
mVU->regAlloc->reset(); // Reset regAlloc
mVUinitFirstPass(mVU, pState, thisPtr);
for (int branch = 0; mVUcount < endCount; mVUcount++) {
incPC(1);
startLoop(mVU);
mVUincCycles(mVU, 1);
mVUopU(mVU, 0);
if (curI & _Ebit_) { eBitPass1(mVU, branch); }
if (curI & _DTbit_) { branch = 4; }
if (curI & _Mbit_) { mVUup.mBit = 1; }
if (curI & _Ibit_) { mVUlow.isNOP = 1; mVUup.iBit = 1; }
else { incPC(-1); mVUopL(mVU, 0); incPC(1); }
mVUsetCycles(mVU);
mVUinfo.readQ = mVU->q;
mVUinfo.writeQ = !mVU->q;
mVUinfo.readP = mVU->p;
mVUinfo.writeP = !mVU->p;
if (branch >= 2) { mVUinfo.isEOB = 1; if (branch == 3) { mVUinfo.isBdelay = 1; } mVUcount++; branchWarning(mVU); break; }
else if (branch == 1) { branch = 2; }
if (mVUbranch) { mVUsetFlagInfo(mVU); eBitWarning(mVU); branch = 3; mVUbranch = 0; }
incPC(1);
}
// Fix up vi15 const info for propagation through blocks
mVUregs.vi15 = (mVUconstReg[15].isValid && !CHECK_VU_CONSTHACK) ? ((1<<31) | (mVUconstReg[15].regValue&0xffff)) : 0;
mVUsetFlags(mVU, mFC); // Sets Up Flag instances
mVUoptimizePipeState(mVU); // Optimize the End Pipeline State for nicer Block Linking
mVUtestCycles(mVU); // Update VU Cycles and Exit Early if Necessary
// Second Pass
iPC = mVUstartPC;
setCode();
mVUbranch = 0;
u32 x = 0;
for (; x < endCount; x++) {
if (mVUinfo.isEOB) { x = 0xffff; }
if (mVUup.mBit) { OR32ItoM((uptr)&mVU->regs->flags, VUFLAG_MFLAGSET); }
if (mVUlow.isNOP) { incPC(1); doUpperOp(); doIbit(mVU); }
else if (!mVUinfo.swapOps) { incPC(1); doUpperOp(); doLowerOp(); }
else { doSwapOp(mVU); }
if (mVUinfo.doXGKICK) { mVU_XGKICK_DELAY(mVU, 1); }
if (!doRegAlloc) { mVU->regAlloc->flushAll(); }
if (isEvilBlock) { mVUsetupRange(mVU, xPC, 0); normJumpCompile(mVU, mFC, 1); return thisPtr; }
else if (!mVUinfo.isBdelay) { incPC(1); }
else {
mVUsetupRange(mVU, xPC, 0);
mVUdebugNOW(1);
incPC(-3); // Go back to branch opcode
switch (mVUlow.branch) {
case 1: case 2: normBranch(mVU, mFC); return thisPtr; // B/BAL
case 9: case 10: normJump (mVU, mFC); return thisPtr; // JR/JALR
case 3: condBranch(mVU, mFC, Jcc_Equal); return thisPtr; // IBEQ
case 4: condBranch(mVU, mFC, Jcc_GreaterOrEqual); return thisPtr; // IBGEZ
case 5: condBranch(mVU, mFC, Jcc_Greater); return thisPtr; // IBGTZ
case 6: condBranch(mVU, mFC, Jcc_LessOrEqual); return thisPtr; // IBLEQ
case 7: condBranch(mVU, mFC, Jcc_Less); return thisPtr; // IBLTZ
case 8: condBranch(mVU, mFC, Jcc_NotEqual); return thisPtr; // IBNEQ
}
}
}
if ((x == endCount) && (x!=1)) { Console::Error("microVU%d: Possible infinite compiling loop!", params mVU->index); }
// E-bit End
mVUsetupRange(mVU, xPC-8, 0);
mVUendProgram(mVU, &mFC, 1);
return thisPtr;
}
// Search for Existing Compiled Block (if found, return x86ptr; else, compile and return x86ptr)
microVUt(void*) mVUblockFetch(microVU* mVU, u32 startPC, uptr pState) {
using namespace x86Emitter;
if (startPC > mVU->microMemSize-8) { DevCon::Error("microVU%d: invalid startPC [%04x]", params mVU->index, startPC); }
startPC &= mVU->microMemSize-8;
blockCreate(startPC/8);
microBlock* pBlock = mVUblocks[startPC/8]->search((microRegInfo*)pState);
if (pBlock) { return pBlock->x86ptrStart; }
else { return mVUcompile(mVU, startPC, pState); }
}
// mVUcompileJIT() - Called By JR/JALR during execution
microVUx(void*) __fastcall mVUcompileJIT(u32 startPC, uptr pState) {
return mVUblockFetch(mVUx, startPC, pState);
}
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
//------------------------------------------------------------------
// Helper Macros
//------------------------------------------------------------------
#define calcCycles(reg, x) { reg = ((reg > x) ? (reg - x) : 0); }
#define optimizeReg(rState) { rState = (rState==1) ? 0 : rState; }
#define tCycles(dest, src) { dest = aMax(dest, src); }
#define incP() { mVU->p = (mVU->p+1) & 1; }
#define incQ() { mVU->q = (mVU->q+1) & 1; }
#define doUpperOp() { mVUopU(mVU, 1); mVUdivSet(mVU); }
#define doLowerOp() { incPC(-1); mVUopL(mVU, 1); incPC(1); }
//------------------------------------------------------------------
// Helper Functions
//------------------------------------------------------------------
// Used by mVUsetupRange
microVUt(void) mVUcheckIsSame(mV) {
if (mVU->prog.isSame == -1) {
mVU->prog.isSame = !memcmp_mmx((u8*)mVUcurProg.data, mVU->regs->Micro, mVU->microMemSize);
}
if (mVU->prog.isSame == 0) {
if (!isVU1) mVUcacheProg<0>(mVU->prog.cur);
else mVUcacheProg<1>(mVU->prog.cur);
mVU->prog.isSame = 1;
}
}
// Sets up microProgram PC ranges based on whats been recompiled
microVUt(void) mVUsetupRange(mV, s32 pc, bool isStartPC) {
if (isStartPC || !(mVUrange[1] == -1)) {
for (int i = 0; i <= mVUcurProg.ranges.total; i++) {
if ((pc >= mVUcurProg.ranges.range[i][0])
&& (pc <= mVUcurProg.ranges.range[i][1])) { return; }
}
}
mVUcheckIsSame(mVU);
if (isStartPC) {
if (mVUcurProg.ranges.total < mVUcurProg.ranges.max) {
mVUcurProg.ranges.total++;
mVUrange[0] = pc;
}
else {
mVUcurProg.ranges.total = 0;
mVUrange[0] = 0;
mVUrange[1] = mVU->microMemSize - 8;
DevCon::Status("microVU%d: Prog Range List Full", params mVU->index);
}
}
else {
if (mVUrange[0] <= pc) {
mVUrange[1] = pc;
bool mergedRange = 0;
for (int i = 0; i <= (mVUcurProg.ranges.total-1); i++) {
int rStart = (mVUrange[0] < 8) ? 0 : (mVUrange[0] - 8);
int rEnd = pc;
if((mVUcurProg.ranges.range[i][1] >= rStart)
&& (mVUcurProg.ranges.range[i][1] <= rEnd)){
mVUcurProg.ranges.range[i][1] = pc;
mergedRange = 1;
//DevCon::Status("microVU%d: Prog Range Merging", params mVU->index);
}
}
if (mergedRange) {
mVUrange[0] = -1;
mVUrange[1] = -1;
mVUcurProg.ranges.total--;
}
}
else {
DevCon::Status("microVU%d: Prog Range Wrap [%04x] [%d]", params mVU->index, mVUrange[0], mVUrange[1]);
mVUrange[1] = mVU->microMemSize - 8;
if (mVUcurProg.ranges.total < mVUcurProg.ranges.max) {
mVUcurProg.ranges.total++;
mVUrange[0] = 0;
mVUrange[1] = pc;
}
else {
mVUcurProg.ranges.total = 0;
mVUrange[0] = 0;
mVUrange[1] = mVU->microMemSize - 8;
DevCon::Status("microVU%d: Prog Range List Full", params mVU->index);
}
}
}
}
microVUt(void) startLoop(mV) {
if (curI & _Mbit_) { Console::Status("microVU%d: M-bit set!", params getIndex); }
if (curI & _Dbit_) { DevCon::Status ("microVU%d: D-bit set!", params getIndex); }
if (curI & _Tbit_) { DevCon::Status ("microVU%d: T-bit set!", params getIndex); }
memset(&mVUinfo, 0, sizeof(mVUinfo));
memset(&mVUregsTemp, 0, sizeof(mVUregsTemp));
}
microVUt(void) doIbit(mV) {
if (mVUup.iBit) {
incPC(-1);
u32 tempI;
mVU->regAlloc->clearRegVF(33);
if (CHECK_VU_OVERFLOW && ((curI & 0x7fffffff) >= 0x7f800000)) {
Console::Status("microVU%d: Clamping I Reg", params mVU->index);
tempI = (0x80000000 & curI) | 0x7f7fffff; // Clamp I Reg
}
else tempI = curI;
MOV32ItoM((uptr)&mVU->regs->VI[REG_I].UL, tempI);
incPC(1);
}
}
microVUt(void) doSwapOp(mV) {
if (mVUinfo.backupVF && !mVUlow.noWriteVF) {
DevCon::Status("microVU%d: Backing Up VF Reg [%04x]", params getIndex, xPC);
int t1 = mVU->regAlloc->allocReg(mVUlow.VF_write.reg);
int t2 = mVU->regAlloc->allocReg();
SSE_MOVAPS_XMM_to_XMM(t2, t1);
mVU->regAlloc->clearNeeded(t1);
mVUopL(mVU, 1);
t1 = mVU->regAlloc->allocReg(mVUlow.VF_write.reg, mVUlow.VF_write.reg, 0xf, 0);
SSE_XORPS_XMM_to_XMM(t2, t1);
SSE_XORPS_XMM_to_XMM(t1, t2);
SSE_XORPS_XMM_to_XMM(t2, t1);
mVU->regAlloc->clearNeeded(t1);
incPC(1);
doUpperOp();
t1 = mVU->regAlloc->allocReg(-1, mVUlow.VF_write.reg, 0xf);
SSE_MOVAPS_XMM_to_XMM(t1, t2);
mVU->regAlloc->clearNeeded(t1);
mVU->regAlloc->clearNeeded(t2);
}
else { mVUopL(mVU, 1); incPC(1); doUpperOp(); }
}
microVUt(void) branchWarning(mV) {
incPC(-2);
if (mVUup.eBit && mVUbranch) {
incPC(2);
Console::Error("microVU%d Warning: Branch in E-bit delay slot! [%04x]", params mVU->index, xPC);
mVUlow.isNOP = 1;
}
else incPC(2);
if (mVUinfo.isBdelay) { // Check if VI Reg Written to on Branch Delay Slot Instruction
if (mVUlow.VI_write.reg && mVUlow.VI_write.used && !mVUlow.readFlags) {
mVUlow.backupVI = 1;
mVUregs.viBackUp = mVUlow.VI_write.reg;
}
}
}
microVUt(void) eBitPass1(mV, int& branch) {
if (mVUregs.blockType != 1) {
branch = 1;
mVUup.eBit = 1;
}
}
microVUt(void) eBitWarning(mV) {
if (mVUpBlock->pState.blockType == 1) Console::Error("microVU%d Warning: Branch, E-bit, Branch! [%04x]", params mVU->index, xPC);
if (mVUpBlock->pState.blockType == 2) Console::Error("microVU%d Warning: Branch, Branch, Branch! [%04x]", params mVU->index, xPC);
incPC(2);
if (curI & _Ebit_) {
DevCon::Status("microVU%d: E-bit in Branch delay slot! [%04x]", params mVU->index, xPC);
mVUregs.blockType = 1;
}
incPC(-2);
}
// Optimizes the End Pipeline State Removing Unnecessary Info
microVUt(void) mVUoptimizePipeState(mV) {
for (int i = 0; i < 32; i++) {
optimizeReg(mVUregs.VF[i].x);
optimizeReg(mVUregs.VF[i].y);
optimizeReg(mVUregs.VF[i].z);
optimizeReg(mVUregs.VF[i].w);
}
for (int i = 0; i < 16; i++) {
optimizeReg(mVUregs.VI[i]);
}
if (mVUregs.q) { optimizeReg(mVUregs.q); if (!mVUregs.q) { incQ(); } }
if (mVUregs.p) { optimizeReg(mVUregs.p); if (!mVUregs.p) { incP(); } }
mVUregs.r = 0; // There are no stalls on the R-reg, so its Safe to discard info
}
microVUt(void) mVUincCycles(mV, int x) {
mVUcycles += x;
for (int z = 31; z > 0; z--) {
calcCycles(mVUregs.VF[z].x, x);
calcCycles(mVUregs.VF[z].y, x);
calcCycles(mVUregs.VF[z].z, x);
calcCycles(mVUregs.VF[z].w, x);
}
for (int z = 16; z > 0; z--) {
calcCycles(mVUregs.VI[z], x);
}
if (mVUregs.q) {
if (mVUregs.q > 4) { calcCycles(mVUregs.q, x); if (mVUregs.q <= 4) { mVUinfo.doDivFlag = 1; } }
else { calcCycles(mVUregs.q, x); }
if (!mVUregs.q) { incQ(); }
}
if (mVUregs.p) {
calcCycles(mVUregs.p, x);
if (!mVUregs.p || mVUregsTemp.p) { incP(); }
}
if (mVUregs.xgkick) {
calcCycles(mVUregs.xgkick, x);
if (!mVUregs.xgkick) { mVUinfo.doXGKICK = 1; }
}
calcCycles(mVUregs.r, x);
}
#define cmpVFregs(VFreg1, VFreg2, xVar) { \
if (VFreg1.reg == VFreg2.reg) { \
if ((VFreg1.x && VFreg2.x) \
|| (VFreg1.y && VFreg2.y) \
|| (VFreg1.z && VFreg2.z) \
|| (VFreg1.w && VFreg2.w)) \
{ xVar = 1; } \
} \
}
microVUt(void) mVUsetCycles(mV) {
mVUincCycles(mVU, mVUstall);
// If upper Op && lower Op write to same VF reg:
if ((mVUregsTemp.VFreg[0] == mVUregsTemp.VFreg[1]) && mVUregsTemp.VFreg[0]) {
if (mVUregsTemp.r || mVUregsTemp.VI) mVUlow.noWriteVF = 1;
else mVUlow.isNOP = 1; // If lower Op doesn't modify anything else, then make it a NOP
}
// If lower op reads a VF reg that upper Op writes to:
if ((mVUlow.VF_read[0].reg || mVUlow.VF_read[1].reg) && mVUup.VF_write.reg) {
cmpVFregs(mVUup.VF_write, mVUlow.VF_read[0], mVUinfo.swapOps);
cmpVFregs(mVUup.VF_write, mVUlow.VF_read[1], mVUinfo.swapOps);
}
// If above case is true, and upper op reads a VF reg that lower Op Writes to:
if (mVUinfo.swapOps && ((mVUup.VF_read[0].reg || mVUup.VF_read[1].reg) && mVUlow.VF_write.reg)) {
cmpVFregs(mVUlow.VF_write, mVUup.VF_read[0], mVUinfo.backupVF);
cmpVFregs(mVUlow.VF_write, mVUup.VF_read[1], mVUinfo.backupVF);
}
tCycles(mVUregs.VF[mVUregsTemp.VFreg[0]].x, mVUregsTemp.VF[0].x);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[0]].y, mVUregsTemp.VF[0].y);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[0]].z, mVUregsTemp.VF[0].z);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[0]].w, mVUregsTemp.VF[0].w);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[1]].x, mVUregsTemp.VF[1].x);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[1]].y, mVUregsTemp.VF[1].y);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[1]].z, mVUregsTemp.VF[1].z);
tCycles(mVUregs.VF[mVUregsTemp.VFreg[1]].w, mVUregsTemp.VF[1].w);
tCycles(mVUregs.VI[mVUregsTemp.VIreg], mVUregsTemp.VI);
tCycles(mVUregs.q, mVUregsTemp.q);
tCycles(mVUregs.p, mVUregsTemp.p);
tCycles(mVUregs.r, mVUregsTemp.r);
tCycles(mVUregs.xgkick, mVUregsTemp.xgkick);
}
void __fastcall mVUwarning0(mV) { Console::Error("microVU0 Warning: Exiting from Possible Infinite Loop [%04x] [%x]", params xPC, mVU->prog.cur); }
void __fastcall mVUwarning1(mV) { Console::Error("microVU1 Warning: Exiting from Possible Infinite Loop [%04x] [%x]", params xPC, mVU->prog.cur); }
void __fastcall mVUprintPC1(u32 PC) { Console::Write("Block PC [%04x] ", params PC); }
void __fastcall mVUprintPC2(u32 PC) { Console::Write("[%04x]\n", params PC); }
microVUt(void) mVUtestCycles(mV) {
u32* vu0jmp;
iPC = mVUstartPC;
mVUdebugNOW(0);
SUB32ItoM((uptr)&mVU->cycles, mVUcycles);
if (IsDevBuild || !isVU1) {
u32* jmp32 = JG32(0);
if (!isVU1) { TEST32ItoM((uptr)&mVU->regs->flags, VUFLAG_MFLAGSET); vu0jmp = JZ32(0); }
MOV32ItoR(gprT2, (uptr)mVU);
if (isVU1) CALLFunc((uptr)mVUwarning1);
//else CALLFunc((uptr)mVUwarning0); // VU0 is allowed early exit for COP2 Interlock Simulation
mVUendProgram(mVU, NULL, 0);
if (!isVU1) x86SetJ32(vu0jmp);
x86SetJ32(jmp32);
}
}
// Initialize VI Constants (vi15 propagates through blocks)
microVUt(void) mVUinitConstValues(microVU* mVU) {
for (int i = 0; i < 16; i++) {
mVUconstReg[i].isValid = 0;
mVUconstReg[i].regValue = 0;
}
mVUconstReg[15].isValid = mVUregs.vi15 >> 31;
mVUconstReg[15].regValue = mVUconstReg[15].isValid ? (mVUregs.vi15&0xffff) : 0;
}
// Initialize Variables
microVUt(void) mVUinitFirstPass(microVU* mVU, uptr pState, u8* thisPtr) {
mVUstartPC = iPC; // Block Start PC
mVUbranch = 0; // Branch Type
mVUcount = 0; // Number of instructions ran
mVUcycles = 0; // Skips "M" phase, and starts counting cycles at "T" stage
mVU->p = 0; // All blocks start at p index #0
mVU->q = 0; // All blocks start at q index #0
memcpy_fast(&mVUregs, (microRegInfo*)pState, sizeof(microRegInfo)); // Loads up Pipeline State Info
mVUblock.x86ptrStart = thisPtr;
mVUpBlock = mVUblocks[mVUstartPC/2]->add(&mVUblock); // Add this block to block manager
mVUregs.blockType = 0;
mVUregs.viBackUp = 0;
mVUregs.flags = 0;
mVUregs.needExactMatch = 0;
mVUsFlagHack = CHECK_VU_FLAGHACK;
mVUinitConstValues(mVU);
}
//------------------------------------------------------------------
// Recompiler
//------------------------------------------------------------------
microVUr(void*) mVUcompile(microVU* mVU, u32 startPC, uptr pState) {
using namespace x86Emitter;
microFlagCycles mFC;
u8* thisPtr = x86Ptr;
const u32 endCount = (((microRegInfo*)pState)->blockType) ? 1 : (mVU->microMemSize / 8);
// First Pass
iPC = startPC / 4;
mVUsetupRange(mVU, startPC, 1); // Setup Program Bounds/Range
mVU->regAlloc->reset(); // Reset regAlloc
mVUinitFirstPass(mVU, pState, thisPtr);
for (int branch = 0; mVUcount < endCount; mVUcount++) {
incPC(1);
startLoop(mVU);
mVUincCycles(mVU, 1);
mVUopU(mVU, 0);
if (curI & _Ebit_) { eBitPass1(mVU, branch); }
if (curI & _DTbit_) { branch = 4; }
if (curI & _Mbit_) { mVUup.mBit = 1; }
if (curI & _Ibit_) { mVUlow.isNOP = 1; mVUup.iBit = 1; }
else { incPC(-1); mVUopL(mVU, 0); incPC(1); }
mVUsetCycles(mVU);
mVUinfo.readQ = mVU->q;
mVUinfo.writeQ = !mVU->q;
mVUinfo.readP = mVU->p;
mVUinfo.writeP = !mVU->p;
if (branch >= 2) { mVUinfo.isEOB = 1; if (branch == 3) { mVUinfo.isBdelay = 1; } mVUcount++; branchWarning(mVU); break; }
else if (branch == 1) { branch = 2; }
if (mVUbranch) { mVUsetFlagInfo(mVU); eBitWarning(mVU); branch = 3; mVUbranch = 0; }
incPC(1);
}
// Fix up vi15 const info for propagation through blocks
mVUregs.vi15 = (mVUconstReg[15].isValid && !CHECK_VU_CONSTHACK) ? ((1<<31) | (mVUconstReg[15].regValue&0xffff)) : 0;
mVUsetFlags(mVU, mFC); // Sets Up Flag instances
mVUoptimizePipeState(mVU); // Optimize the End Pipeline State for nicer Block Linking
mVUtestCycles(mVU); // Update VU Cycles and Exit Early if Necessary
// Second Pass
iPC = mVUstartPC;
setCode();
mVUbranch = 0;
u32 x = 0;
for (; x < endCount; x++) {
if (mVUinfo.isEOB) { x = 0xffff; }
if (mVUup.mBit) { OR32ItoM((uptr)&mVU->regs->flags, VUFLAG_MFLAGSET); }
if (mVUlow.isNOP) { incPC(1); doUpperOp(); doIbit(mVU); }
else if (!mVUinfo.swapOps) { incPC(1); doUpperOp(); doLowerOp(); }
else { doSwapOp(mVU); }
if (mVUinfo.doXGKICK) { mVU_XGKICK_DELAY(mVU, 1); }
if (!doRegAlloc) { mVU->regAlloc->flushAll(); }
if (isEvilBlock) { mVUsetupRange(mVU, xPC, 0); normJumpCompile(mVU, mFC, 1); return thisPtr; }
else if (!mVUinfo.isBdelay) { incPC(1); }
else {
mVUsetupRange(mVU, xPC, 0);
mVUdebugNOW(1);
incPC(-3); // Go back to branch opcode
switch (mVUlow.branch) {
case 1: case 2: normBranch(mVU, mFC); return thisPtr; // B/BAL
case 9: case 10: normJump (mVU, mFC); return thisPtr; // JR/JALR
case 3: condBranch(mVU, mFC, Jcc_Equal); return thisPtr; // IBEQ
case 4: condBranch(mVU, mFC, Jcc_GreaterOrEqual); return thisPtr; // IBGEZ
case 5: condBranch(mVU, mFC, Jcc_Greater); return thisPtr; // IBGTZ
case 6: condBranch(mVU, mFC, Jcc_LessOrEqual); return thisPtr; // IBLEQ
case 7: condBranch(mVU, mFC, Jcc_Less); return thisPtr; // IBLTZ
case 8: condBranch(mVU, mFC, Jcc_NotEqual); return thisPtr; // IBNEQ
}
}
}
if ((x == endCount) && (x!=1)) { Console::Error("microVU%d: Possible infinite compiling loop!", params mVU->index); }
// E-bit End
mVUsetupRange(mVU, xPC-8, 0);
mVUendProgram(mVU, &mFC, 1);
return thisPtr;
}
// Search for Existing Compiled Block (if found, return x86ptr; else, compile and return x86ptr)
microVUt(void*) mVUblockFetch(microVU* mVU, u32 startPC, uptr pState) {
using namespace x86Emitter;
if (startPC > mVU->microMemSize-8) { DevCon::Error("microVU%d: invalid startPC [%04x]", params mVU->index, startPC); }
startPC &= mVU->microMemSize-8;
blockCreate(startPC/8);
microBlock* pBlock = mVUblocks[startPC/8]->search((microRegInfo*)pState);
if (pBlock) { return pBlock->x86ptrStart; }
else { return mVUcompile(mVU, startPC, pState); }
}
// mVUcompileJIT() - Called By JR/JALR during execution
microVUx(void*) __fastcall mVUcompileJIT(u32 startPC, uptr pState) {
return mVUblockFetch(mVUx, startPC, pState);
}

View File

@ -1,151 +1,140 @@
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
//------------------------------------------------------------------
// Dispatcher Functions
//------------------------------------------------------------------
// Generates the code for entering recompiled blocks
void mVUdispatcherA(mV) {
mVU->startFunct = x86Ptr;
// __fastcall = The first two DWORD or smaller arguments are passed in ECX and EDX registers; all other arguments are passed right to left.
if (!isVU1) { CALLFunc((uptr)mVUexecuteVU0); }
else { CALLFunc((uptr)mVUexecuteVU1); }
// Backup cpu state
PUSH32R(EBX);
PUSH32R(EBP);
PUSH32R(ESI);
PUSH32R(EDI);
// Load VU's MXCSR state
SSE_LDMXCSR((uptr)&g_sseVUMXCSR);
// Load Regs
MOV32ItoR(gprR, Roffset); // Load VI Reg Offset
MOV32MtoR(gprF0, (uptr)&mVU->regs->VI[REG_STATUS_FLAG].UL);
MOV32RtoR(gprF1, gprF0);
SHR32ItoR(gprF1, 3);
AND32ItoR(gprF1, 0x18);
MOV32RtoR(gprF2, gprF0);
SHL32ItoR(gprF2, 11);
AND32ItoR(gprF2, 0x1800);
OR32RtoR (gprF1, gprF2);
SHL32ItoR(gprF0, 14);
AND32ItoR(gprF0, 0x3cf0000);
OR32RtoR (gprF1, gprF0);
MOV32RtoR(gprF0, gprF1);
MOV32RtoR(gprF2, gprF1);
MOV32RtoR(gprF3, gprF1);
SSE_MOVAPS_M128_to_XMM(xmmT1, (uptr)&mVU->regs->VI[REG_MAC_FLAG].UL);
SSE_SHUFPS_XMM_to_XMM (xmmT1, xmmT1, 0);
SSE_MOVAPS_XMM_to_M128((uptr)mVU->macFlag, xmmT1);
SSE_MOVAPS_M128_to_XMM(xmmT1, (uptr)&mVU->regs->VI[REG_CLIP_FLAG].UL);
SSE_SHUFPS_XMM_to_XMM (xmmT1, xmmT1, 0);
SSE_MOVAPS_XMM_to_M128((uptr)mVU->clipFlag, xmmT1);
SSE_MOVAPS_M128_to_XMM(xmmT1, (uptr)&mVU->regs->VI[REG_P].UL);
SSE_MOVAPS_M128_to_XMM(xmmPQ, (uptr)&mVU->regs->VI[REG_Q].UL);
SSE_SHUFPS_XMM_to_XMM(xmmPQ, xmmT1, 0); // wzyx = PPQQ
// Jump to Recompiled Code Block
JMPR(EAX);
}
// Generates the code to exit from recompiled blocks
void mVUdispatcherB(mV) {
mVU->exitFunct = x86Ptr;
// Load EE's MXCSR state
SSE_LDMXCSR((uptr)&g_sseMXCSR);
// __fastcall = The first two DWORD or smaller arguments are passed in ECX and EDX registers; all other arguments are passed right to left.
if (!isVU1) { CALLFunc((uptr)mVUcleanUpVU0); }
else { CALLFunc((uptr)mVUcleanUpVU1); }
// Restore cpu state
POP32R(EDI);
POP32R(ESI);
POP32R(EBP);
POP32R(EBX);
RET();
mVUcacheCheck(x86Ptr, mVU->cache, 0x1000);
}
//------------------------------------------------------------------
// Execution Functions
//------------------------------------------------------------------
// Executes for number of cycles
microVUx(void*) __fastcall mVUexecute(u32 startPC, u32 cycles) {
microVU* mVU = mVUx;
//mVUprint("microVU%x: startPC = 0x%x, cycles = 0x%x", params vuIndex, startPC, cycles);
mVUsearchProg<vuIndex>(); // Find and set correct program
mVU->cycles = cycles;
mVU->totalCycles = cycles;
x86SetPtr(mVU->prog.x86ptr); // Set x86ptr to where last program left off
return mVUblockFetch(mVU, startPC, (uptr)&mVU->prog.lpState);
}
//------------------------------------------------------------------
// Cleanup Functions
//------------------------------------------------------------------
microVUx(void) mVUcleanUp() {
microVU* mVU = mVUx;
//mVUprint("microVU: Program exited successfully!");
//mVUprint("microVU: VF0 = {%x,%x,%x,%x}", params mVU->regs->VF[0].UL[0], mVU->regs->VF[0].UL[1], mVU->regs->VF[0].UL[2], mVU->regs->VF[0].UL[3]);
//mVUprint("microVU: VI0 = %x", params mVU->regs->VI[0].UL);
mVU->prog.x86ptr = x86Ptr;
mVUcacheCheck(x86Ptr, mVU->prog.x86start, (uptr)(mVU->prog.x86end - mVU->prog.x86start));
mVU->cycles = mVU->totalCycles - mVU->cycles;
mVU->regs->cycle += mVU->cycles;
cpuRegs.cycle += ((mVU->cycles < 3000) ? mVU->cycles : 3000) * EmuConfig.Speedhacks.VUCycleSteal;
//static int ax = 0; ax++;
//if (!(ax % 100000)) {
// for (u32 i = 0; i < (mVU->progSize / 2); i++) {
// if (mVUcurProg.block[i]) {
// mVUcurProg.block[i]->printInfo();
// }
// }
//}
}
//------------------------------------------------------------------
// Caller Functions
//------------------------------------------------------------------
void* __fastcall mVUexecuteVU0(u32 startPC, u32 cycles) { return mVUexecute<0>(startPC, cycles); }
void* __fastcall mVUexecuteVU1(u32 startPC, u32 cycles) { return mVUexecute<1>(startPC, cycles); }
void __fastcall mVUcleanUpVU0() { mVUcleanUp<0>(); }
void __fastcall mVUcleanUpVU1() { mVUcleanUp<1>(); }
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
//------------------------------------------------------------------
// Dispatcher Functions
//------------------------------------------------------------------
// Generates the code for entering recompiled blocks
void mVUdispatcherA(mV) {
mVU->startFunct = x86Ptr;
// __fastcall = The first two DWORD or smaller arguments are passed in ECX and EDX registers; all other arguments are passed right to left.
if (!isVU1) { CALLFunc((uptr)mVUexecuteVU0); }
else { CALLFunc((uptr)mVUexecuteVU1); }
// Backup cpu state
PUSH32R(EBX);
PUSH32R(EBP);
PUSH32R(ESI);
PUSH32R(EDI);
// Load VU's MXCSR state
SSE_LDMXCSR((uptr)&g_sseVUMXCSR);
// Load Regs
#ifdef CHECK_MACROVU0
MOV32MtoR(gprF0, (uptr)&mVU->regs->VI[REG_STATUS_FLAG].UL);
MOV32RtoR(gprF1, gprF0);
MOV32RtoR(gprF2, gprF0);
MOV32RtoR(gprF3, gprF0);
#else
mVUallocSFLAGd((uptr)&mVU->regs->VI[REG_STATUS_FLAG].UL, 1);
#endif
SSE_MOVAPS_M128_to_XMM(xmmT1, (uptr)&mVU->regs->VI[REG_MAC_FLAG].UL);
SSE_SHUFPS_XMM_to_XMM (xmmT1, xmmT1, 0);
SSE_MOVAPS_XMM_to_M128((uptr)mVU->macFlag, xmmT1);
SSE_MOVAPS_M128_to_XMM(xmmT1, (uptr)&mVU->regs->VI[REG_CLIP_FLAG].UL);
SSE_SHUFPS_XMM_to_XMM (xmmT1, xmmT1, 0);
SSE_MOVAPS_XMM_to_M128((uptr)mVU->clipFlag, xmmT1);
SSE_MOVAPS_M128_to_XMM(xmmT1, (uptr)&mVU->regs->VI[REG_P].UL);
SSE_MOVAPS_M128_to_XMM(xmmPQ, (uptr)&mVU->regs->VI[REG_Q].UL);
SSE_SHUFPS_XMM_to_XMM(xmmPQ, xmmT1, 0); // wzyx = PPQQ
// Jump to Recompiled Code Block
JMPR(EAX);
}
// Generates the code to exit from recompiled blocks
void mVUdispatcherB(mV) {
mVU->exitFunct = x86Ptr;
// Load EE's MXCSR state
SSE_LDMXCSR((uptr)&g_sseMXCSR);
// __fastcall = The first two DWORD or smaller arguments are passed in ECX and EDX registers; all other arguments are passed right to left.
if (!isVU1) { CALLFunc((uptr)mVUcleanUpVU0); }
else { CALLFunc((uptr)mVUcleanUpVU1); }
// Restore cpu state
POP32R(EDI);
POP32R(ESI);
POP32R(EBP);
POP32R(EBX);
RET();
mVUcacheCheck(x86Ptr, mVU->cache, 0x1000);
}
//------------------------------------------------------------------
// Execution Functions
//------------------------------------------------------------------
// Executes for number of cycles
microVUx(void*) __fastcall mVUexecute(u32 startPC, u32 cycles) {
microVU* mVU = mVUx;
//mVUprint("microVU%x: startPC = 0x%x, cycles = 0x%x", params vuIndex, startPC, cycles);
mVUsearchProg<vuIndex>(); // Find and set correct program
mVU->cycles = cycles;
mVU->totalCycles = cycles;
x86SetPtr(mVU->prog.x86ptr); // Set x86ptr to where last program left off
return mVUblockFetch(mVU, startPC, (uptr)&mVU->prog.lpState);
}
//------------------------------------------------------------------
// Cleanup Functions
//------------------------------------------------------------------
microVUx(void) mVUcleanUp() {
microVU* mVU = mVUx;
//mVUprint("microVU: Program exited successfully!");
//mVUprint("microVU: VF0 = {%x,%x,%x,%x}", params mVU->regs->VF[0].UL[0], mVU->regs->VF[0].UL[1], mVU->regs->VF[0].UL[2], mVU->regs->VF[0].UL[3]);
//mVUprint("microVU: VI0 = %x", params mVU->regs->VI[0].UL);
mVU->prog.x86ptr = x86Ptr;
mVUcacheCheck(x86Ptr, mVU->prog.x86start, (uptr)(mVU->prog.x86end - mVU->prog.x86start));
mVU->cycles = mVU->totalCycles - mVU->cycles;
mVU->regs->cycle += mVU->cycles;
cpuRegs.cycle += ((mVU->cycles < 3000) ? mVU->cycles : 3000) * EmuConfig.Speedhacks.VUCycleSteal;
//static int ax = 0; ax++;
//if (!(ax % 100000)) {
// for (u32 i = 0; i < (mVU->progSize / 2); i++) {
// if (mVUcurProg.block[i]) {
// mVUcurProg.block[i]->printInfo();
// }
// }
//}
}
//------------------------------------------------------------------
// Caller Functions
//------------------------------------------------------------------
void* __fastcall mVUexecuteVU0(u32 startPC, u32 cycles) { return mVUexecute<0>(startPC, cycles); }
void* __fastcall mVUexecuteVU1(u32 startPC, u32 cycles) { return mVUexecute<1>(startPC, cycles); }
void __fastcall mVUcleanUpVU0() { mVUcleanUp<0>(); }
void __fastcall mVUcleanUpVU1() { mVUcleanUp<1>(); }

View File

@ -1,284 +1,283 @@
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
// Sets FDIV Flags at the proper time
microVUt(void) mVUdivSet(mV) {
int flagReg1, flagReg2;
if (mVUinfo.doDivFlag) {
getFlagReg(flagReg1, sFLAG.write);
if (!sFLAG.doFlag) { getFlagReg(flagReg2, sFLAG.lastWrite); MOV32RtoR(flagReg1, flagReg2); }
AND32ItoR(flagReg1, 0xfff3ffff);
OR32MtoR (flagReg1, (uptr)&mVU->divFlag);
}
}
// Optimizes out unneeded status flag updates
microVUt(void) mVUstatusFlagOp(mV) {
int curPC = iPC;
int i = mVUcount;
bool runLoop = 1;
if (sFLAG.doFlag) { sFLAG.doNonSticky = 1; }
else {
for (; i > 0; i--) {
incPC2(-2);
if (sFLAG.doNonSticky) { runLoop = 0; break; }
else if (sFLAG.doFlag) { sFLAG.doNonSticky = 1; break; }
}
}
if (runLoop) {
for (; i > 0; i--) {
incPC2(-2);
if (sFLAG.doNonSticky) break;
sFLAG.doFlag = 0;
}
}
iPC = curPC;
DevCon::Status("microVU%d: FSSET Optimization", params getIndex);
}
int findFlagInst(int* fFlag, int cycles) {
int j = 0, jValue = -1;
for (int i = 0; i < 4; i++) {
if ((fFlag[i] <= cycles) && (fFlag[i] > jValue)) { j = i; jValue = fFlag[i]; }
}
return j;
}
// Setup Last 4 instances of Status/Mac/Clip flags (needed for accurate block linking)
int sortFlag(int* fFlag, int* bFlag, int cycles) {
int lFlag = -5;
int x = 0;
for (int i = 0; i < 4; i++) {
bFlag[i] = findFlagInst(fFlag, cycles);
if (lFlag != bFlag[i]) { x++; }
lFlag = bFlag[i];
cycles++;
}
return x; // Returns the number of Valid Flag Instances
}
#define sFlagCond (sFLAG.doFlag || mVUlow.isFSSET || mVUinfo.doDivFlag)
#define sHackCond (mVUsFlagHack && !sFLAG.doNonSticky)
// Note: Flag handling is 'very' complex, it requires full knowledge of how microVU recs work, so don't touch!
microVUt(void) mVUsetFlags(mV, microFlagCycles& mFC) {
int endPC = iPC;
u32 aCount = 1; // Amount of instructions needed to get valid mac flag instances for block linking
// Ensure last ~4+ instructions update mac/status flags (if next block's first 4 instructions will read them)
for (int i = mVUcount; i > 0; i--, aCount++) {
if (sFLAG.doFlag) {
if (__Mac) { mFLAG.doFlag = 1; }
if (__Status) { sFLAG.doNonSticky = 1; }
if (aCount >= 4) { break; }
}
incPC2(-2);
}
// Status/Mac Flags Setup Code
int xS = 0, xM = 0, xC = 0;
for (int i = 0; i < 4; i++) {
mFC.xStatus[i] = i;
mFC.xMac [i] = i;
mFC.xClip [i] = i;
}
if (!(mVUpBlock->pState.needExactMatch & 1)) {
xS = (mVUpBlock->pState.flags >> 0) & 3;
mFC.xStatus[0] = -1; mFC.xStatus[1] = -1;
mFC.xStatus[2] = -1; mFC.xStatus[3] = -1;
mFC.xStatus[(xS-1)&3] = 0;
}
if (!(mVUpBlock->pState.needExactMatch & 4)) {
xC = (mVUpBlock->pState.flags >> 2) & 3;
mFC.xClip[0] = -1; mFC.xClip[1] = -1;
mFC.xClip[2] = -1; mFC.xClip[3] = -1;
mFC.xClip[(xC-1)&3] = 0;
}
if (!(mVUpBlock->pState.needExactMatch & 2)) {
mFC.xMac[0] = -1; mFC.xMac[1] = -1;
mFC.xMac[2] = -1; mFC.xMac[3] = -1;
}
mFC.cycles = 0;
u32 xCount = mVUcount; // Backup count
iPC = mVUstartPC;
for (mVUcount = 0; mVUcount < xCount; mVUcount++) {
if (mVUlow.isFSSET) {
if (__Status) { // Don't Optimize out on the last ~4+ instructions
if ((xCount - mVUcount) > aCount) { mVUstatusFlagOp(mVU); }
}
else mVUstatusFlagOp(mVU);
}
mFC.cycles += mVUstall;
sFLAG.read = findFlagInst(mFC.xStatus, mFC.cycles);
mFLAG.read = findFlagInst(mFC.xMac, mFC.cycles);
cFLAG.read = findFlagInst(mFC.xClip, mFC.cycles);
sFLAG.write = xS;
mFLAG.write = xM;
cFLAG.write = xC;
sFLAG.lastWrite = (xS-1) & 3;
mFLAG.lastWrite = (xM-1) & 3;
cFLAG.lastWrite = (xC-1) & 3;
if (sHackCond) { sFLAG.doFlag = 0; }
if (sFlagCond) { mFC.xStatus[xS] = mFC.cycles + 4; xS = (xS+1) & 3; }
if (mFLAG.doFlag) { mFC.xMac [xM] = mFC.cycles + 4; xM = (xM+1) & 3; }
if (cFLAG.doFlag) { mFC.xClip [xC] = mFC.cycles + 4; xC = (xC+1) & 3; }
mFC.cycles++;
incPC2(2);
}
mVUregs.flags = ((__Clip) ? 0 : (xC << 2)) | ((__Status) ? 0 : xS);
iPC = endPC;
}
#define getFlagReg1(x) ((x == 3) ? gprF3 : ((x == 2) ? gprF2 : ((x == 1) ? gprF1 : gprF0)))
#define getFlagReg2(x) ((bStatus[0] == x) ? getFlagReg1(x) : gprT1)
#define getFlagReg3(x) ((gFlag == x) ? gprT1 : getFlagReg1(x))
#define getFlagReg4(x) ((gFlag == x) ? gprT1 : gprT2)
#define shuffleMac ((bMac [3]<<6)|(bMac [2]<<4)|(bMac [1]<<2)|bMac [0])
#define shuffleClip ((bClip[3]<<6)|(bClip[2]<<4)|(bClip[1]<<2)|bClip[0])
// Recompiles Code for Proper Flags on Block Linkings
microVUt(void) mVUsetupFlags(mV, microFlagCycles& mFC) {
if (__Status) {
int bStatus[4];
int sortRegs = sortFlag(mFC.xStatus, bStatus, mFC.cycles);
// DevCon::Status("sortRegs = %d", params sortRegs);
// Note: Emitter will optimize out mov(reg1, reg1) cases...
if (sortRegs == 1) {
MOV32RtoR(gprF0, getFlagReg1(bStatus[0]));
MOV32RtoR(gprF1, getFlagReg1(bStatus[1]));
MOV32RtoR(gprF2, getFlagReg1(bStatus[2]));
MOV32RtoR(gprF3, getFlagReg1(bStatus[3]));
}
else if (sortRegs == 2) {
MOV32RtoR(gprT1, getFlagReg1(bStatus[3]));
MOV32RtoR(gprF0, getFlagReg1(bStatus[0]));
MOV32RtoR(gprF1, getFlagReg2(bStatus[1]));
MOV32RtoR(gprF2, getFlagReg2(bStatus[2]));
MOV32RtoR(gprF3, gprT1);
}
else if (sortRegs == 3) {
int gFlag = (bStatus[0] == bStatus[1]) ? bStatus[2] : bStatus[1];
MOV32RtoR(gprT1, getFlagReg1(gFlag));
MOV32RtoR(gprT2, getFlagReg1(bStatus[3]));
MOV32RtoR(gprF0, getFlagReg1(bStatus[0]));
MOV32RtoR(gprF1, getFlagReg3(bStatus[1]));
MOV32RtoR(gprF2, getFlagReg4(bStatus[2]));
MOV32RtoR(gprF3, gprT2);
}
else {
MOV32RtoR(gprT1, getFlagReg1(bStatus[0]));
MOV32RtoR(gprT2, getFlagReg1(bStatus[1]));
MOV32RtoR(gprR, getFlagReg1(bStatus[2]));
MOV32RtoR(gprF3, getFlagReg1(bStatus[3]));
MOV32RtoR(gprF0, gprT1);
MOV32RtoR(gprF1, gprT2);
MOV32RtoR(gprF2, gprR);
MOV32ItoR(gprR, Roffset); // Restore gprR
}
}
if (__Mac) {
int bMac[4];
sortFlag(mFC.xMac, bMac, mFC.cycles);
SSE_MOVAPS_M128_to_XMM(xmmT1, (uptr)mVU->macFlag);
SSE_SHUFPS_XMM_to_XMM (xmmT1, xmmT1, shuffleMac);
SSE_MOVAPS_XMM_to_M128((uptr)mVU->macFlag, xmmT1);
}
if (__Clip) {
int bClip[4];
sortFlag(mFC.xClip, bClip, mFC.cycles);
SSE_MOVAPS_M128_to_XMM(xmmT2, (uptr)mVU->clipFlag);
SSE_SHUFPS_XMM_to_XMM (xmmT2, xmmT2, shuffleClip);
SSE_MOVAPS_XMM_to_M128((uptr)mVU->clipFlag, xmmT2);
}
}
#define shortBranch() \
if ((branch == 3) || (branch == 4)) { \
mVUflagPass(mVU, aBranchAddr, (xCount - (mVUcount+1))); \
if (branch == 3) { mVUcount = 4; break; } \
} \
else break
// Scan through instructions and check if flags are read (FSxxx, FMxxx, FCxxx opcodes)
void mVUflagPass(mV, u32 startPC, u32 xCount) {
int oldPC = iPC;
int oldCount = mVUcount;
int oldBranch = mVUbranch;
int aBranchAddr;
iPC = startPC / 4;
mVUcount = 0;
mVUbranch = 0;
for (int branch = 0; mVUcount < xCount; mVUcount=(mVUregs.needExactMatch&8)?(mVUcount+1):mVUcount) {
incPC(1);
mVUopU(mVU, 3);
if ( curI & _Ebit_ ) { branch = 1; }
if ( curI & _DTbit_ ) { branch = 6; }
if (!(curI & _Ibit_) ) { incPC(-1); mVUopL(mVU, 3); incPC(1); }
if (branch >= 2) { shortBranch(); }
else if (branch == 1) { branch = 2; }
if (mVUbranch) { branch = ((mVUbranch>8)?(5):((mVUbranch<3)?3:4)); aBranchAddr = branchAddr; mVUbranch = 0; }
incPC(1);
}
if (mVUcount < 4) { mVUregs.needExactMatch |= 0x7; }
iPC = oldPC;
mVUcount = oldCount;
mVUbranch = oldBranch;
setCode();
}
#define branchType1 if (mVUbranch <= 2) // B/BAL
#define branchType2 else if (mVUbranch >= 9) // JR/JALR
#define branchType3 else // Conditional Branch
// Checks if the first 4 instructions of a block will read flags
microVUt(void) mVUsetFlagInfo(mV) {
branchType1 { incPC(-1); mVUflagPass(mVU, branchAddr, 4); incPC(1); }
branchType2 {
if (!mVUlow.constJump.isValid || CHECK_VU_CONSTHACK) { mVUregs.needExactMatch |= 0x7; }
else { mVUflagPass(mVU, (mVUlow.constJump.regValue*8)&(mVU->microMemSize-8), 4); }
}
branchType3 {
incPC(-1);
mVUflagPass(mVU, branchAddr, 4);
int backupFlagInfo = mVUregs.needExactMatch;
mVUregs.needExactMatch = 0;
incPC(4); // Branch Not Taken
mVUflagPass(mVU, xPC, 4);
incPC(-3);
mVUregs.needExactMatch |= backupFlagInfo;
}
mVUregs.needExactMatch &= 0x7;
}
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
// Sets FDIV Flags at the proper time
microVUt(void) mVUdivSet(mV) {
int flagReg1, flagReg2;
if (mVUinfo.doDivFlag) {
getFlagReg(flagReg1, sFLAG.write);
if (!sFLAG.doFlag) { getFlagReg(flagReg2, sFLAG.lastWrite); MOV32RtoR(flagReg1, flagReg2); }
AND32ItoR(flagReg1, 0xfff3ffff);
OR32MtoR (flagReg1, (uptr)&mVU->divFlag);
}
}
// Optimizes out unneeded status flag updates
microVUt(void) mVUstatusFlagOp(mV) {
int curPC = iPC;
int i = mVUcount;
bool runLoop = 1;
if (sFLAG.doFlag) { sFLAG.doNonSticky = 1; }
else {
for (; i > 0; i--) {
incPC2(-2);
if (sFLAG.doNonSticky) { runLoop = 0; break; }
else if (sFLAG.doFlag) { sFLAG.doNonSticky = 1; break; }
}
}
if (runLoop) {
for (; i > 0; i--) {
incPC2(-2);
if (sFLAG.doNonSticky) break;
sFLAG.doFlag = 0;
}
}
iPC = curPC;
DevCon::Status("microVU%d: FSSET Optimization", params getIndex);
}
int findFlagInst(int* fFlag, int cycles) {
int j = 0, jValue = -1;
for (int i = 0; i < 4; i++) {
if ((fFlag[i] <= cycles) && (fFlag[i] > jValue)) { j = i; jValue = fFlag[i]; }
}
return j;
}
// Setup Last 4 instances of Status/Mac/Clip flags (needed for accurate block linking)
int sortFlag(int* fFlag, int* bFlag, int cycles) {
int lFlag = -5;
int x = 0;
for (int i = 0; i < 4; i++) {
bFlag[i] = findFlagInst(fFlag, cycles);
if (lFlag != bFlag[i]) { x++; }
lFlag = bFlag[i];
cycles++;
}
return x; // Returns the number of Valid Flag Instances
}
#define sFlagCond (sFLAG.doFlag || mVUlow.isFSSET || mVUinfo.doDivFlag)
#define sHackCond (mVUsFlagHack && !sFLAG.doNonSticky)
// Note: Flag handling is 'very' complex, it requires full knowledge of how microVU recs work, so don't touch!
microVUt(void) mVUsetFlags(mV, microFlagCycles& mFC) {
int endPC = iPC;
u32 aCount = 1; // Amount of instructions needed to get valid mac flag instances for block linking
// Ensure last ~4+ instructions update mac/status flags (if next block's first 4 instructions will read them)
for (int i = mVUcount; i > 0; i--, aCount++) {
if (sFLAG.doFlag) {
if (__Mac) { mFLAG.doFlag = 1; }
if (__Status) { sFLAG.doNonSticky = 1; }
if (aCount >= 4) { break; }
}
incPC2(-2);
}
// Status/Mac Flags Setup Code
int xS = 0, xM = 0, xC = 0;
for (int i = 0; i < 4; i++) {
mFC.xStatus[i] = i;
mFC.xMac [i] = i;
mFC.xClip [i] = i;
}
if (!(mVUpBlock->pState.needExactMatch & 1)) {
xS = (mVUpBlock->pState.flags >> 0) & 3;
mFC.xStatus[0] = -1; mFC.xStatus[1] = -1;
mFC.xStatus[2] = -1; mFC.xStatus[3] = -1;
mFC.xStatus[(xS-1)&3] = 0;
}
if (!(mVUpBlock->pState.needExactMatch & 4)) {
xC = (mVUpBlock->pState.flags >> 2) & 3;
mFC.xClip[0] = -1; mFC.xClip[1] = -1;
mFC.xClip[2] = -1; mFC.xClip[3] = -1;
mFC.xClip[(xC-1)&3] = 0;
}
if (!(mVUpBlock->pState.needExactMatch & 2)) {
mFC.xMac[0] = -1; mFC.xMac[1] = -1;
mFC.xMac[2] = -1; mFC.xMac[3] = -1;
}
mFC.cycles = 0;
u32 xCount = mVUcount; // Backup count
iPC = mVUstartPC;
for (mVUcount = 0; mVUcount < xCount; mVUcount++) {
if (mVUlow.isFSSET) {
if (__Status) { // Don't Optimize out on the last ~4+ instructions
if ((xCount - mVUcount) > aCount) { mVUstatusFlagOp(mVU); }
}
else mVUstatusFlagOp(mVU);
}
mFC.cycles += mVUstall;
sFLAG.read = findFlagInst(mFC.xStatus, mFC.cycles);
mFLAG.read = findFlagInst(mFC.xMac, mFC.cycles);
cFLAG.read = findFlagInst(mFC.xClip, mFC.cycles);
sFLAG.write = xS;
mFLAG.write = xM;
cFLAG.write = xC;
sFLAG.lastWrite = (xS-1) & 3;
mFLAG.lastWrite = (xM-1) & 3;
cFLAG.lastWrite = (xC-1) & 3;
if (sHackCond) { sFLAG.doFlag = 0; }
if (sFlagCond) { mFC.xStatus[xS] = mFC.cycles + 4; xS = (xS+1) & 3; }
if (mFLAG.doFlag) { mFC.xMac [xM] = mFC.cycles + 4; xM = (xM+1) & 3; }
if (cFLAG.doFlag) { mFC.xClip [xC] = mFC.cycles + 4; xC = (xC+1) & 3; }
mFC.cycles++;
incPC2(2);
}
mVUregs.flags = ((__Clip) ? 0 : (xC << 2)) | ((__Status) ? 0 : xS);
iPC = endPC;
}
#define getFlagReg1(x) ((x == 3) ? gprF3 : ((x == 2) ? gprF2 : ((x == 1) ? gprF1 : gprF0)))
#define getFlagReg2(x) ((bStatus[0] == x) ? getFlagReg1(x) : gprT1)
#define getFlagReg3(x) ((gFlag == x) ? gprT1 : getFlagReg1(x))
#define getFlagReg4(x) ((gFlag == x) ? gprT1 : gprT2)
#define shuffleMac ((bMac [3]<<6)|(bMac [2]<<4)|(bMac [1]<<2)|bMac [0])
#define shuffleClip ((bClip[3]<<6)|(bClip[2]<<4)|(bClip[1]<<2)|bClip[0])
// Recompiles Code for Proper Flags on Block Linkings
microVUt(void) mVUsetupFlags(mV, microFlagCycles& mFC) {
if (__Status) {
int bStatus[4];
int sortRegs = sortFlag(mFC.xStatus, bStatus, mFC.cycles);
// DevCon::Status("sortRegs = %d", params sortRegs);
// Note: Emitter will optimize out mov(reg1, reg1) cases...
if (sortRegs == 1) {
MOV32RtoR(gprF0, getFlagReg1(bStatus[0]));
MOV32RtoR(gprF1, getFlagReg1(bStatus[1]));
MOV32RtoR(gprF2, getFlagReg1(bStatus[2]));
MOV32RtoR(gprF3, getFlagReg1(bStatus[3]));
}
else if (sortRegs == 2) {
MOV32RtoR(gprT1, getFlagReg1(bStatus[3]));
MOV32RtoR(gprF0, getFlagReg1(bStatus[0]));
MOV32RtoR(gprF1, getFlagReg2(bStatus[1]));
MOV32RtoR(gprF2, getFlagReg2(bStatus[2]));
MOV32RtoR(gprF3, gprT1);
}
else if (sortRegs == 3) {
int gFlag = (bStatus[0] == bStatus[1]) ? bStatus[2] : bStatus[1];
MOV32RtoR(gprT1, getFlagReg1(gFlag));
MOV32RtoR(gprT2, getFlagReg1(bStatus[3]));
MOV32RtoR(gprF0, getFlagReg1(bStatus[0]));
MOV32RtoR(gprF1, getFlagReg3(bStatus[1]));
MOV32RtoR(gprF2, getFlagReg4(bStatus[2]));
MOV32RtoR(gprF3, gprT2);
}
else {
MOV32RtoR(gprT1, getFlagReg1(bStatus[0]));
MOV32RtoR(gprT2, getFlagReg1(bStatus[1]));
MOV32RtoR(gprT3, getFlagReg1(bStatus[2]));
MOV32RtoR(gprF3, getFlagReg1(bStatus[3]));
MOV32RtoR(gprF0, gprT1);
MOV32RtoR(gprF1, gprT2);
MOV32RtoR(gprF2, gprT3);
}
}
if (__Mac) {
int bMac[4];
sortFlag(mFC.xMac, bMac, mFC.cycles);
SSE_MOVAPS_M128_to_XMM(xmmT1, (uptr)mVU->macFlag);
SSE_SHUFPS_XMM_to_XMM (xmmT1, xmmT1, shuffleMac);
SSE_MOVAPS_XMM_to_M128((uptr)mVU->macFlag, xmmT1);
}
if (__Clip) {
int bClip[4];
sortFlag(mFC.xClip, bClip, mFC.cycles);
SSE_MOVAPS_M128_to_XMM(xmmT2, (uptr)mVU->clipFlag);
SSE_SHUFPS_XMM_to_XMM (xmmT2, xmmT2, shuffleClip);
SSE_MOVAPS_XMM_to_M128((uptr)mVU->clipFlag, xmmT2);
}
}
#define shortBranch() \
if ((branch == 3) || (branch == 4)) { \
mVUflagPass(mVU, aBranchAddr, (xCount - (mVUcount+1))); \
if (branch == 3) { mVUcount = 4; break; } \
} \
else break
// Scan through instructions and check if flags are read (FSxxx, FMxxx, FCxxx opcodes)
void mVUflagPass(mV, u32 startPC, u32 xCount) {
int oldPC = iPC;
int oldCount = mVUcount;
int oldBranch = mVUbranch;
int aBranchAddr;
iPC = startPC / 4;
mVUcount = 0;
mVUbranch = 0;
for (int branch = 0; mVUcount < xCount; mVUcount=(mVUregs.needExactMatch&8)?(mVUcount+1):mVUcount) {
incPC(1);
mVUopU(mVU, 3);
if ( curI & _Ebit_ ) { branch = 1; }
if ( curI & _DTbit_ ) { branch = 6; }
if (!(curI & _Ibit_) ) { incPC(-1); mVUopL(mVU, 3); incPC(1); }
if (branch >= 2) { shortBranch(); }
else if (branch == 1) { branch = 2; }
if (mVUbranch) { branch = ((mVUbranch>8)?(5):((mVUbranch<3)?3:4)); aBranchAddr = branchAddr; mVUbranch = 0; }
incPC(1);
}
if (mVUcount < 4) { mVUregs.needExactMatch |= 0x7; }
iPC = oldPC;
mVUcount = oldCount;
mVUbranch = oldBranch;
setCode();
}
#define branchType1 if (mVUbranch <= 2) // B/BAL
#define branchType2 else if (mVUbranch >= 9) // JR/JALR
#define branchType3 else // Conditional Branch
// Checks if the first 4 instructions of a block will read flags
microVUt(void) mVUsetFlagInfo(mV) {
branchType1 { incPC(-1); mVUflagPass(mVU, branchAddr, 4); incPC(1); }
branchType2 {
if (!mVUlow.constJump.isValid || CHECK_VU_CONSTHACK) { mVUregs.needExactMatch |= 0x7; }
else { mVUflagPass(mVU, (mVUlow.constJump.regValue*8)&(mVU->microMemSize-8), 4); }
}
branchType3 {
incPC(-1);
mVUflagPass(mVU, branchAddr, 4);
int backupFlagInfo = mVUregs.needExactMatch;
mVUregs.needExactMatch = 0;
incPC(4); // Branch Not Taken
mVUflagPass(mVU, xPC, 4);
incPC(-3);
mVUregs.needExactMatch |= backupFlagInfo;
}
mVUregs.needExactMatch &= 0x7;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,292 +1,290 @@
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
//------------------------------------------------------------------
// Global Variables
//------------------------------------------------------------------
#define declareAllVariables \
initVariable( _somePrefix_, u32, mVU_absclip, 0x7fffffff ); \
initVariable( _somePrefix_, u32, mVU_signbit, 0x80000000 ); \
initVariable( _somePrefix_, u32, mVU_minvals, 0xff7fffff ); \
initVariable( _somePrefix_, u32, mVU_maxvals, 0x7f7fffff ); \
initVariable( _somePrefix_, u32, mVU_one, 0x3f800000 ); \
initVariable( _somePrefix_, u32, mVU_T1, 0x3f7ffff5 ); \
initVariable( _somePrefix_, u32, mVU_T2, 0xbeaaa61c ); \
initVariable( _somePrefix_, u32, mVU_T3, 0x3e4c40a6 ); \
initVariable( _somePrefix_, u32, mVU_T4, 0xbe0e6c63 ); \
initVariable( _somePrefix_, u32, mVU_T5, 0x3dc577df ); \
initVariable( _somePrefix_, u32, mVU_T6, 0xbd6501c4 ); \
initVariable( _somePrefix_, u32, mVU_T7, 0x3cb31652 ); \
initVariable( _somePrefix_, u32, mVU_T8, 0xbb84d7e7 ); \
initVariable( _somePrefix_, u32, mVU_Pi4, 0x3f490fdb ); \
initVariable( _somePrefix_, u32, mVU_S2, 0xbe2aaaa4 ); \
initVariable( _somePrefix_, u32, mVU_S3, 0x3c08873e ); \
initVariable( _somePrefix_, u32, mVU_S4, 0xb94fb21f ); \
initVariable( _somePrefix_, u32, mVU_S5, 0x362e9c14 ); \
initVariable( _somePrefix_, u32, mVU_E1, 0x3e7fffa8 ); \
initVariable( _somePrefix_, u32, mVU_E2, 0x3d0007f4 ); \
initVariable( _somePrefix_, u32, mVU_E3, 0x3b29d3ff ); \
initVariable( _somePrefix_, u32, mVU_E4, 0x3933e553 ); \
initVariable( _somePrefix_, u32, mVU_E5, 0x36b63510 ); \
initVariable( _somePrefix_, u32, mVU_E6, 0x353961ac ); \
initVariable( _somePrefix_, float, mVU_FTOI_4, 16.0 ); \
initVariable( _somePrefix_, float, mVU_FTOI_12, 4096.0 ); \
initVariable( _somePrefix_, float, mVU_FTOI_15, 32768.0 ); \
initVariable( _somePrefix_, float, mVU_ITOF_4, 0.0625f ); \
initVariable( _somePrefix_, float, mVU_ITOF_12, 0.000244140625 ); \
initVariable( _somePrefix_, float, mVU_ITOF_15, 0.000030517578125 );
#define _somePrefix_ PCSX2_ALIGNED16_EXTERN
#define initVariable(aprefix, atype, aname, avalue) aprefix (const atype aname [4]);
declareAllVariables
#undef _somePrefix_
#undef initVariable
#define _somePrefix_ PCSX2_ALIGNED16
#define initVariable(aprefix, atype, aname, avalue) aprefix (const atype aname [4]) = {avalue, avalue, avalue, avalue};
//------------------------------------------------------------------
// Helper Macros
//------------------------------------------------------------------
#define _Ft_ ((mVU->code >> 16) & 0x1F) // The ft part of the instruction register
#define _Fs_ ((mVU->code >> 11) & 0x1F) // The fs part of the instruction register
#define _Fd_ ((mVU->code >> 6) & 0x1F) // The fd part of the instruction register
#define _It_ ((mVU->code >> 16) & 0xF) // The it part of the instruction register
#define _Is_ ((mVU->code >> 11) & 0xF) // The is part of the instruction register
#define _Id_ ((mVU->code >> 6) & 0xF) // The id part of the instruction register
#define _X ((mVU->code>>24) & 0x1)
#define _Y ((mVU->code>>23) & 0x1)
#define _Z ((mVU->code>>22) & 0x1)
#define _W ((mVU->code>>21) & 0x1)
#define _X_Y_Z_W (((mVU->code >> 21 ) & 0xF))
#define _XYZW_SS (_X+_Y+_Z+_W==1)
#define _XYZW_SS2 (_XYZW_SS && (_X_Y_Z_W != 8))
#define _XYZW_PS (_X_Y_Z_W == 0xf)
#define _XYZWss(x) ((x==8) || (x==4) || (x==2) || (x==1))
#define _bc_ (mVU->code & 0x3)
#define _bc_x ((mVU->code & 0x3) == 0)
#define _bc_y ((mVU->code & 0x3) == 1)
#define _bc_z ((mVU->code & 0x3) == 2)
#define _bc_w ((mVU->code & 0x3) == 3)
#define _Fsf_ ((mVU->code >> 21) & 0x03)
#define _Ftf_ ((mVU->code >> 23) & 0x03)
#define _Imm5_ (s16)(((mVU->code & 0x400) ? 0xfff0 : 0) | ((mVU->code >> 6) & 0xf))
#define _Imm11_ (s32)((mVU->code & 0x400) ? (0xfffffc00 | (mVU->code & 0x3ff)) : (mVU->code & 0x3ff))
#define _Imm12_ (((mVU->code >> 21) & 0x1) << 11) | (mVU->code & 0x7ff)
#define _Imm15_ (((mVU->code >> 10) & 0x7800) | (mVU->code & 0x7ff))
#define _Imm24_ (u32)(mVU->code & 0xffffff)
#define _Ibit_ (1<<31)
#define _Ebit_ (1<<30)
#define _Mbit_ (1<<29)
#define _Dbit_ (1<<28)
#define _Tbit_ (1<<27)
#define _DTbit_ 0 //( _Dbit_ | _Tbit_ ) // ToDo: Implement this stuff...
#define divI 0x1040000
#define divD 0x2080000
#define isVU1 (mVU->index != 0)
#define getIndex (isVU1 ? 1 : 0)
#define getVUmem(x) (((isVU1) ? (x & 0x3ff) : ((x >= 0x400) ? (x & 0x43f) : (x & 0xff))) * 16)
#define offsetSS ((_X) ? (0) : ((_Y) ? (4) : ((_Z) ? 8: 12)))
#define offsetReg ((_X) ? (0) : ((_Y) ? (1) : ((_Z) ? 2: 3)))
#define xmmT1 0 // Used for regAlloc
#define xmmT2 1 // Used for regAlloc
#define xmmT3 2 // Used for regAlloc
#define xmmT4 3 // Used for regAlloc
#define xmmT5 4 // Used for regAlloc
#define xmmT6 5 // Used for regAlloc
#define xmmT7 6 // Used for regAlloc
#define xmmPQ 7 // Holds the Value and Backup Values of P and Q regs
#define gprT1 0 // Temp Reg
#define gprT2 1 // Temp Reg
#define gprR 2 // VI Reg Offset
#define gprF0 3 // Status Flag 0
#define gprESP 4 // Don't use?
#define gprF1 5 // Status Flag 1
#define gprF2 6 // Status Flag 2
#define gprF3 7 // Status Flag 3
// Function Params
#define mP microVU* mVU, int recPass
#define mV microVU* mVU
#define mF int recPass
#define mX mVU, recPass
// Recursive Inline
#ifndef __LINUX__
#define __recInline __releaseinline
#else
#define __recInline inline
#endif
// Function/Template Stuff
#define mVUx (vuIndex ? &microVU1 : &microVU0)
#define mVUop(opName) void opName (mP)
#define microVUr(aType) __recInline aType
#define microVUt(aType) __forceinline aType
#define microVUx(aType) template<int vuIndex> aType
#define microVUf(aType) template<int vuIndex> __forceinline aType
// Define Passes
#define pass1 if (recPass == 0)
#define pass2 if (recPass == 1)
#define pass3 if (recPass == 2)
#define pass4 if (recPass == 3)
// Upper Opcode Cases
#define opCase1 if (opCase == 1) // Normal Opcodes
#define opCase2 if (opCase == 2) // BC Opcodes
#define opCase3 if (opCase == 3) // I Opcodes
#define opCase4 if (opCase == 4) // Q Opcodes
// Define mVUquickSearch
#ifndef __LINUX__
PCSX2_ALIGNED16_EXTERN( u8 mVUsearchXMM[0x1000] );
typedef u32 (__fastcall *mVUCall)(void*, void*);
#define mVUquickSearch(dest, src, size) ((((mVUCall)((void*)mVUsearchXMM))(dest, src)) == 0xf)
#define mVUemitSearch() { mVUcustomSearch(); }
#else
// Note: GCC builds crash with custom search function, because
// they're not guaranteeing 16-byte alignment on the structs :(
// #define mVUquickSearch(dest, src, size) (!memcmp(dest, src, size))
#define mVUquickSearch(dest, src, size) (!memcmp_mmx(dest, src, size))
#define mVUemitSearch()
#endif
// Misc Macros...
#define mVUprogI mVU->prog.prog[progIndex]
#define mVUcurProg mVU->prog.prog[mVU->prog.cur]
#define mVUblocks mVU->prog.prog[mVU->prog.cur].block
#define mVUir mVU->prog.IRinfo
#define mVUbranch mVU->prog.IRinfo.branch
#define mVUcycles mVU->prog.IRinfo.cycles
#define mVUcount mVU->prog.IRinfo.count
#define mVUpBlock mVU->prog.IRinfo.pBlock
#define mVUblock mVU->prog.IRinfo.block
#define mVUregs mVU->prog.IRinfo.block.pState
#define mVUregsTemp mVU->prog.IRinfo.regsTemp
#define iPC mVU->prog.IRinfo.curPC
#define mVUsFlagHack mVU->prog.IRinfo.sFlagHack
#define mVUconstReg mVU->prog.IRinfo.constReg
#define mVUstartPC mVU->prog.IRinfo.startPC
#define mVUinfo mVU->prog.IRinfo.info[iPC / 2]
#define mVUstall mVUinfo.stall
#define mVUup mVUinfo.uOp
#define mVUlow mVUinfo.lOp
#define sFLAG mVUinfo.sFlag
#define mFLAG mVUinfo.mFlag
#define cFLAG mVUinfo.cFlag
#define mVUrange mVUcurProg.ranges.range[mVUcurProg.ranges.total]
#define isEvilBlock (mVUpBlock->pState.blockType == 2)
#define isBadOrEvil (mVUlow.badBranch || mVUlow.evilBranch)
#define xPC ((iPC / 2) * 8)
#define curI ((u32*)mVU->regs->Micro)[iPC] //mVUcurProg.data[iPC]
#define setCode() { mVU->code = curI; }
#define incPC(x) { iPC = ((iPC + x) & (mVU->progSize-1)); setCode(); }
#define incPC2(x) { iPC = ((iPC + x) & (mVU->progSize-1)); }
#define bSaveAddr (((xPC + 16) & (mVU->microMemSize-8)) / 8)
#define branchAddr ((xPC + 8 + (_Imm11_ * 8)) & (mVU->microMemSize-8))
#define branchAddrN ((xPC + 16 + (_Imm11_ * 8)) & (mVU->microMemSize-8))
#define shufflePQ (((mVU->p) ? 0xb0 : 0xe0) | ((mVU->q) ? 0x01 : 0x04))
#define cmpOffset(x) ((u8*)&(((u8*)x)[mVUprogI.ranges.range[i][0]]))
#define Rmem (uptr)&mVU->regs->VI[REG_R].UL
#define Roffset (uptr)&mVU->regs->VI[9].UL
#define aWrap(x, m) ((x > m) ? 0 : x)
#define shuffleSS(x) ((x==1)?(0x27):((x==2)?(0xc6):((x==4)?(0xe1):(0xe4))))
// Flag Info
#define __Status (mVUregs.needExactMatch & 1)
#define __Mac (mVUregs.needExactMatch & 2)
#define __Clip (mVUregs.needExactMatch & 4)
// Pass 3 Helper Macros
#define _Fsf_String ((_Fsf_ == 3) ? "w" : ((_Fsf_ == 2) ? "z" : ((_Fsf_ == 1) ? "y" : "x")))
#define _Ftf_String ((_Ftf_ == 3) ? "w" : ((_Ftf_ == 2) ? "z" : ((_Ftf_ == 1) ? "y" : "x")))
#define xyzwStr(x,s) (_X_Y_Z_W == x) ? s :
#define _XYZW_String (xyzwStr(1, "w") (xyzwStr(2, "z") (xyzwStr(3, "zw") (xyzwStr(4, "y") (xyzwStr(5, "yw") (xyzwStr(6, "yz") (xyzwStr(7, "yzw") (xyzwStr(8, "x") (xyzwStr(9, "xw") (xyzwStr(10, "xz") (xyzwStr(11, "xzw") (xyzwStr(12, "xy") (xyzwStr(13, "xyw") (xyzwStr(14, "xyz") "xyzw"))))))))))))))
#define _BC_String (_bc_x ? "x" : (_bc_y ? "y" : (_bc_z ? "z" : "w")))
#define mVUlogFtFs() { mVUlog(".%s vf%02d, vf%02d", _XYZW_String, _Ft_, _Fs_); }
#define mVUlogFd() { mVUlog(".%s vf%02d, vf%02d", _XYZW_String, _Fd_, _Fs_); }
#define mVUlogACC() { mVUlog(".%s ACC, vf%02d", _XYZW_String, _Fs_); }
#define mVUlogFt() { mVUlog(", vf%02d", _Ft_); }
#define mVUlogBC() { mVUlog(", vf%02d%s", _Ft_, _BC_String); }
#define mVUlogI() { mVUlog(", I"); }
#define mVUlogQ() { mVUlog(", Q"); }
#define mVUlogCLIP() { mVUlog("w.xyz vf%02d, vf%02dw", _Fs_, _Ft_); }
// Debug Stuff...
#ifdef mVUdebug
#define mVUprint Console::Status
#else
#define mVUprint 0&&
#endif
// Program Logging...
#ifdef mVUlogProg
#define mVUlog ((isVU1) ? __mVULog<1> : __mVULog<0>)
#define mVUdumpProg __mVUdumpProgram<vuIndex>
#else
#define mVUlog 0&&
#define mVUdumpProg 0&&
#endif
// Reg Alloc
#define doRegAlloc 1 // Set to 0 to flush every 64bit Instruction (Turns off regAlloc)
// Speed Hacks
#define CHECK_VU_CONSTHACK 1 // Disables Constant Propagation for Jumps
#define CHECK_VU_FLAGHACK (EmuConfig.Speedhacks.vuFlagHack) // (Can cause Infinite loops, SPS, etc...)
#define CHECK_VU_MINMAXHACK (EmuConfig.Speedhacks.vuMinMax) // (Can cause SPS, Black Screens, etc...)
// Unknown Data
#define mVU_XGKICK_CYCLES ((CHECK_XGKICKHACK) ? 3 : 1)
// Its unknown at recompile time how long the xgkick transfer will take
// so give it a value that makes games happy :) (SO3 is fine at 1 cycle delay)
// Cache Limit Check
#define mVUcacheCheck(ptr, start, limit) { \
uptr diff = ptr - start; \
if (diff >= limit) { \
Console::Status("microVU%d: Program cache limit reached. Size = 0x%x", params mVU->index, diff); \
mVUreset(mVU); \
} \
}
#define mVUdebugNOW(isEndPC) { \
if (mVUdebugNow) { \
MOV32ItoR(gprT2, xPC); \
if (isEndPC) { CALLFunc((uptr)mVUprintPC2); } \
else { CALLFunc((uptr)mVUprintPC1); } \
MOV32ItoR(gprR, Roffset); \
} \
}
/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2009 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#pragma once
//------------------------------------------------------------------
// Global Variables
//------------------------------------------------------------------
#define declareAllVariables \
initVariable( _somePrefix_, u32, mVU_absclip, 0x7fffffff ); \
initVariable( _somePrefix_, u32, mVU_signbit, 0x80000000 ); \
initVariable( _somePrefix_, u32, mVU_minvals, 0xff7fffff ); \
initVariable( _somePrefix_, u32, mVU_maxvals, 0x7f7fffff ); \
initVariable( _somePrefix_, u32, mVU_one, 0x3f800000 ); \
initVariable( _somePrefix_, u32, mVU_T1, 0x3f7ffff5 ); \
initVariable( _somePrefix_, u32, mVU_T2, 0xbeaaa61c ); \
initVariable( _somePrefix_, u32, mVU_T3, 0x3e4c40a6 ); \
initVariable( _somePrefix_, u32, mVU_T4, 0xbe0e6c63 ); \
initVariable( _somePrefix_, u32, mVU_T5, 0x3dc577df ); \
initVariable( _somePrefix_, u32, mVU_T6, 0xbd6501c4 ); \
initVariable( _somePrefix_, u32, mVU_T7, 0x3cb31652 ); \
initVariable( _somePrefix_, u32, mVU_T8, 0xbb84d7e7 ); \
initVariable( _somePrefix_, u32, mVU_Pi4, 0x3f490fdb ); \
initVariable( _somePrefix_, u32, mVU_S2, 0xbe2aaaa4 ); \
initVariable( _somePrefix_, u32, mVU_S3, 0x3c08873e ); \
initVariable( _somePrefix_, u32, mVU_S4, 0xb94fb21f ); \
initVariable( _somePrefix_, u32, mVU_S5, 0x362e9c14 ); \
initVariable( _somePrefix_, u32, mVU_E1, 0x3e7fffa8 ); \
initVariable( _somePrefix_, u32, mVU_E2, 0x3d0007f4 ); \
initVariable( _somePrefix_, u32, mVU_E3, 0x3b29d3ff ); \
initVariable( _somePrefix_, u32, mVU_E4, 0x3933e553 ); \
initVariable( _somePrefix_, u32, mVU_E5, 0x36b63510 ); \
initVariable( _somePrefix_, u32, mVU_E6, 0x353961ac ); \
initVariable( _somePrefix_, float, mVU_FTOI_4, 16.0 ); \
initVariable( _somePrefix_, float, mVU_FTOI_12, 4096.0 ); \
initVariable( _somePrefix_, float, mVU_FTOI_15, 32768.0 ); \
initVariable( _somePrefix_, float, mVU_ITOF_4, 0.0625f ); \
initVariable( _somePrefix_, float, mVU_ITOF_12, 0.000244140625 ); \
initVariable( _somePrefix_, float, mVU_ITOF_15, 0.000030517578125 );
#define _somePrefix_ PCSX2_ALIGNED16_EXTERN
#define initVariable(aprefix, atype, aname, avalue) aprefix (const atype aname [4]);
declareAllVariables
#undef _somePrefix_
#undef initVariable
#define _somePrefix_ PCSX2_ALIGNED16
#define initVariable(aprefix, atype, aname, avalue) aprefix (const atype aname [4]) = {avalue, avalue, avalue, avalue};
//------------------------------------------------------------------
// Helper Macros
//------------------------------------------------------------------
#define _Ft_ ((mVU->code >> 16) & 0x1F) // The ft part of the instruction register
#define _Fs_ ((mVU->code >> 11) & 0x1F) // The fs part of the instruction register
#define _Fd_ ((mVU->code >> 6) & 0x1F) // The fd part of the instruction register
#define _It_ ((mVU->code >> 16) & 0xF) // The it part of the instruction register
#define _Is_ ((mVU->code >> 11) & 0xF) // The is part of the instruction register
#define _Id_ ((mVU->code >> 6) & 0xF) // The id part of the instruction register
#define _X ((mVU->code>>24) & 0x1)
#define _Y ((mVU->code>>23) & 0x1)
#define _Z ((mVU->code>>22) & 0x1)
#define _W ((mVU->code>>21) & 0x1)
#define _X_Y_Z_W (((mVU->code >> 21 ) & 0xF))
#define _XYZW_SS (_X+_Y+_Z+_W==1)
#define _XYZW_SS2 (_XYZW_SS && (_X_Y_Z_W != 8))
#define _XYZW_PS (_X_Y_Z_W == 0xf)
#define _XYZWss(x) ((x==8) || (x==4) || (x==2) || (x==1))
#define _bc_ (mVU->code & 0x3)
#define _bc_x ((mVU->code & 0x3) == 0)
#define _bc_y ((mVU->code & 0x3) == 1)
#define _bc_z ((mVU->code & 0x3) == 2)
#define _bc_w ((mVU->code & 0x3) == 3)
#define _Fsf_ ((mVU->code >> 21) & 0x03)
#define _Ftf_ ((mVU->code >> 23) & 0x03)
#define _Imm5_ (s16)(((mVU->code & 0x400) ? 0xfff0 : 0) | ((mVU->code >> 6) & 0xf))
#define _Imm11_ (s32)((mVU->code & 0x400) ? (0xfffffc00 | (mVU->code & 0x3ff)) : (mVU->code & 0x3ff))
#define _Imm12_ (((mVU->code >> 21) & 0x1) << 11) | (mVU->code & 0x7ff)
#define _Imm15_ (((mVU->code >> 10) & 0x7800) | (mVU->code & 0x7ff))
#define _Imm24_ (u32)(mVU->code & 0xffffff)
#define _Ibit_ (1<<31)
#define _Ebit_ (1<<30)
#define _Mbit_ (1<<29)
#define _Dbit_ (1<<28)
#define _Tbit_ (1<<27)
#define _DTbit_ 0 //( _Dbit_ | _Tbit_ ) // ToDo: Implement this stuff...
#define divI 0x1040000
#define divD 0x2080000
#define isVU1 (mVU->index != 0)
#define getIndex (isVU1 ? 1 : 0)
#define getVUmem(x) (((isVU1) ? (x & 0x3ff) : ((x >= 0x400) ? (x & 0x43f) : (x & 0xff))) * 16)
#define offsetSS ((_X) ? (0) : ((_Y) ? (4) : ((_Z) ? 8: 12)))
#define offsetReg ((_X) ? (0) : ((_Y) ? (1) : ((_Z) ? 2: 3)))
#define xmmT1 0 // Used for regAlloc
#define xmmT2 1 // Used for regAlloc
#define xmmT3 2 // Used for regAlloc
#define xmmT4 3 // Used for regAlloc
#define xmmT5 4 // Used for regAlloc
#define xmmT6 5 // Used for regAlloc
#define xmmT7 6 // Used for regAlloc
#define xmmPQ 7 // Holds the Value and Backup Values of P and Q regs
#define gprT1 0 // Temp Reg
#define gprT2 1 // Temp Reg
#define gprT3 2 // Temp Reg
#define gprF0 3 // Status Flag 0
#define gprESP 4 // Don't use?
#define gprF1 5 // Status Flag 1
#define gprF2 6 // Status Flag 2
#define gprF3 7 // Status Flag 3
// Function Params
#define mP microVU* mVU, int recPass
#define mV microVU* mVU
#define mF int recPass
#define mX mVU, recPass
// Recursive Inline
#ifndef __LINUX__
#define __recInline __releaseinline
#else
#define __recInline inline
#endif
// Function/Template Stuff
#define mVUx (vuIndex ? &microVU1 : &microVU0)
#define mVUop(opName) void opName (mP)
#define microVUr(aType) __recInline aType
#define microVUt(aType) __forceinline aType
#define microVUx(aType) template<int vuIndex> aType
#define microVUf(aType) template<int vuIndex> __forceinline aType
// Define Passes
#define pass1 if (recPass == 0)
#define pass2 if (recPass == 1)
#define pass3 if (recPass == 2)
#define pass4 if (recPass == 3)
// Upper Opcode Cases
#define opCase1 if (opCase == 1) // Normal Opcodes
#define opCase2 if (opCase == 2) // BC Opcodes
#define opCase3 if (opCase == 3) // I Opcodes
#define opCase4 if (opCase == 4) // Q Opcodes
// Define mVUquickSearch
#ifndef __LINUX__
PCSX2_ALIGNED16_EXTERN( u8 mVUsearchXMM[0x1000] );
typedef u32 (__fastcall *mVUCall)(void*, void*);
#define mVUquickSearch(dest, src, size) ((((mVUCall)((void*)mVUsearchXMM))(dest, src)) == 0xf)
#define mVUemitSearch() { mVUcustomSearch(); }
#else
// Note: GCC builds crash with custom search function, because
// they're not guaranteeing 16-byte alignment on the structs :(
// #define mVUquickSearch(dest, src, size) (!memcmp(dest, src, size))
#define mVUquickSearch(dest, src, size) (!memcmp_mmx(dest, src, size))
#define mVUemitSearch()
#endif
// Misc Macros...
#define mVUprogI mVU->prog.prog[progIndex]
#define mVUcurProg mVU->prog.prog[mVU->prog.cur]
#define mVUblocks mVU->prog.prog[mVU->prog.cur].block
#define mVUir mVU->prog.IRinfo
#define mVUbranch mVU->prog.IRinfo.branch
#define mVUcycles mVU->prog.IRinfo.cycles
#define mVUcount mVU->prog.IRinfo.count
#define mVUpBlock mVU->prog.IRinfo.pBlock
#define mVUblock mVU->prog.IRinfo.block
#define mVUregs mVU->prog.IRinfo.block.pState
#define mVUregsTemp mVU->prog.IRinfo.regsTemp
#define iPC mVU->prog.IRinfo.curPC
#define mVUsFlagHack mVU->prog.IRinfo.sFlagHack
#define mVUconstReg mVU->prog.IRinfo.constReg
#define mVUstartPC mVU->prog.IRinfo.startPC
#define mVUinfo mVU->prog.IRinfo.info[iPC / 2]
#define mVUstall mVUinfo.stall
#define mVUup mVUinfo.uOp
#define mVUlow mVUinfo.lOp
#define sFLAG mVUinfo.sFlag
#define mFLAG mVUinfo.mFlag
#define cFLAG mVUinfo.cFlag
#define mVUrange mVUcurProg.ranges.range[mVUcurProg.ranges.total]
#define isEvilBlock (mVUpBlock->pState.blockType == 2)
#define isBadOrEvil (mVUlow.badBranch || mVUlow.evilBranch)
#define xPC ((iPC / 2) * 8)
#define curI ((u32*)mVU->regs->Micro)[iPC] //mVUcurProg.data[iPC]
#define setCode() { mVU->code = curI; }
#define incPC(x) { iPC = ((iPC + x) & (mVU->progSize-1)); setCode(); }
#define incPC2(x) { iPC = ((iPC + x) & (mVU->progSize-1)); }
#define bSaveAddr (((xPC + 16) & (mVU->microMemSize-8)) / 8)
#define branchAddr ((xPC + 8 + (_Imm11_ * 8)) & (mVU->microMemSize-8))
#define branchAddrN ((xPC + 16 + (_Imm11_ * 8)) & (mVU->microMemSize-8))
#define shufflePQ (((mVU->p) ? 0xb0 : 0xe0) | ((mVU->q) ? 0x01 : 0x04))
#define cmpOffset(x) ((u8*)&(((u8*)x)[mVUprogI.ranges.range[i][0]]))
#define Rmem (uptr)&mVU->regs->VI[REG_R].UL
#define aWrap(x, m) ((x > m) ? 0 : x)
#define shuffleSS(x) ((x==1)?(0x27):((x==2)?(0xc6):((x==4)?(0xe1):(0xe4))))
// Flag Info
#define __Status (mVUregs.needExactMatch & 1)
#define __Mac (mVUregs.needExactMatch & 2)
#define __Clip (mVUregs.needExactMatch & 4)
// Pass 3 Helper Macros
#define _Fsf_String ((_Fsf_ == 3) ? "w" : ((_Fsf_ == 2) ? "z" : ((_Fsf_ == 1) ? "y" : "x")))
#define _Ftf_String ((_Ftf_ == 3) ? "w" : ((_Ftf_ == 2) ? "z" : ((_Ftf_ == 1) ? "y" : "x")))
#define xyzwStr(x,s) (_X_Y_Z_W == x) ? s :
#define _XYZW_String (xyzwStr(1, "w") (xyzwStr(2, "z") (xyzwStr(3, "zw") (xyzwStr(4, "y") (xyzwStr(5, "yw") (xyzwStr(6, "yz") (xyzwStr(7, "yzw") (xyzwStr(8, "x") (xyzwStr(9, "xw") (xyzwStr(10, "xz") (xyzwStr(11, "xzw") (xyzwStr(12, "xy") (xyzwStr(13, "xyw") (xyzwStr(14, "xyz") "xyzw"))))))))))))))
#define _BC_String (_bc_x ? "x" : (_bc_y ? "y" : (_bc_z ? "z" : "w")))
#define mVUlogFtFs() { mVUlog(".%s vf%02d, vf%02d", _XYZW_String, _Ft_, _Fs_); }
#define mVUlogFd() { mVUlog(".%s vf%02d, vf%02d", _XYZW_String, _Fd_, _Fs_); }
#define mVUlogACC() { mVUlog(".%s ACC, vf%02d", _XYZW_String, _Fs_); }
#define mVUlogFt() { mVUlog(", vf%02d", _Ft_); }
#define mVUlogBC() { mVUlog(", vf%02d%s", _Ft_, _BC_String); }
#define mVUlogI() { mVUlog(", I"); }
#define mVUlogQ() { mVUlog(", Q"); }
#define mVUlogCLIP() { mVUlog("w.xyz vf%02d, vf%02dw", _Fs_, _Ft_); }
// Debug Stuff...
#ifdef mVUdebug
#define mVUprint Console::Status
#else
#define mVUprint 0&&
#endif
// Program Logging...
#ifdef mVUlogProg
#define mVUlog ((isVU1) ? __mVULog<1> : __mVULog<0>)
#define mVUdumpProg __mVUdumpProgram<vuIndex>
#else
#define mVUlog 0&&
#define mVUdumpProg 0&&
#endif
// Reg Alloc
#define doRegAlloc 1 // Set to 0 to flush every 64bit Instruction (Turns off regAlloc)
// Speed Hacks
#define CHECK_VU_CONSTHACK 1 // Disables Constant Propagation for Jumps
#define CHECK_VU_FLAGHACK (EmuConfig.Speedhacks.vuFlagHack) // (Can cause Infinite loops, SPS, etc...)
#define CHECK_VU_MINMAXHACK (EmuConfig.Speedhacks.vuMinMax) // (Can cause SPS, Black Screens, etc...)
// Unknown Data
#define mVU_XGKICK_CYCLES ((CHECK_XGKICKHACK) ? 3 : 1)
// Its unknown at recompile time how long the xgkick transfer will take
// so give it a value that makes games happy :) (SO3 is fine at 1 cycle delay)
// Cache Limit Check
#define mVUcacheCheck(ptr, start, limit) { \
uptr diff = ptr - start; \
if (diff >= limit) { \
Console::Status("microVU%d: Program cache limit reached. Size = 0x%x", params mVU->index, diff); \
mVUreset(mVU); \
} \
}
#define mVUdebugNOW(isEndPC) { \
if (mVUdebugNow) { \
MOV32ItoR(gprT2, xPC); \
if (isEndPC) { CALLFunc((uptr)mVUprintPC2); } \
else { CALLFunc((uptr)mVUprintPC1); } \
} \
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff