pcsx2/plugins/GSdx/GSDrawScanline.cpp

1548 lines
30 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSDrawScanline.h"
#include "GSTextureCacheSW.h"
GSDrawScanline::GSDrawScanline()
: m_sp_map("GSSetupPrim", &m_local)
, m_ds_map("GSDrawScanline", &m_local)
{
memset(&m_local, 0, sizeof(m_local));
m_local.gd = &m_global;
}
GSDrawScanline::~GSDrawScanline()
{
}
void GSDrawScanline::BeginDraw(const void* param)
{
memcpy(&m_global, param, sizeof(m_global));
if(m_global.sel.mmin && m_global.sel.lcm)
{
GSVector4i v = m_global.t.minmax.srl16(m_global.lod.i.x);
v = v.upl16(v);
m_local.temp.uv_minmax[0] = v.upl32(v);
m_local.temp.uv_minmax[1] = v.uph32(v);
}
m_ds = m_ds_map[m_global.sel];
if(m_global.sel.aa1)
{
GSScanlineSelector sel;
sel.key = m_global.sel.key;
sel.zwrite = 0;
sel.edge = 1;
m_de = m_ds_map[sel];
}
else
{
m_de = NULL;
}
if(m_global.sel.IsSolidRect())
{
m_dr = (DrawRectPtr)&GSDrawScanline::DrawRect;
}
else
{
m_dr = NULL;
}
// doesn't need all bits => less functions generated
GSScanlineSelector sel;
sel.key = 0;
sel.iip = m_global.sel.iip;
sel.tfx = m_global.sel.tfx;
sel.tcc = m_global.sel.tcc;
sel.fst = m_global.sel.fst;
sel.fge = m_global.sel.fge;
sel.sprite = m_global.sel.sprite;
sel.fb = m_global.sel.fb;
sel.zb = m_global.sel.zb;
sel.zoverflow = m_global.sel.zoverflow;
m_sp = m_sp_map[sel];
}
void GSDrawScanline::EndDraw(uint64 frame, uint64 ticks, int pixels)
{
m_ds_map.UpdateStats(frame, ticks, pixels);
}
#ifndef ENABLE_JIT_RASTERIZER
void GSDrawScanline::SetupPrim(const GSVertexSW* vertices, const GSVertexSW& dscan)
{
GSScanlineSelector sel = m_global.sel;
const GSVector4* shift = GSSetupPrimCodeGenerator::m_shift;
bool has_z = sel.zb != 0;
bool has_f = sel.fb && sel.fge;
bool has_t = sel.fb && sel.tfx != TFX_NONE;
bool has_c = sel.fb && !(sel.tfx == TFX_DECAL && sel.tcc);
if(has_z || has_f)
{
if(!sel.sprite)
{
if(has_f)
{
GSVector4 df = dscan.p.wwww();
m_local.d4.f = GSVector4i(df * shift[0]).xxzzlh();
for(int i = 0; i < 4; i++)
{
m_local.d[i].f = GSVector4i(df * shift[1 + i]).xxzzlh();
}
}
if(has_z)
{
GSVector4 dz = dscan.p.zzzz();
m_local.d4.z = dz * shift[0];
for(int i = 0; i < 4; i++)
{
m_local.d[i].z = dz * shift[1 + i];
}
}
}
else
{
if(has_f)
{
m_local.p.f = GSVector4i(vertices[0].p).zzzzh().zzzz();
}
if(has_z)
{
m_local.p.z = vertices[0].t.u32[3]; // uint32 z is bypassed in t.w
}
}
}
if(has_t)
{
GSVector4 t = dscan.t;
if(sel.fst)
{
m_local.d4.stq = GSVector4::cast(GSVector4i(t * shift[0]));
}
else
{
m_local.d4.stq = t * shift[0];
}
for(int j = 0, k = sel.fst ? 2 : 3; j < k; j++)
{
GSVector4 dstq;
switch(j)
{
case 0: dstq = t.xxxx(); break;
case 1: dstq = t.yyyy(); break;
case 2: dstq = t.zzzz(); break;
}
for(int i = 0; i < 4; i++)
{
GSVector4 v = dstq * shift[1 + i];
if(sel.fst)
{
switch(j)
{
case 0: m_local.d[i].s = GSVector4::cast(GSVector4i(v)); break;
case 1: m_local.d[i].t = GSVector4::cast(GSVector4i(v)); break;
}
}
else
{
switch(j)
{
case 0: m_local.d[i].s = v; break;
case 1: m_local.d[i].t = v; break;
case 2: m_local.d[i].q = v; break;
}
}
}
}
}
if(has_c)
{
if(sel.iip)
{
m_local.d4.c = GSVector4i(dscan.c * shift[0]).xzyw().ps32();
GSVector4 dr = dscan.c.xxxx();
GSVector4 db = dscan.c.zzzz();
for(int i = 0; i < 4; i++)
{
GSVector4i r = GSVector4i(dr * shift[1 + i]).ps32();
GSVector4i b = GSVector4i(db * shift[1 + i]).ps32();
m_local.d[i].rb = r.upl16(b);
}
GSVector4 dg = dscan.c.yyyy();
GSVector4 da = dscan.c.wwww();
for(int i = 0; i < 4; i++)
{
GSVector4i g = GSVector4i(dg * shift[1 + i]).ps32();
GSVector4i a = GSVector4i(da * shift[1 + i]).ps32();
m_local.d[i].ga = g.upl16(a);
}
}
else
{
GSVector4i c = GSVector4i(vertices[0].c);
c = c.upl16(c.zwxy());
if(sel.tfx == TFX_NONE) c = c.srl16(7);
m_local.c.rb = c.xxxx();
m_local.c.ga = c.zzzz();
}
}
}
void GSDrawScanline::DrawScanline(int pixels, int left, int top, const GSVertexSW& scan)
{
GSScanlineSelector sel = m_global.sel;
GSVector4i test;
GSVector4 zo;
GSVector4i f;
GSVector4 s, t, q;
GSVector4i uf, vf;
GSVector4i rbf, gaf;
GSVector4i cov;
// Init
int skip = left & 3;
left -= skip;
int steps = pixels + skip - 4;
const GSVector2i* fza_base = &m_global.fzbr[top];
const GSVector2i* fza_offset = &m_global.fzbc[left >> 2];
test = GSDrawScanlineCodeGenerator::m_test[skip] | GSDrawScanlineCodeGenerator::m_test[7 + (steps & (steps >> 31))];
if(!sel.sprite)
{
if(sel.fwrite && sel.fge)
{
f = GSVector4i(scan.p).zzzzh().zzzz().add16(m_local.d[skip].f);
}
if(sel.zb)
{
zo = m_local.d[skip].z;
}
}
if(sel.fb)
{
if(sel.edge)
{
cov = GSVector4i::cast(scan.t).zzzzh().wwww().srl16(9);
}
if(sel.tfx != TFX_NONE)
{
if(sel.fst)
{
GSVector4i vt(scan.t);
GSVector4i u = vt.xxxx() + GSVector4i::cast(m_local.d[skip].s);
GSVector4i v = vt.yyyy();
if(!sel.sprite || sel.mmin)
{
v += GSVector4i::cast(m_local.d[skip].t);
}
else if(sel.ltf)
{
vf = v.xxzzlh().srl16(1);
}
s = GSVector4::cast(u);
t = GSVector4::cast(v);
}
else
{
s = scan.t.xxxx() + m_local.d[skip].s;
t = scan.t.yyyy() + m_local.d[skip].t;
q = scan.t.zzzz() + m_local.d[skip].q;
}
}
if(!(sel.tfx == TFX_DECAL && sel.tcc))
{
if(sel.iip)
{
GSVector4i c(scan.c);
c = c.upl16(c.zwxy());
rbf = c.xxxx().add16(m_local.d[skip].rb);
gaf = c.zzzz().add16(m_local.d[skip].ga);
}
else
{
rbf = m_local.c.rb;
gaf = m_local.c.ga;
}
}
}
while(1)
{
do
{
int fa = 0, za = 0;
GSVector4i fd, zs, zd;
GSVector4i fm, zm;
GSVector4i rb, ga;
// TestZ
if(sel.zb)
{
za = fza_base->y + fza_offset->y;
if(!sel.sprite)
{
GSVector4 z = scan.p.zzzz() + zo;
if(sel.zoverflow)
{
zs = (GSVector4i(z * 0.5f) << 1) | (GSVector4i(z) & GSVector4i::x00000001());
}
else
{
zs = GSVector4i(z);
}
}
else
{
zs = m_local.p.z;
}
if(sel.ztest)
{
zd = GSVector4i::load((uint8*)m_global.vm + za * 2, (uint8*)m_global.vm + za * 2 + 16);
switch(sel.zpsm)
{
case 1: zd = zd.sll32(8).srl32(8); break;
case 2: zd = zd.sll32(16).srl32(16); break;
default: break;
}
GSVector4i zso = zs;
GSVector4i zdo = zd;
if(sel.zoverflow || sel.zpsm == 0)
{
zso -= GSVector4i::x80000000();
zdo -= GSVector4i::x80000000();
}
switch(sel.ztst)
{
case ZTST_GEQUAL: test |= zso < zdo; break;
case ZTST_GREATER: test |= zso <= zdo; break;
}
if(test.alltrue()) continue;
}
}
// SampleTexture
if(sel.fb && sel.tfx != TFX_NONE)
{
GSVector4i u, v, uv[2];
GSVector4i lodi, lodf;
GSVector4i minuv, maxuv;
GSVector4i addr00, addr01, addr10, addr11;
GSVector4i c00, c01, c10, c11;
if(sel.mmin)
{
if(!sel.fst)
{
GSVector4 qrcp = q.rcp();
u = GSVector4i(s * qrcp);
v = GSVector4i(t * qrcp);
}
else
{
u = GSVector4i::cast(s);
v = GSVector4i::cast(t);
}
if(!sel.lcm)
{
GSVector4 tmp = q.log2(3) * m_global.l + m_global.k; // (-log2(Q) * (1 << L) + K) * 0x10000
GSVector4i lod = GSVector4i(tmp.sat(GSVector4::zero(), m_global.mxl), false);
if(sel.mmin == 1) // round-off mode
{
lod += 0x8000;
}
lodi = lod.srl32(16);
if(sel.mmin == 2) // trilinear mode
{
lodf = lod.xxzzlh();
}
// shift u/v by (int)lod
GSVector4i aabb = u.upl32(v);
GSVector4i ccdd = u.uph32(v);
GSVector4i aaxx = aabb.sra32(lodi.x);
GSVector4i xxbb = aabb.sra32(lodi.y);
GSVector4i ccxx = ccdd.sra32(lodi.z);
GSVector4i xxdd = ccdd.sra32(lodi.w);
GSVector4i acac = aaxx.upl32(ccxx);
GSVector4i bdbd = xxbb.uph32(xxdd);
u = acac.upl32(bdbd);
v = acac.uph32(bdbd);
uv[0] = u;
uv[1] = v;
GSVector4i minmax = m_global.t.minmax;
GSVector4i v0 = minmax.srl16(lodi.x);
GSVector4i v1 = minmax.srl16(lodi.y);
GSVector4i v2 = minmax.srl16(lodi.z);
GSVector4i v3 = minmax.srl16(lodi.w);
v0 = v0.upl16(v1);
v2 = v2.upl16(v3);
minuv = v0.upl32(v2);
maxuv = v0.uph32(v2);
}
else
{
lodi = m_global.lod.i;
u = u.sra32(lodi.x);
v = v.sra32(lodi.x);
uv[0] = u;
uv[1] = v;
minuv = m_local.temp.uv_minmax[0];
maxuv = m_local.temp.uv_minmax[1];
}
if(sel.ltf)
{
u -= 0x8000;
v -= 0x8000;
uf = u.xxzzlh().srl16(1);
vf = v.xxzzlh().srl16(1);
}
GSVector4i uv0 = u.sra32(16).ps32(v.sra32(16));
GSVector4i uv1 = uv0;
{
GSVector4i repeat = (uv0 & minuv) | maxuv;
GSVector4i clamp = uv0.sat_i16(minuv, maxuv);
uv0 = clamp.blend8(repeat, m_global.t.mask);
}
if(sel.ltf)
{
uv1 = uv1.add16(GSVector4i::x0001());
GSVector4i repeat = (uv1 & minuv) | maxuv;
GSVector4i clamp = uv1.sat_i16(minuv, maxuv);
uv1 = clamp.blend8(repeat, m_global.t.mask);
}
GSVector4i y0 = uv0.uph16() << (sel.tw + 3);
GSVector4i x0 = uv0.upl16();
if(sel.ltf)
{
GSVector4i y1 = uv1.uph16() << (sel.tw + 3);
GSVector4i x1 = uv1.upl16();
addr00 = y0 + x0;
addr01 = y0 + x1;
addr10 = y1 + x0;
addr11 = y1 + x1;
if(sel.tlu)
{
for(int i = 0; i < 4; i++)
{
const uint8* tex = (const uint8*)m_global.tex[lodi.u32[i]];
c00.u32[i] = m_global.clut[tex[addr00.u32[i]]];
c01.u32[i] = m_global.clut[tex[addr01.u32[i]]];
c10.u32[i] = m_global.clut[tex[addr10.u32[i]]];
c11.u32[i] = m_global.clut[tex[addr11.u32[i]]];
}
}
else
{
for(int i = 0; i < 4; i++)
{
const uint32* tex = (const uint32*)m_global.tex[lodi.u32[i]];
c00.u32[i] = tex[addr00.u32[i]];
c01.u32[i] = tex[addr01.u32[i]];
c10.u32[i] = tex[addr10.u32[i]];
c11.u32[i] = tex[addr11.u32[i]];
}
}
GSVector4i rb00 = c00.sll16(8).srl16(8);
GSVector4i ga00 = c00.srl16(8);
GSVector4i rb01 = c01.sll16(8).srl16(8);
GSVector4i ga01 = c01.srl16(8);
rb00 = rb00.lerp16<0>(rb01, uf);
ga00 = ga00.lerp16<0>(ga01, uf);
GSVector4i rb10 = c10.sll16(8).srl16(8);
GSVector4i ga10 = c10.srl16(8);
GSVector4i rb11 = c11.sll16(8).srl16(8);
GSVector4i ga11 = c11.srl16(8);
rb10 = rb10.lerp16<0>(rb11, uf);
ga10 = ga10.lerp16<0>(ga11, uf);
rb = rb00.lerp16<0>(rb10, vf);
ga = ga00.lerp16<0>(ga10, vf);
}
else
{
addr00 = y0 + x0;
if(sel.tlu)
{
for(int i = 0; i < 4; i++)
{
c00.u32[i] = m_global.clut[((const uint8*)m_global.tex[lodi.u32[i]])[addr00.u32[i]]];
}
}
else
{
for(int i = 0; i < 4; i++)
{
c00.u32[i] = ((const uint32*)m_global.tex[lodi.u32[i]])[addr00.u32[i]];
}
}
rb = c00.sll16(8).srl16(8);
ga = c00.srl16(8);
}
if(sel.mmin != 1) // !round-off mode
{
GSVector4i rb2, ga2;
lodi += GSVector4i::x00000001();
u = uv[0].sra32(1);
v = uv[1].sra32(1);
minuv = minuv.srl16(1);
maxuv = maxuv.srl16(1);
if(sel.ltf)
{
u -= 0x8000;
v -= 0x8000;
uf = u.xxzzlh().srl16(1);
vf = v.xxzzlh().srl16(1);
}
GSVector4i uv0 = u.sra32(16).ps32(v.sra32(16));
GSVector4i uv1 = uv0;
{
GSVector4i repeat = (uv0 & minuv) | maxuv;
GSVector4i clamp = uv0.sat_i16(minuv, maxuv);
uv0 = clamp.blend8(repeat, m_global.t.mask);
}
if(sel.ltf)
{
uv1 = uv1.add16(GSVector4i::x0001());
GSVector4i repeat = (uv1 & minuv) | maxuv;
GSVector4i clamp = uv1.sat_i16(minuv, maxuv);
uv1 = clamp.blend8(repeat, m_global.t.mask);
}
GSVector4i y0 = uv0.uph16() << (sel.tw + 3);
GSVector4i x0 = uv0.upl16();
if(sel.ltf)
{
GSVector4i y1 = uv1.uph16() << (sel.tw + 3);
GSVector4i x1 = uv1.upl16();
addr00 = y0 + x0;
addr01 = y0 + x1;
addr10 = y1 + x0;
addr11 = y1 + x1;
if(sel.tlu)
{
for(int i = 0; i < 4; i++)
{
const uint8* tex = (const uint8*)m_global.tex[lodi.u32[i]];
c00.u32[i] = m_global.clut[tex[addr00.u32[i]]];
c01.u32[i] = m_global.clut[tex[addr01.u32[i]]];
c10.u32[i] = m_global.clut[tex[addr10.u32[i]]];
c11.u32[i] = m_global.clut[tex[addr11.u32[i]]];
}
}
else
{
for(int i = 0; i < 4; i++)
{
const uint32* tex = (const uint32*)m_global.tex[lodi.u32[i]];
c00.u32[i] = tex[addr00.u32[i]];
c01.u32[i] = tex[addr01.u32[i]];
c10.u32[i] = tex[addr10.u32[i]];
c11.u32[i] = tex[addr11.u32[i]];
}
}
GSVector4i rb00 = c00.sll16(8).srl16(8);
GSVector4i ga00 = c00.srl16(8);
GSVector4i rb01 = c01.sll16(8).srl16(8);
GSVector4i ga01 = c01.srl16(8);
rb00 = rb00.lerp16<0>(rb01, uf);
ga00 = ga00.lerp16<0>(ga01, uf);
GSVector4i rb10 = c10.sll16(8).srl16(8);
GSVector4i ga10 = c10.srl16(8);
GSVector4i rb11 = c11.sll16(8).srl16(8);
GSVector4i ga11 = c11.srl16(8);
rb10 = rb10.lerp16<0>(rb11, uf);
ga10 = ga10.lerp16<0>(ga11, uf);
rb2 = rb00.lerp16<0>(rb10, vf);
ga2 = ga00.lerp16<0>(ga10, vf);
}
else
{
addr00 = y0 + x0;
if(sel.tlu)
{
for(int i = 0; i < 4; i++)
{
c00.u32[i] = m_global.clut[((const uint8*)m_global.tex[lodi.u32[i]])[addr00.u32[i]]];
}
}
else
{
for(int i = 0; i < 4; i++)
{
c00.u32[i] = ((const uint32*)m_global.tex[lodi.u32[i]])[addr00.u32[i]];
}
}
rb2 = c00.sll16(8).srl16(8);
ga2 = c00.srl16(8);
}
if(sel.lcm) lodf = m_global.lod.f;
lodf = lodf.srl16(1);
rb = rb.lerp16<0>(rb2, lodf);
ga = ga.lerp16<0>(ga2, lodf);
}
}
else
{
if(!sel.fst)
{
GSVector4 qrcp = q.rcp();
u = GSVector4i(s * qrcp);
v = GSVector4i(t * qrcp);
if(sel.ltf)
{
u -= 0x8000;
v -= 0x8000;
}
}
else
{
u = GSVector4i::cast(s);
v = GSVector4i::cast(t);
}
if(sel.ltf)
{
uf = u.xxzzlh().srl16(1);
if(!sel.sprite)
{
vf = v.xxzzlh().srl16(1);
}
}
GSVector4i uv0 = u.sra32(16).ps32(v.sra32(16));
GSVector4i uv1 = uv0;
{
GSVector4i repeat = (uv0 & m_global.t.min) | m_global.t.max;
GSVector4i clamp = uv0.sat_i16(m_global.t.min, m_global.t.max);
uv0 = clamp.blend8(repeat, m_global.t.mask);
}
if(sel.ltf)
{
uv1 = uv1.add16(GSVector4i::x0001());
GSVector4i repeat = (uv1 & m_global.t.min) | m_global.t.max;
GSVector4i clamp = uv1.sat_i16(m_global.t.min, m_global.t.max);
uv1 = clamp.blend8(repeat, m_global.t.mask);
}
GSVector4i y0 = uv0.uph16() << (sel.tw + 3);
GSVector4i x0 = uv0.upl16();
if(sel.ltf)
{
GSVector4i y1 = uv1.uph16() << (sel.tw + 3);
GSVector4i x1 = uv1.upl16();
addr00 = y0 + x0;
addr01 = y0 + x1;
addr10 = y1 + x0;
addr11 = y1 + x1;
if(sel.tlu)
{
const uint8* tex = (const uint8*)m_global.tex[0];
c00 = addr00.gather32_32(tex, m_global.clut);
c01 = addr01.gather32_32(tex, m_global.clut);
c10 = addr10.gather32_32(tex, m_global.clut);
c11 = addr11.gather32_32(tex, m_global.clut);
}
else
{
const uint32* tex = (const uint32*)m_global.tex[0];
c00 = addr00.gather32_32(tex);
c01 = addr01.gather32_32(tex);
c10 = addr10.gather32_32(tex);
c11 = addr11.gather32_32(tex);
}
GSVector4i rb00 = c00.sll16(8).srl16(8);
GSVector4i ga00 = c00.srl16(8);
GSVector4i rb01 = c01.sll16(8).srl16(8);
GSVector4i ga01 = c01.srl16(8);
rb00 = rb00.lerp16<0>(rb01, uf);
ga00 = ga00.lerp16<0>(ga01, uf);
GSVector4i rb10 = c10.sll16(8).srl16(8);
GSVector4i ga10 = c10.srl16(8);
GSVector4i rb11 = c11.sll16(8).srl16(8);
GSVector4i ga11 = c11.srl16(8);
rb10 = rb10.lerp16<0>(rb11, uf);
ga10 = ga10.lerp16<0>(ga11, uf);
rb = rb00.lerp16<0>(rb10, vf);
ga = ga00.lerp16<0>(ga10, vf);
}
else
{
addr00 = y0 + x0;
if(sel.tlu)
{
c00 = addr00.gather32_32((const uint8*)m_global.tex[0], m_global.clut);
}
else
{
c00 = addr00.gather32_32((const uint32*)m_global.tex[0]);
}
rb = c00.sll16(8).srl16(8);
ga = c00.srl16(8);
}
}
}
// AlphaTFX
if(sel.fb)
{
switch(sel.tfx)
{
case TFX_MODULATE:
ga = ga.modulate16<1>(gaf).clamp8();
if(!sel.tcc) ga = ga.mix16(gaf.srl16(7));
break;
case TFX_DECAL:
if(!sel.tcc) ga = ga.mix16(gaf.srl16(7));
break;
case TFX_HIGHLIGHT:
ga = ga.mix16(!sel.tcc ? gaf.srl16(7) : ga.addus8(gaf.srl16(7)));
break;
case TFX_HIGHLIGHT2:
if(!sel.tcc) ga = ga.mix16(gaf.srl16(7));
break;
case TFX_NONE:
ga = sel.iip ? gaf.srl16(7) : gaf;
break;
}
if(sel.aa1)
{
GSVector4i x00800080(0x00800080);
GSVector4i a = sel.edge ? cov : x00800080;
if(!sel.abe)
{
ga = ga.mix16(a);
}
else
{
ga = ga.blend8(a, ga.eq16(x00800080).srl32(16).sll32(16));
}
}
}
// ReadMask
if(sel.fwrite)
{
fm = m_global.fm;
}
if(sel.zwrite)
{
zm = m_global.zm;
}
// TestAlpha
if(!TestAlpha(test, fm, zm, ga)) continue;
// ColorTFX
if(sel.fwrite)
{
GSVector4i af;
switch(sel.tfx)
{
case TFX_MODULATE:
rb = rb.modulate16<1>(rbf).clamp8();
break;
case TFX_DECAL:
break;
case TFX_HIGHLIGHT:
case TFX_HIGHLIGHT2:
af = gaf.yywwlh().srl16(7);
rb = rb.modulate16<1>(rbf).add16(af).clamp8();
ga = ga.modulate16<1>(gaf).add16(af).clamp8().mix16(ga);
break;
case TFX_NONE:
rb = sel.iip ? rbf.srl16(7) : rbf;
break;
}
}
// Fog
if(sel.fwrite && sel.fge)
{
GSVector4i fog = !sel.sprite ? f : m_local.p.f;
rb = m_global.frb.lerp16<0>(rb, fog);
ga = m_global.fga.lerp16<0>(ga, fog).mix16(ga);
}
// ReadFrame
if(sel.fb)
{
fa = fza_base->x + fza_offset->x;
if(sel.rfb)
{
fd = GSVector4i::load((uint8*)m_global.vm + fa * 2, (uint8*)m_global.vm + fa * 2 + 16);
}
}
// TestDestAlpha
if(sel.date && (sel.fpsm == 0 || sel.fpsm == 2))
{
if(sel.datm)
{
if(sel.fpsm == 2)
{
test |= fd.srl32(15) == GSVector4i::zero();
}
else
{
test |= (~fd).sra32(31);
}
}
else
{
if(sel.fpsm == 2)
{
test |= fd.sll32(16).sra32(31);
}
else
{
test |= fd.sra32(31);
}
}
if(test.alltrue()) continue;
}
// WriteMask
int fzm = 0;
if(sel.fwrite)
{
fm |= test;
}
if(sel.zwrite)
{
zm |= test;
}
if(sel.fwrite && sel.zwrite)
{
fzm = ~(fm == GSVector4i::xffffffff()).ps32(zm == GSVector4i::xffffffff()).mask();
}
else if(sel.fwrite)
{
fzm = ~(fm == GSVector4i::xffffffff()).ps32().mask();
}
else if(sel.zwrite)
{
fzm = ~(zm == GSVector4i::xffffffff()).ps32().mask();
}
// WriteZBuf
if(sel.zwrite)
{
if(sel.ztest && sel.zpsm < 2)
{
zs = zs.blend8(zd, zm);
if(fzm & 0x0f00) GSVector4i::storel((uint8*)m_global.vm + za * 2, zs);
if(fzm & 0xf000) GSVector4i::storeh((uint8*)m_global.vm + za * 2 + 16, zs);
}
else
{
if(fzm & 0x0300) WritePixel(zs, za, 0, sel.zpsm);
if(fzm & 0x0c00) WritePixel(zs, za, 1, sel.zpsm);
if(fzm & 0x3000) WritePixel(zs, za, 2, sel.zpsm);
if(fzm & 0xc000) WritePixel(zs, za, 3, sel.zpsm);
}
}
// AlphaBlend
if(sel.fwrite && (sel.abe || sel.aa1))
{
GSVector4i rbs = rb, gas = ga, rbd, gad, a, mask;
if(sel.aba != sel.abb && (sel.aba == 1 || sel.abb == 1 || sel.abc == 1) || sel.abd == 1)
{
switch(sel.fpsm)
{
case 0:
case 1:
rbd = fd.sll16(8).srl16(8);
gad = fd.srl16(8);
break;
case 2:
rbd = ((fd & 0x7c00) << 9) | ((fd & 0x001f) << 3);
gad = ((fd & 0x8000) << 8) | ((fd & 0x03e0) >> 2);
break;
}
}
if(sel.aba != sel.abb)
{
switch(sel.aba)
{
case 0: break;
case 1: rb = rbd; break;
case 2: rb = GSVector4i::zero(); break;
}
switch(sel.abb)
{
case 0: rb = rb.sub16(rbs); break;
case 1: rb = rb.sub16(rbd); break;
case 2: break;
}
if(!(sel.fpsm == 1 && sel.abc == 1))
{
switch(sel.abc)
{
case 0: a = gas.yywwlh().sll16(7); break;
case 1: a = gad.yywwlh().sll16(7); break;
case 2: a = m_global.afix; break;
}
rb = rb.modulate16<1>(a);
}
switch(sel.abd)
{
case 0: rb = rb.add16(rbs); break;
case 1: rb = rb.add16(rbd); break;
case 2: break;
}
}
else
{
switch(sel.abd)
{
case 0: break;
case 1: rb = rbd; break;
case 2: rb = GSVector4i::zero(); break;
}
}
if(sel.pabe)
{
mask = (gas << 8).sra32(31);
rb = rbs.blend8(rb, mask);
}
if(sel.aba != sel.abb)
{
switch(sel.aba)
{
case 0: break;
case 1: ga = gad; break;
case 2: ga = GSVector4i::zero(); break;
}
switch(sel.abb)
{
case 0: ga = ga.sub16(gas); break;
case 1: ga = ga.sub16(gad); break;
case 2: break;
}
if(!(sel.fpsm == 1 && sel.abc == 1))
{
ga = ga.modulate16<1>(a);
}
switch(sel.abd)
{
case 0: ga = ga.add16(gas); break;
case 1: ga = ga.add16(gad); break;
case 2: break;
}
}
if(sel.pabe)
{
ga = gas.blend8(ga, mask >> 16);
}
else
{
if(sel.fpsm != 1)
{
ga = ga.mix16(gas);
}
}
}
// WriteFrame
if(sel.fwrite)
{
if(sel.colclamp == 0)
{
rb &= GSVector4i::x00ff();
ga &= GSVector4i::x00ff();
}
if(sel.fpsm == 2 && sel.dthe)
{
int y = (top & 3) << 1;
rb = rb.add16(m_global.dimx[0 + y]);
ga = ga.add16(m_global.dimx[1 + y]);
}
GSVector4i fs = rb.upl16(ga).pu16(rb.uph16(ga));
if(sel.fba && sel.fpsm != 1)
{
fs |= GSVector4i::x80000000();
}
if(sel.fpsm == 2)
{
GSVector4i rb = fs & 0x00f800f8;
GSVector4i ga = fs & 0x8000f800;
fs = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3);
}
if(sel.rfb)
{
fs = fs.blend(fd, fm);
}
if(sel.rfb && sel.fpsm < 2)
{
if(fzm & 0x000f) GSVector4i::storel((uint8*)m_global.vm + fa * 2, fs);
if(fzm & 0x00f0) GSVector4i::storeh((uint8*)m_global.vm + fa * 2 + 16, fs);
}
else
{
if(fzm & 0x0003) WritePixel(fs, fa, 0, sel.fpsm);
if(fzm & 0x000c) WritePixel(fs, fa, 1, sel.fpsm);
if(fzm & 0x0030) WritePixel(fs, fa, 2, sel.fpsm);
if(fzm & 0x00c0) WritePixel(fs, fa, 3, sel.fpsm);
}
}
}
while(0);
if(sel.edge) break;
if(steps <= 0) break;
// Step
steps -= 4;
fza_offset++;
if(!sel.sprite)
{
if(sel.zb)
{
zo += m_local.d4.z;
}
if(sel.fwrite && sel.fge)
{
f = f.add16(m_local.d4.f);
}
}
if(sel.fb)
{
if(sel.tfx != TFX_NONE)
{
if(sel.fst)
{
GSVector4i stq = GSVector4i::cast(m_local.d4.stq);
s = GSVector4::cast(GSVector4i::cast(s) + stq.xxxx());
if(!sel.sprite || sel.mmin)
{
t = GSVector4::cast(GSVector4i::cast(t) + stq.yyyy());
}
}
else
{
GSVector4 stq = m_local.d4.stq;
s += stq.xxxx();
t += stq.yyyy();
q += stq.zzzz();
}
}
}
if(!(sel.tfx == TFX_DECAL && sel.tcc))
{
if(sel.iip)
{
GSVector4i c = m_local.d4.c;
rbf = rbf.add16(c.xxxx()).max_i16(GSVector4i::zero());
gaf = gaf.add16(c.yyyy()).max_i16(GSVector4i::zero());
}
}
test = GSDrawScanlineCodeGenerator::m_test[7 + (steps & (steps >> 31))];
}
}
void GSDrawScanline::DrawEdge(int pixels, int left, int top, const GSVertexSW& scan)
{
uint32 zwrite = m_global.sel.zwrite;
uint32 edge = m_global.sel.edge;
m_global.sel.zwrite = 0;
m_global.sel.edge = 1;
DrawScanline(pixels, left, top, scan);
m_global.sel.zwrite = zwrite;
m_global.sel.edge = edge;
}
bool GSDrawScanline::TestAlpha(GSVector4i& test, GSVector4i& fm, GSVector4i& zm, const GSVector4i& ga)
{
GSScanlineSelector sel = m_global.sel;
switch(sel.afail)
{
case AFAIL_FB_ONLY:
if(!sel.zwrite) return true;
break;
case AFAIL_ZB_ONLY:
if(!sel.fwrite) return true;
break;
case AFAIL_RGB_ONLY:
if(!sel.zwrite && sel.fpsm == 1) return true;
break;
}
GSVector4i t;
switch(sel.atst)
{
case ATST_NEVER:
t = GSVector4i::xffffffff();
break;
case ATST_ALWAYS:
return true;
case ATST_LESS:
case ATST_LEQUAL:
t = (ga >> 16) > m_global.aref;
break;
case ATST_EQUAL:
t = (ga >> 16) != m_global.aref;
break;
case ATST_GEQUAL:
case ATST_GREATER:
t = (ga >> 16) < m_global.aref;
break;
case ATST_NOTEQUAL:
t = (ga >> 16) == m_global.aref;
break;
default:
__assume(0);
}
switch(sel.afail)
{
case AFAIL_KEEP:
test |= t;
if(test.alltrue()) return false;
break;
case AFAIL_FB_ONLY:
zm |= t;
break;
case AFAIL_ZB_ONLY:
fm |= t;
break;
case AFAIL_RGB_ONLY:
zm |= t;
fm |= t & GSVector4i::xff000000();
break;
default:
__assume(0);
}
return true;
}
static const int s_offsets[4] = {0, 2, 8, 10};
void GSDrawScanline::WritePixel(const GSVector4i& src, int addr, int i, uint32 psm)
{
uint8* dst = (uint8*)m_global.vm + addr * 2 + s_offsets[i] * 2;
switch(psm)
{
case 0:
*(uint32*)dst = src.u32[i];
break;
case 1:
*(uint32*)dst = (src.u32[i] & 0xffffff) | (*(uint32*)dst & 0xff000000);
break;
case 2:
*(uint16*)dst = src.u16[i * 2];
break;
}
}
#endif
void GSDrawScanline::DrawRect(const GSVector4i& r, const GSVertexSW& v)
{
ASSERT(r.y >= 0);
ASSERT(r.w >= 0);
// FIXME: sometimes the frame and z buffer may overlap, the outcome is undefined
uint32 m;
m = m_global.zm.u32[0];
if(m != 0xffffffff)
{
const int* zbr = m_global.zbr;
const int* zbc = m_global.zbc;
uint32 z = v.t.u32[3]; // (uint32)v.p.z;
if(m_global.sel.zpsm != 2)
{
if(m == 0)
{
DrawRectT<uint32, false>(zbr, zbc, r, z, m);
}
else
{
DrawRectT<uint32, true>(zbr, zbc, r, z, m);
}
}
else
{
if((m & 0xffff) == 0)
{
DrawRectT<uint16, false>(zbr, zbc, r, z, m);
}
else
{
DrawRectT<uint16, true>(zbr, zbc, r, z, m);
}
}
}
m = m_global.fm.u32[0];
if(m != 0xffffffff)
{
const int* fbr = m_global.fbr;
const int* fbc = m_global.fbc;
uint32 c = (GSVector4i(v.c) >> 7).rgba32();
if(m_global.sel.fba)
{
c |= 0x80000000;
}
if(m_global.sel.fpsm != 2)
{
if(m == 0)
{
DrawRectT<uint32, false>(fbr, fbc, r, c, m);
}
else
{
DrawRectT<uint32, true>(fbr, fbc, r, c, m);
}
}
else
{
c = ((c & 0xf8) >> 3) | ((c & 0xf800) >> 6) | ((c & 0xf80000) >> 9) | ((c & 0x80000000) >> 16);
if((m & 0xffff) == 0)
{
DrawRectT<uint16, false>(fbr, fbc, r, c, m);
}
else
{
DrawRectT<uint16, true>(fbr, fbc, r, c, m);
}
}
}
}
template<class T, bool masked>
void GSDrawScanline::DrawRectT(const int* RESTRICT row, const int* RESTRICT col, const GSVector4i& r, uint32 c, uint32 m)
{
if(m == 0xffffffff) return;
GSVector4i color((int)c);
GSVector4i mask((int)m);
if(sizeof(T) == sizeof(uint16))
{
color = color.xxzzlh();
mask = mask.xxzzlh();
}
if(masked) ASSERT(mask.u32[0] != 0);
color = color.andnot(mask);
GSVector4i br = r.ralign<Align_Inside>(GSVector2i(8 * 4 / sizeof(T), 8));
if(!br.rempty())
{
FillRect<T, masked>(row, col, GSVector4i(r.x, r.y, r.z, br.y), c, m);
FillRect<T, masked>(row, col, GSVector4i(r.x, br.w, r.z, r.w), c, m);
if(r.x < br.x || br.z < r.z)
{
FillRect<T, masked>(row, col, GSVector4i(r.x, br.y, br.x, br.w), c, m);
FillRect<T, masked>(row, col, GSVector4i(br.z, br.y, r.z, br.w), c, m);
}
FillBlock<T, masked>(row, col, br, color, mask);
}
else
{
FillRect<T, masked>(row, col, r, c, m);
}
}
template<class T, bool masked>
void GSDrawScanline::FillRect(const int* RESTRICT row, const int* RESTRICT col, const GSVector4i& r, uint32 c, uint32 m)
{
if(r.x >= r.z) return;
T* vm = (T*)m_global.vm;
for(int y = r.y; y < r.w; y++)
{
T* RESTRICT d = &vm[row[y]];
for(int x = r.x; x < r.z; x++)
{
d[col[x]] = (T)(!masked ? c : (c | (d[col[x]] & m)));
}
}
}
template<class T, bool masked>
void GSDrawScanline::FillBlock(const int* RESTRICT row, const int* RESTRICT col, const GSVector4i& r, const GSVector4i& c, const GSVector4i& m)
{
if(r.x >= r.z) return;
T* vm = (T*)m_global.vm;
for(int y = r.y; y < r.w; y += 8)
{
T* RESTRICT d = &vm[row[y]];
for(int x = r.x; x < r.z; x += 8 * 4 / sizeof(T))
{
GSVector4i* RESTRICT p = (GSVector4i*)&d[col[x]];
for(int i = 0; i < 16; i += 4)
{
p[i + 0] = !masked ? c : (c | (p[i + 0] & m));
p[i + 1] = !masked ? c : (c | (p[i + 1] & m));
p[i + 2] = !masked ? c : (c | (p[i + 2] & m));
p[i + 3] = !masked ? c : (c | (p[i + 3] & m));
}
}
}
}