Added a BastTaskThread class to the threading tools.

git-svn-id: http://pcsx2.googlecode.com/svn/trunk@812 96395faa-99c1-11dd-bbfe-3dabce05a288
This commit is contained in:
Jake.Stine 2009-03-18 18:56:03 +00:00
parent 996f229cbf
commit 1bbcf07a22
1 changed files with 100 additions and 1 deletions

View File

@ -130,7 +130,8 @@ namespace Threading
//////////////////////////////////////////////////////////////////////////////////////////
// ScopedLock: Helper class for using Mutexes.
// Using this class provides an exception-safe (and generally clean) method of locking
// code inside a mutex.
// code inside a function or conditional block.
//
class ScopedLock : NoncopyableObject
{
protected:
@ -149,6 +150,104 @@ namespace Threading
}
};
//////////////////////////////////////////////////////////////////////////////////////////
// BaseTaskThread - an abstract base class which provides simple parallel execution of
// single tasks.
//
// Implementation:
// To use this class your derived class will need to implement its own Task() function
// and also a "StartTask( parameters )" function which suits the need of your task, along
// with any local variables your task needs to do its job. You may additionally want to
// implement a "GetResult()" function, which would be a combination of WaitForResult()
// and a return value of the computational result.
//
// Thread Safety:
// If operating on local variables, you must execute WaitForResult() before leaving the
// variable scope -- or alternatively have your StartTask() implementation make full
// copies of dependent data. Also, by default PostTask() always assumes the previous
// task has completed. If your system can post a new task before the previous one has
// completed, then it needs to explicitly call WaitForResult() or provide a mechanism
// to cancel the previous task (which is probably more work than it's worth).
//
// Performance notes:
// * Remember that thread creation is generally slow, so you should make your object
// instance once early and then feed it tasks repeatedly over the course of program
// execution.
//
// * For threading to be a successful speedup, the task being performed should be as lock
// free as possible. For example using STL containers in parallel usually fails to
// yield any speedup due to the gratuitous amount of locking that the STL performs
// internally.
//
// * The best application of tasking threads is to divide a large loop over a linear array
// into smaller sections. For example, if you have 20,000 items to process, the task
// can be divided into two threads of 10,000 items each.
//
class BaseTaskThread : public Thread
{
protected:
volatile bool m_done;
volatile bool m_TaskComplete;
public:
virtual ~BaseTaskThread() {}
BaseTaskThread() :
m_done( false )
, m_TaskComplete( false )
{
}
// Tells the thread to exit and then waits for thread termination.
// To force-terminate the thread without "nicely" waiting for the task to complete,
// explicitly use the Thread::Close parent implementation instead.
void Close()
{
if( m_terminated ) return;
m_done = true;
m_post_event.Post();
pthread_join( m_thread, NULL );
}
// Initiates the new task. This should be called after your own StartTask has
// initialized internal variables / preparations for task execution.
void PostTask()
{
jASSUME( !m_terminated );
m_TaskComplete = false;
m_post_event.Post();
}
// Blocks current thread execution pending the completion of the parallel task.
void WaitForResult() const
{
if( m_terminated ) return;
while( !m_TaskComplete )
{
Timeslice();
SpinWait();
}
}
protected:
// Abstract method run when a task has been posted. Implementing classes should do
// all your necessary processing work here.
virtual void Task()=0;
int Callback()
{
do
{
// Wait for a job!
m_post_event.Wait();
if( m_done ) break;
Task();
m_TaskComplete = true;
} while( !m_done );
return 0;
}
};
//////////////////////////////////////////////////////////////////////////////////////////
// Our fundamental interlocking functions. All other useful interlocks can be derived