pcsx2/pcsx2/vtlb.cpp

592 lines
20 KiB
C++
Raw Normal View History

/* Pcsx2 - Pc Ps2 Emulator
* Copyright (C) 2002-2008 Pcsx2 Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
EE physical map :
[0000 0000,1000 0000) -> Ram (mirrored ?)
[1000 0000,1400 0000) -> Registers
[1400 0000,1fc0 0000) -> Reserved (ingored writes, 'random' reads)
[1fc0 0000,2000 0000) -> Boot ROM
[2000 0000,4000 0000) -> Unmapped (BUS ERROR)
[4000 0000,8000 0000) -> "Extended memory", probably unmapped (BUS ERROR) on retail ps2's :)
[8000 0000,FFFF FFFF] -> Unmapped (BUS ERROR)
vtlb/phy only supports the [0000 0000,2000 0000) region, with 4k pages.
vtlb/vmap supports mapping to either of these locations, or some other (externaly) specified address.
*/
#include "PrecompiledHeader.h"
#include "Common.h"
#include "vtlb.h"
#include "COP0.h"
using namespace R5900;
using namespace vtlb_private;
#ifdef PCSX2_DEVBUILD
#define verify(x) {if (!(x)) { (*(u8*)0)=3; }}
#else
#define verify jASSUME
#endif
namespace vtlb_private
{
s32 pmap[VTLB_PMAP_ITEMS]; //512KB
s32 vmap[VTLB_VMAP_ITEMS]; //4MB
// first indexer -- 8/16/32/64/128 bit tables [values 0-4]
// second indexer -- read/write [0 or 1]
// third indexer -- 128 pages of memory!
void* RWFT[5][2][128];
}
vtlbHandler vtlbHandlerCount=0;
vtlbHandler DefaultPhyHandler;
vtlbHandler UnmappedVirtHandler0;
vtlbHandler UnmappedVirtHandler1;
vtlbHandler UnmappedPhyHandler0;
vtlbHandler UnmappedPhyHandler1;
/*
__asm
{
mov eax,ecx;
shr ecx,12;
mov ecx,[ecx*4+vmap]; //translate
add ecx,eax; //transform
js callfunction; //if <0 its invalid ptr :)
mov eax,[ecx];
mov [edx],eax;
xor eax,eax;
ret;
callfunction:
xchg eax,ecx;
shr eax,12; //get the 'ppn'
//ecx = original addr
//eax = function entry + 0x800000
//edx = data ptr
jmp [readfunctions8-0x800000+eax];
}*/
/////////////////////////////////////////////////////////////////////////
// Interpreter Implementations of VTLB Memory Operations.
// See recVTLB.cpp for the dynarec versions.
// Interpreterd VTLB lookup for 8, 16, and 32 bit accesses
template<int DataSize,typename DataType>
__forceinline DataType __fastcall MemOp_r0(u32 addr)
{
u32 vmv=vmap[addr>>VTLB_PAGE_BITS];
s32 ppf=addr+vmv;
if (!(ppf<0))
return *reinterpret_cast<DataType*>(ppf);
//has to: translate, find function, call function
u32 hand=(u8)vmv;
u32 paddr=ppf-hand+0x80000000;
//SysPrintf("Translated 0x%08X to 0x%08X\n",addr,paddr);
//return reinterpret_cast<TemplateHelper<DataSize,false>::HandlerType*>(RWFT[TemplateHelper<DataSize,false>::sidx][0][hand])(paddr,data);
switch( DataSize )
{
case 8: return ((vltbMemR8FP*)RWFT[0][0][hand])(paddr);
case 16: return ((vltbMemR16FP*)RWFT[1][0][hand])(paddr);
case 32: return ((vltbMemR32FP*)RWFT[2][0][hand])(paddr);
jNO_DEFAULT;
}
}
// Interpreterd VTLB lookup for 64 and 128 bit accesses.
template<int DataSize,typename DataType>
__forceinline void __fastcall MemOp_r1(u32 addr, DataType* data)
{
u32 vmv=vmap[addr>>VTLB_PAGE_BITS];
s32 ppf=addr+vmv;
if (!(ppf<0))
{
data[0]=*reinterpret_cast<DataType*>(ppf);
if (DataSize==128)
data[1]=*reinterpret_cast<DataType*>(ppf+8);
}
else
{
//has to: translate, find function, call function
u32 hand=(u8)vmv;
u32 paddr=ppf-hand+0x80000000;
//SysPrintf("Translated 0x%08X to 0x%08X\n",addr,paddr);
//return reinterpret_cast<TemplateHelper<DataSize,false>::HandlerType*>(RWFT[TemplateHelper<DataSize,false>::sidx][0][hand])(paddr,data);
switch( DataSize )
{
case 64: ((vltbMemR64FP*)RWFT[3][0][hand])(paddr, data); break;
case 128: ((vltbMemR128FP*)RWFT[4][0][hand])(paddr, data); break;
jNO_DEFAULT;
}
}
}
template<int DataSize,typename DataType>
__forceinline void __fastcall MemOp_w0(u32 addr, DataType data)
{
u32 vmv=vmap[addr>>VTLB_PAGE_BITS];
s32 ppf=addr+vmv;
if (!(ppf<0))
{
*reinterpret_cast<DataType*>(ppf)=data;
}
else
{
//has to: translate, find function, call function
u32 hand=(u8)vmv;
u32 paddr=ppf-hand+0x80000000;
//SysPrintf("Translted 0x%08X to 0x%08X\n",addr,paddr);
switch( DataSize )
{
case 8: return ((vltbMemW8FP*)RWFT[0][1][hand])(paddr, (u8)data);
case 16: return ((vltbMemW16FP*)RWFT[1][1][hand])(paddr, (u16)data);
case 32: return ((vltbMemW32FP*)RWFT[2][1][hand])(paddr, (u32)data);
jNO_DEFAULT;
}
}
}
template<int DataSize,typename DataType>
__forceinline void __fastcall MemOp_w1(u32 addr,const DataType* data)
{
verify(DataSize==128 || DataSize==64);
u32 vmv=vmap[addr>>VTLB_PAGE_BITS];
s32 ppf=addr+vmv;
if (!(ppf<0))
{
*reinterpret_cast<DataType*>(ppf)=*data;
if (DataSize==128)
*reinterpret_cast<DataType*>(ppf+8)=data[1];
}
else
{
//has to: translate, find function, call function
u32 hand=(u8)vmv;
u32 paddr=ppf-hand+0x80000000;
//SysPrintf("Translted 0x%08X to 0x%08X\n",addr,paddr);
switch( DataSize )
{
case 64: return ((vltbMemW64FP*)RWFT[3][1][hand])(paddr, data);
case 128: return ((vltbMemW128FP*)RWFT[4][1][hand])(paddr, data);
jNO_DEFAULT;
}
}
}
mem8_t __fastcall vtlb_memRead8(u32 mem)
{
return MemOp_r0<8,mem8_t>(mem);
}
mem16_t __fastcall vtlb_memRead16(u32 mem)
{
return MemOp_r0<16,mem16_t>(mem);
}
mem32_t __fastcall vtlb_memRead32(u32 mem)
{
return MemOp_r0<32,mem32_t>(mem);
}
void __fastcall vtlb_memRead64(u32 mem, u64 *out)
{
return MemOp_r1<64,mem64_t>(mem,out);
}
void __fastcall vtlb_memRead128(u32 mem, u64 *out)
{
return MemOp_r1<128,mem128_t>(mem,out);
}
void __fastcall vtlb_memWrite8 (u32 mem, mem8_t value)
{
MemOp_w0<8,mem8_t>(mem,value);
}
void __fastcall vtlb_memWrite16(u32 mem, mem16_t value)
{
MemOp_w0<16,mem16_t>(mem,value);
}
void __fastcall vtlb_memWrite32(u32 mem, mem32_t value)
{
MemOp_w0<32,mem32_t>(mem,value);
}
void __fastcall vtlb_memWrite64(u32 mem, const mem64_t* value)
{
MemOp_w1<64,mem64_t>(mem,value);
}
void __fastcall vtlb_memWrite128(u32 mem, const mem128_t *value)
{
MemOp_w1<128,mem128_t>(mem,value);
}
// Some functions used by interpreters and stuff...
// These maintain a "consistent" API with 64/128 reads.
void __fastcall memRead8(u32 mem, u8 *out) { *out = vtlb_memRead8( mem ); }
void __fastcall memRead16(u32 mem, u16 *out) { *out = vtlb_memRead16( mem ); }
void __fastcall memRead32(u32 mem, u32 *out) { *out = vtlb_memRead32( mem ); }
/////////////////////////////////////////////////////////////////////////
// Error / TLB Miss Handlers
//
// Generates a VtlbMiss Exception
static __forceinline void vtlb_Miss(u32 addr,u32 mode)
{
Console::Error("vtlb miss : addr 0x%X, mode %d", params addr,mode);
verify(false);
if (mode==0)
cpuTlbMissR(addr, cpuRegs.branch);
else
cpuTlbMissW(addr, cpuRegs.branch);
}
// Just dies a horrible death for now.
//
static __forceinline void vtlb_BusError(u32 addr,u32 mode)
{
Console::Error("vtlb bus error : addr 0x%X, mode %d\n",params addr,mode);
verify(false);
}
///// Virtual Mapping Errors (TLB Miss)
template<u32 saddr>
mem8_t __fastcall vtlbUnmappedVRead8(u32 addr) { vtlb_Miss(addr|saddr,0); return 0; }
template<u32 saddr>
mem16_t __fastcall vtlbUnmappedVRead16(u32 addr) { vtlb_Miss(addr|saddr,0); return 0; }
template<u32 saddr>
mem32_t __fastcall vtlbUnmappedVRead32(u32 addr) { vtlb_Miss(addr|saddr,0); return 0; }
template<u32 saddr>
void __fastcall vtlbUnmappedVRead64(u32 addr,mem64_t* data) { vtlb_Miss(addr|saddr,0); }
template<u32 saddr>
void __fastcall vtlbUnmappedVRead128(u32 addr,mem128_t* data) { vtlb_Miss(addr|saddr,0); }
template<u32 saddr>
void __fastcall vtlbUnmappedVWrite8(u32 addr,mem8_t data) { vtlb_Miss(addr|saddr,1); }
template<u32 saddr>
void __fastcall vtlbUnmappedVWrite16(u32 addr,mem16_t data) { vtlb_Miss(addr|saddr,1); }
template<u32 saddr>
void __fastcall vtlbUnmappedVWrite32(u32 addr,mem32_t data) { vtlb_Miss(addr|saddr,1); }
template<u32 saddr>
void __fastcall vtlbUnmappedVWrite64(u32 addr,const mem64_t* data) { vtlb_Miss(addr|saddr,1); }
template<u32 saddr>
void __fastcall vtlbUnmappedVWrite128(u32 addr,const mem128_t* data) { vtlb_Miss(addr|saddr,1); }
///// Physical Mapping Errors (Bus Error)
template<u32 saddr>
mem8_t __fastcall vtlbUnmappedPRead8(u32 addr) { vtlb_BusError(addr|saddr,0); return 0; }
template<u32 saddr>
mem16_t __fastcall vtlbUnmappedPRead16(u32 addr) { vtlb_BusError(addr|saddr,0); return 0; }
template<u32 saddr>
mem32_t __fastcall vtlbUnmappedPRead32(u32 addr) { vtlb_BusError(addr|saddr,0); return 0; }
template<u32 saddr>
void __fastcall vtlbUnmappedPRead64(u32 addr,mem64_t* data) { vtlb_BusError(addr|saddr,0); }
template<u32 saddr>
void __fastcall vtlbUnmappedPRead128(u32 addr,mem128_t* data) { vtlb_BusError(addr|saddr,0); }
template<u32 saddr>
void __fastcall vtlbUnmappedPWrite8(u32 addr,mem8_t data) { vtlb_BusError(addr|saddr,1); }
template<u32 saddr>
void __fastcall vtlbUnmappedPWrite16(u32 addr,mem16_t data) { vtlb_BusError(addr|saddr,1); }
template<u32 saddr>
void __fastcall vtlbUnmappedPWrite32(u32 addr,mem32_t data) { vtlb_BusError(addr|saddr,1); }
template<u32 saddr>
void __fastcall vtlbUnmappedPWrite64(u32 addr,const mem64_t* data) { vtlb_BusError(addr|saddr,1); }
template<u32 saddr>
void __fastcall vtlbUnmappedPWrite128(u32 addr,const mem128_t* data) { vtlb_BusError(addr|saddr,1); }
///// VTLB mapping errors (unmapped address spaces)
mem8_t __fastcall vtlbDefaultPhyRead8(u32 addr) { Console::Error("vtlbDefaultPhyRead8: 0x%X",params addr); verify(false); return -1; }
mem16_t __fastcall vtlbDefaultPhyRead16(u32 addr) { Console::Error("vtlbDefaultPhyRead16: 0x%X",params addr); verify(false); return -1; }
mem32_t __fastcall vtlbDefaultPhyRead32(u32 addr) { Console::Error("vtlbDefaultPhyRead32: 0x%X",params addr); verify(false); return -1; }
void __fastcall vtlbDefaultPhyRead64(u32 addr,mem64_t* data) { Console::Error("vtlbDefaultPhyRead64: 0x%X",params addr); verify(false); }
void __fastcall vtlbDefaultPhyRead128(u32 addr,mem128_t* data) { Console::Error("vtlbDefaultPhyRead128: 0x%X",params addr); verify(false); }
void __fastcall vtlbDefaultPhyWrite8(u32 addr,mem8_t data) { Console::Error("vtlbDefaultPhyWrite8: 0x%X",params addr); verify(false); }
void __fastcall vtlbDefaultPhyWrite16(u32 addr,mem16_t data) { Console::Error("vtlbDefaultPhyWrite16: 0x%X",params addr); verify(false); }
void __fastcall vtlbDefaultPhyWrite32(u32 addr,mem32_t data) { Console::Error("vtlbDefaultPhyWrite32: 0x%X",params addr); verify(false); }
void __fastcall vtlbDefaultPhyWrite64(u32 addr,const mem64_t* data) { Console::Error("vtlbDefaultPhyWrite64: 0x%X",params addr); verify(false); }
void __fastcall vtlbDefaultPhyWrite128(u32 addr,const mem128_t* data) { Console::Error("vtlbDefaultPhyWrite128: 0x%X",params addr); verify(false); }
/////////////////////////////////////////////////////////////////////////
// VTLB Public API -- Init/Term/RegisterHandler stuff
//
// Registers a handler into the VTLB's internal handler array. The handler defines specific behavior
// for how memory pages bound to the handler are read from / written to. If any of the handler pointers
// are NULL, the memory operations will be mapped to the BusError handler (thus generating BusError
// exceptions if the emulated app attempts to access them).
//
// Note: All handlers persist across calls to vtlb_Reset(), but are wiped/invalidated by calls to vtlb_Init()
//
// Returns a handle for the newly created handler See .vtlb_MapHandler for use of the return value.
vtlbHandler vtlb_RegisterHandler( vltbMemR8FP* r8,vltbMemR16FP* r16,vltbMemR32FP* r32,vltbMemR64FP* r64,vltbMemR128FP* r128,
vltbMemW8FP* w8,vltbMemW16FP* w16,vltbMemW32FP* w32,vltbMemW64FP* w64,vltbMemW128FP* w128)
{
//write the code :p
vtlbHandler rv=vtlbHandlerCount++;
RWFT[0][0][rv] = (r8!=0) ? r8:vtlbDefaultPhyRead8;
RWFT[1][0][rv] = (r16!=0) ? r16:vtlbDefaultPhyRead16;
RWFT[2][0][rv] = (r32!=0) ? r32:vtlbDefaultPhyRead32;
RWFT[3][0][rv] = (r64!=0) ? r64:vtlbDefaultPhyRead64;
RWFT[4][0][rv] = (r128!=0) ? r128:vtlbDefaultPhyRead128;
RWFT[0][1][rv] = (w8!=0) ? w8:vtlbDefaultPhyWrite8;
RWFT[1][1][rv] = (w16!=0) ? w16:vtlbDefaultPhyWrite16;
RWFT[2][1][rv] = (w32!=0) ? w32:vtlbDefaultPhyWrite32;
RWFT[3][1][rv] = (w64!=0) ? w64:vtlbDefaultPhyWrite64;
RWFT[4][1][rv] = (w128!=0) ? w128:vtlbDefaultPhyWrite128;
return rv;
}
// Maps the given hander (created with vtlb_RegisterHandler) to the specified memory region.
// New mappings always assume priority over previous mappings, so place "generic" mappings for
// large areas of memory first, and then specialize specific small regions of memory afterward.
// A single handler can be mapped to many different regions by using multiple calls to this
// function.
//
// The memory region start and size parameters must be pagesize aligned.
void vtlb_MapHandler(vtlbHandler handler,u32 start,u32 size)
{
verify(0==(start&VTLB_PAGE_MASK));
verify(0==(size&VTLB_PAGE_MASK) && size>0);
s32 value=handler|0x80000000;
while(size>0)
{
pmap[start>>VTLB_PAGE_BITS]=value;
start+=VTLB_PAGE_SIZE;
size-=VTLB_PAGE_SIZE;
}
}
void vtlb_MapBlock(void* base,u32 start,u32 size,u32 blocksize)
{
s32 baseint=(s32)base;
verify(0==(start&VTLB_PAGE_MASK));
verify(0==(size&VTLB_PAGE_MASK) && size>0);
if (blocksize==0)
blocksize=size;
verify(0==(blocksize&VTLB_PAGE_MASK) && blocksize>0);
verify(0==(size%blocksize));
while(size>0)
{
u32 blocksz=blocksize;
s32 ptr=baseint;
while(blocksz>0)
{
pmap[start>>VTLB_PAGE_BITS]=ptr;
start+=VTLB_PAGE_SIZE;
ptr+=VTLB_PAGE_SIZE;
blocksz-=VTLB_PAGE_SIZE;
size-=VTLB_PAGE_SIZE;
}
}
}
void vtlb_Mirror(u32 new_region,u32 start,u32 size)
{
verify(0==(new_region&VTLB_PAGE_MASK));
verify(0==(start&VTLB_PAGE_MASK));
verify(0==(size&VTLB_PAGE_MASK) && size>0);
while(size>0)
{
pmap[start>>VTLB_PAGE_BITS]=pmap[new_region>>VTLB_PAGE_BITS];
start+=VTLB_PAGE_SIZE;
new_region+=VTLB_PAGE_SIZE;
size-=VTLB_PAGE_SIZE;
}
}
__forceinline void* vtlb_GetPhyPtr(u32 paddr)
{
if (paddr>=VTLB_PMAP_SZ || pmap[paddr>>VTLB_PAGE_BITS]<0)
return 0;
else
return reinterpret_cast<void*>(pmap[paddr>>VTLB_PAGE_BITS]+(paddr&VTLB_PAGE_MASK));
}
//virtual mappings
//TODO: Add invalid paddr checks
void vtlb_VMap(u32 vaddr,u32 paddr,u32 sz)
{
verify(0==(vaddr&VTLB_PAGE_MASK));
verify(0==(paddr&VTLB_PAGE_MASK));
verify(0==(sz&VTLB_PAGE_MASK) && sz>0);
while(sz>0)
{
s32 pme;
if (paddr>=VTLB_PMAP_SZ)
{
pme=UnmappedPhyHandler0;
if (paddr&0x80000000)
pme=UnmappedPhyHandler1;
pme|=0x80000000;
pme|=paddr;// top bit is set anyway ...
}
else
{
pme=pmap[paddr>>VTLB_PAGE_BITS];
if (pme<0)
pme|=paddr;// top bit is set anyway ...
}
vmap[vaddr>>VTLB_PAGE_BITS]=pme-vaddr;
vaddr+=VTLB_PAGE_SIZE;
paddr+=VTLB_PAGE_SIZE;
sz-=VTLB_PAGE_SIZE;
}
}
void vtlb_VMapBuffer(u32 vaddr,void* buffer,u32 sz)
{
verify(0==(vaddr&VTLB_PAGE_MASK));
verify(0==(sz&VTLB_PAGE_MASK) && sz>0);
u32 bu8=(u32)buffer;
while(sz>0)
{
vmap[vaddr>>VTLB_PAGE_BITS]=bu8-vaddr;
vaddr+=VTLB_PAGE_SIZE;
bu8+=VTLB_PAGE_SIZE;
sz-=VTLB_PAGE_SIZE;
}
}
void vtlb_VMapUnmap(u32 vaddr,u32 sz)
{
verify(0==(vaddr&VTLB_PAGE_MASK));
verify(0==(sz&VTLB_PAGE_MASK) && sz>0);
while(sz>0)
{
u32 handl=UnmappedVirtHandler0;
if (vaddr&0x80000000)
{
handl=UnmappedVirtHandler1;
}
handl|=vaddr; // top bit is set anyway ...
handl|=0x80000000;
vmap[vaddr>>VTLB_PAGE_BITS]=handl-vaddr;
vaddr+=VTLB_PAGE_SIZE;
sz-=VTLB_PAGE_SIZE;
}
}
// Clears vtlb handlers and memory mappings.
void vtlb_Init()
{
vtlbHandlerCount=0;
memzero_obj(RWFT);
//Register default handlers
//Unmapped Virt handlers _MUST_ be registered first.
//On address translation the top bit cannot be preserved.This is not normaly a problem since
//the physical address space can be 'compressed' to just 29 bits.However, to properly handle exceptions
//there must be a way to get the full address back.Thats why i use these 2 functions and encode the hi bit directly into em :)
UnmappedVirtHandler0=vtlb_RegisterHandler(vtlbUnmappedVRead8<0>,vtlbUnmappedVRead16<0>,vtlbUnmappedVRead32<0>,vtlbUnmappedVRead64<0>,vtlbUnmappedVRead128<0>,
vtlbUnmappedVWrite8<0>,vtlbUnmappedVWrite16<0>,vtlbUnmappedVWrite32<0>,vtlbUnmappedVWrite64<0>,vtlbUnmappedVWrite128<0>);
UnmappedVirtHandler1=vtlb_RegisterHandler(vtlbUnmappedVRead8<0x80000000>,vtlbUnmappedVRead16<0x80000000>,vtlbUnmappedVRead32<0x80000000>,
vtlbUnmappedVRead64<0x80000000>,vtlbUnmappedVRead128<0x80000000>,
vtlbUnmappedVWrite8<0x80000000>,vtlbUnmappedVWrite16<0x80000000>,vtlbUnmappedVWrite32<0x80000000>,
vtlbUnmappedVWrite64<0x80000000>,vtlbUnmappedVWrite128<0x80000000>);
UnmappedPhyHandler0=vtlb_RegisterHandler(vtlbUnmappedPRead8<0>,vtlbUnmappedPRead16<0>,vtlbUnmappedPRead32<0>,vtlbUnmappedPRead64<0>,vtlbUnmappedPRead128<0>,
vtlbUnmappedPWrite8<0>,vtlbUnmappedPWrite16<0>,vtlbUnmappedPWrite32<0>,vtlbUnmappedPWrite64<0>,vtlbUnmappedPWrite128<0>);
UnmappedPhyHandler1=vtlb_RegisterHandler(vtlbUnmappedPRead8<0x80000000>,vtlbUnmappedPRead16<0x80000000>,vtlbUnmappedPRead32<0x80000000>,
vtlbUnmappedPRead64<0x80000000>,vtlbUnmappedPRead128<0x80000000>,
vtlbUnmappedPWrite8<0x80000000>,vtlbUnmappedPWrite16<0x80000000>,vtlbUnmappedPWrite32<0x80000000>,
vtlbUnmappedPWrite64<0x80000000>,vtlbUnmappedPWrite128<0x80000000>);
DefaultPhyHandler=vtlb_RegisterHandler(0,0,0,0,0,0,0,0,0,0);
//done !
//Setup the initial mappings
vtlb_MapHandler(DefaultPhyHandler,0,VTLB_PMAP_SZ);
//Set the V space as unmapped
vtlb_VMapUnmap(0,(VTLB_VMAP_ITEMS-1)*VTLB_PAGE_SIZE);
//yeah i know, its stupid .. but this code has to be here for now ;p
vtlb_VMapUnmap((VTLB_VMAP_ITEMS-1)*VTLB_PAGE_SIZE,VTLB_PAGE_SIZE);
}
// Performs a COP0-level reset of the PS2's TLB.
// This function should probably be part of the COP0 rather than here in VTLB.
void vtlb_Reset()
{
for(int i=0; i<48; i++) UnmapTLB(i);
}
void vtlb_Term()
{
//nothing to do for now
}
// This function allocates memory block with are compatible with the Vtlb's requirements
// for memory locations. The Vtlb requires the topmost bit (Sign bit) of the memory
// pointer to be cleared. Some operating systems and/or implementations of malloc do that,
// but others do not. So use this instead to allocate the memory correctly for your
// platform.
u8* vtlb_malloc( uint size, uint align, uptr tryBaseAddress )
{
#ifdef __LINUX__
return SysMmapEx( tryBaseAddress, size, 0x80000000, "Vtlb" );
#else
// Win32 just needs this, since malloc always maps below 2GB.
return (u8*)_aligned_malloc(size, align);
#endif
}
void vtlb_free( void* pmem, uint size )
{
if( pmem == NULL ) return;
#ifdef __LINUX__
SafeSysMunmap( pmem, size );
#else
// Make sure and unprotect memory first, since CrtDebug will try to write to it.
DWORD old;
VirtualProtect( pmem, size, PAGE_READWRITE, &old );
safe_aligned_free( pmem );
#endif
}