pcsx2/plugins/GSdx/Renderers/SW/GSRasterizer.cpp

1216 lines
26 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
// TODO: JIT Draw* (flags: depth, texture, color (+iip), scissor)
#include "stdafx.h"
#include "GSRasterizer.h"
int GSRasterizerData::s_counter = 0;
static int compute_best_thread_height(int threads) {
// - for more threads screen segments should be smaller to better distribute the pixels
// - but not too small to keep the threading overhead low
// - ideal value between 3 and 5, or log2(64 / number of threads)
int th = theApp.GetConfigI("extrathreads_height");
if (th > 0 && th < 9)
return th;
else
return 4;
}
GSRasterizer::GSRasterizer(IDrawScanline* ds, int id, int threads, GSPerfMon* perfmon)
: m_perfmon(perfmon)
, m_ds(ds)
, m_id(id)
, m_threads(threads)
{
memset(&m_pixels, 0, sizeof(m_pixels));
m_thread_height = compute_best_thread_height(threads);
m_edge.buff = (GSVertexSW*)vmalloc(sizeof(GSVertexSW) * 2048, false);
m_edge.count = 0;
int rows = (2048 >> m_thread_height) + 16;
m_scanline = (uint8*)_aligned_malloc(rows, 64);
int row = 0;
while(row < rows)
{
for(int i = 0; i < threads; i++, row++)
{
m_scanline[row] = i == id ? 1 : 0;
}
}
}
GSRasterizer::~GSRasterizer()
{
_aligned_free(m_scanline);
if(m_edge.buff != NULL) vmfree(m_edge.buff, sizeof(GSVertexSW) * 2048);
delete m_ds;
}
bool GSRasterizer::IsOneOfMyScanlines(int top) const
{
ASSERT(top >= 0 && top < 2048);
return m_scanline[top >> m_thread_height] != 0;
}
bool GSRasterizer::IsOneOfMyScanlines(int top, int bottom) const
{
ASSERT(top >= 0 && top < 2048 && bottom >= 0 && bottom < 2048);
top = top >> m_thread_height;
bottom = (bottom + (1 << m_thread_height) - 1) >> m_thread_height;
while(top < bottom)
{
if(m_scanline[top++])
{
return true;
}
}
return false;
}
int GSRasterizer::FindMyNextScanline(int top) const
{
int i = top >> m_thread_height;
if(m_scanline[i] == 0)
{
while(m_scanline[++i] == 0);
top = i << m_thread_height;
}
return top;
}
2017-05-26 16:37:20 +00:00
void GSRasterizer::Queue(const std::shared_ptr<GSRasterizerData>& data)
{
Draw(data.get());
}
int GSRasterizer::GetPixels(bool reset)
{
int pixels = m_pixels.sum;
if(reset)
{
m_pixels.sum = 0;
}
return pixels;
}
void GSRasterizer::Draw(GSRasterizerData* data)
{
GSPerfMonAutoTimer pmat(m_perfmon, GSPerfMon::WorkerDraw0 + m_id);
if(data->vertex != NULL && data->vertex_count == 0 || data->index != NULL && data->index_count == 0) return;
m_pixels.actual = 0;
m_pixels.total = 0;
data->start = __rdtsc();
m_ds->BeginDraw(data);
const GSVertexSW* vertex = data->vertex;
const GSVertexSW* vertex_end = data->vertex + data->vertex_count;
const uint32* index = data->index;
const uint32* index_end = data->index + data->index_count;
uint32 tmp_index[] = {0, 1, 2};
bool scissor_test = !data->bbox.eq(data->bbox.rintersect(data->scissor));
m_scissor = data->scissor;
m_fscissor_x = GSVector4(data->scissor).xzxz();
m_fscissor_y = GSVector4(data->scissor).ywyw();
switch(data->primclass)
{
case GS_POINT_CLASS:
if(scissor_test)
{
DrawPoint<true>(vertex, data->vertex_count, index, data->index_count);
}
else
{
DrawPoint<false>(vertex, data->vertex_count, index, data->index_count);
}
break;
case GS_LINE_CLASS:
if(index != NULL)
{
do {DrawLine(vertex, index); index += 2;}
while(index < index_end);
}
else
{
do {DrawLine(vertex, tmp_index); vertex += 2;}
while(vertex < vertex_end);
}
break;
case GS_TRIANGLE_CLASS:
if(index != NULL)
{
do {DrawTriangle(vertex, index); index += 3;}
while(index < index_end);
}
else
{
do {DrawTriangle(vertex, tmp_index); vertex += 3;}
while(vertex < vertex_end);
}
break;
case GS_SPRITE_CLASS:
if(index != NULL)
{
do {DrawSprite(vertex, index); index += 2;}
while(index < index_end);
}
else
{
do {DrawSprite(vertex, tmp_index); vertex += 2;}
while(vertex < vertex_end);
}
break;
default:
__assume(0);
}
#if _M_SSE >= 0x501
_mm256_zeroupper();
#endif
data->pixels = m_pixels.actual;
uint64 ticks = __rdtsc() - data->start;
m_pixels.sum += m_pixels.actual;
m_ds->EndDraw(data->frame, ticks, m_pixels.actual, m_pixels.total);
}
template<bool scissor_test>
void GSRasterizer::DrawPoint(const GSVertexSW* vertex, int vertex_count, const uint32* index, int index_count)
{
if(index != NULL)
{
for(int i = 0; i < index_count; i++, index++)
{
const GSVertexSW& v = vertex[*index];
GSVector4i p(v.p);
if(!scissor_test || m_scissor.left <= p.x && p.x < m_scissor.right && m_scissor.top <= p.y && p.y < m_scissor.bottom)
{
if(IsOneOfMyScanlines(p.y))
{
m_ds->SetupPrim(vertex, index, GSVertexSW::zero());
DrawScanline(1, p.x, p.y, v);
}
}
}
}
else
{
uint32 tmp_index[1] = {0};
for(int i = 0; i < vertex_count; i++, vertex++)
{
const GSVertexSW& v = vertex[0];
GSVector4i p(v.p);
if(!scissor_test || m_scissor.left <= p.x && p.x < m_scissor.right && m_scissor.top <= p.y && p.y < m_scissor.bottom)
{
if(IsOneOfMyScanlines(p.y))
{
m_ds->SetupPrim(vertex, tmp_index, GSVertexSW::zero());
DrawScanline(1, p.x, p.y, v);
}
}
}
}
}
void GSRasterizer::DrawLine(const GSVertexSW* vertex, const uint32* index)
{
const GSVertexSW& v0 = vertex[index[0]];
const GSVertexSW& v1 = vertex[index[1]];
GSVertexSW dv = v1 - v0;
GSVector4 dp = dv.p.abs();
int i = (dp < dp.yxwz()).mask() & 1; // |dx| <= |dy|
if(m_ds->HasEdge())
{
DrawEdge(v0, v1, dv, i, 0);
DrawEdge(v0, v1, dv, i, 1);
Flush(vertex, index, GSVertexSW::zero(), true);
return;
}
GSVector4i dpi(dp);
if(dpi.y == 0)
{
if(dpi.x > 0)
{
// shortcut for horizontal lines
GSVector4 mask = (v0.p > v1.p).xxxx();
GSVertexSW scan;
scan.p = v0.p.blend32(v1.p, mask);
scan.t = v0.t.blend32(v1.t, mask);
scan.c = v0.c.blend32(v1.c, mask);
GSVector4i p(scan.p);
if(m_scissor.top <= p.y && p.y < m_scissor.bottom && IsOneOfMyScanlines(p.y))
{
GSVector4 lrf = scan.p.upl(v1.p.blend32(v0.p, mask)).ceil();
GSVector4 l = lrf.max(m_fscissor_x);
GSVector4 r = lrf.min(m_fscissor_x);
GSVector4i lr = GSVector4i(l.xxyy(r));
int left = lr.extract32<0>();
int right = lr.extract32<2>();
int pixels = right - left;
if(pixels > 0)
{
GSVertexSW dscan = dv / dv.p.xxxx();
scan += dscan * (l - scan.p).xxxx();
m_ds->SetupPrim(vertex, index, dscan);
DrawScanline(pixels, left, p.y, scan);
}
}
}
return;
}
int steps = dpi.v[i];
if(steps > 0)
{
GSVertexSW edge = v0;
GSVertexSW dedge = dv / GSVector4(dp.v[i]);
GSVertexSW* RESTRICT e = m_edge.buff;
while(1)
{
GSVector4i p(edge.p);
if(m_scissor.left <= p.x && p.x < m_scissor.right && m_scissor.top <= p.y && p.y < m_scissor.bottom)
{
if(IsOneOfMyScanlines(p.y))
{
AddScanline(e, 1, p.x, p.y, edge);
e++;
}
}
if(--steps == 0) break;
edge += dedge;
}
m_edge.count = e - m_edge.buff;
Flush(vertex, index, GSVertexSW::zero());
}
}
static const uint8 s_ysort[8][4] =
{
{0, 1, 2, 0}, // y0 <= y1 <= y2
{1, 0, 2, 0}, // y1 < y0 <= y2
{0, 0, 0, 0},
{1, 2, 0, 0}, // y1 <= y2 < y0
{0, 2, 1, 0}, // y0 <= y2 < y1
{0, 0, 0, 0},
{2, 0, 1, 0}, // y2 < y0 <= y1
{2, 1, 0, 0}, // y2 < y1 < y0
};
#if _M_SSE >= 0x501
void GSRasterizer::DrawTriangle(const GSVertexSW* vertex, const uint32* index)
{
GSVertexSW2 dv[3];
GSVertexSW2 edge;
GSVertexSW2 dedge;
GSVertexSW2 dscan;
GSVector4 y0011 = vertex[index[0]].p.yyyy(vertex[index[1]].p);
GSVector4 y1221 = vertex[index[1]].p.yyyy(vertex[index[2]].p).xzzx();
int m1 = (y0011 > y1221).mask() & 7;
int i[3];
i[0] = index[s_ysort[m1][0]];
i[1] = index[s_ysort[m1][1]];
i[2] = index[s_ysort[m1][2]];
const GSVertexSW2* _v = (const GSVertexSW2*)vertex;
const GSVertexSW2& v0 = _v[i[0]];
const GSVertexSW2& v1 = _v[i[1]];
const GSVertexSW2& v2 = _v[i[2]];
y0011 = v0.p.yyyy(v1.p);
y1221 = v1.p.yyyy(v2.p).xzzx();
m1 = (y0011 == y1221).mask() & 7;
// if(i == 0) => y0 < y1 < y2
// if(i == 1) => y0 == y1 < y2
// if(i == 4) => y0 < y1 == y2
if(m1 == 7) return; // y0 == y1 == y2
GSVector4 tbf = y0011.xzxz(y1221).ceil();
GSVector4 tbmax = tbf.max(m_fscissor_y);
GSVector4 tbmin = tbf.min(m_fscissor_y);
GSVector4i tb = GSVector4i(tbmax.xzyw(tbmin)); // max(y0, t) max(y1, t) min(y1, b) min(y2, b)
dv[0] = v1 - v0;
dv[1] = v2 - v0;
dv[2] = v2 - v1;
GSVector4 cross = dv[0].p * dv[1].p.yxwz();
cross = (cross - cross.yxwz()).yyyy(); // select the second component, the negated cross product
// the longest horizontal span would be cross.x / dv[1].p.y, but we don't need its actual value
int m2 = cross.upl(cross == GSVector4::zero()).mask();
if(m2 & 2) return;
m2 &= 1;
GSVector4 dxy01 = dv[0].p.xyxy(dv[1].p);
GSVector4 dx = dxy01.xzxy(dv[2].p);
GSVector4 dy = dxy01.ywyx(dv[2].p);
GSVector4 ddx[3];
ddx[0] = dx / dy;
ddx[1] = ddx[0].yxzw();
ddx[2] = ddx[0].xzyw();
// Precision is important here. Don't use reciprocal, it will break Jak3/Xenosaga1
GSVector8 _dxy01c(dxy01 / cross);
/*
dscan = dv[1] * dxy01c.yyyy() - dv[0] * dxy01c.wwww();
dedge = dv[0] * dxy01c.zzzz() - dv[1] * dxy01c.xxxx();
*/
dscan.p = dv[1].p * _dxy01c.yyyy().extract<0>() - dv[0].p * _dxy01c.wwww().extract<0>();
dscan.tc = dv[1].tc * _dxy01c.yyyy() - dv[0].tc * _dxy01c.wwww();
dedge.p = dv[0].p * _dxy01c.zzzz().extract<0>() - dv[1].p * _dxy01c.xxxx().extract<0>();
dedge.tc = dv[0].tc * _dxy01c.zzzz() - dv[1].tc * _dxy01c.xxxx();
if(m1 & 1)
{
if(tb.y < tb.w)
{
edge = _v[i[1 - m2]];
edge.p = edge.p.insert32<0, 1>(vertex[i[m2]].p);
dedge.p = ddx[2 - (m2 << 1)].yzzw(dedge.p);
DrawTriangleSection(tb.x, tb.w, edge, dedge, dscan, vertex[i[1 - m2]].p);
}
}
else
{
if(tb.x < tb.z)
{
edge = v0;
edge.p = edge.p.xxzw();
dedge.p = ddx[m2].xyzw(dedge.p);
DrawTriangleSection(tb.x, tb.z, edge, dedge, dscan, v0.p);
}
if(tb.y < tb.w)
{
edge = v1;
edge.p = (v0.p.xxxx() + ddx[m2] * dv[0].p.yyyy()).xyzw(edge.p);
dedge.p = ddx[2 - (m2 << 1)].yzzw(dedge.p);
DrawTriangleSection(tb.y, tb.w, edge, dedge, dscan, v1.p);
}
}
Flush(vertex, index, (GSVertexSW&)dscan);
if(m_ds->HasEdge())
{
GSVector4 a = dx.abs() < dy.abs(); // |dx| <= |dy|
GSVector4 b = dx < GSVector4::zero(); // dx < 0
GSVector4 c = cross < GSVector4::zero(); // longest.p.x < 0
int orientation = a.mask();
int side = ((a | b) ^ c).mask() ^ 2; // evil
DrawEdge((GSVertexSW&)v0, (GSVertexSW&)v1, (GSVertexSW&)dv[0], orientation & 1, side & 1);
DrawEdge((GSVertexSW&)v0, (GSVertexSW&)v2, (GSVertexSW&)dv[1], orientation & 2, side & 2);
DrawEdge((GSVertexSW&)v1, (GSVertexSW&)v2, (GSVertexSW&)dv[2], orientation & 4, side & 4);
Flush(vertex, index, GSVertexSW::zero(), true);
}
}
void GSRasterizer::DrawTriangleSection(int top, int bottom, GSVertexSW2& edge, const GSVertexSW2& dedge, const GSVertexSW2& dscan, const GSVector4& p0)
{
ASSERT(top < bottom);
ASSERT(edge.p.x <= edge.p.y);
GSVertexSW* RESTRICT e = &m_edge.buff[m_edge.count];
GSVector4 scissor = m_fscissor_x;
top = FindMyNextScanline(top);
while(top < bottom)
{
GSVector8 dy(GSVector4(top) - p0.yyyy());
GSVertexSW2 scan;
scan.p = edge.p + dedge.p * dy.extract<0>();
GSVector4 lrf = scan.p.ceil();
GSVector4 l = lrf.max(scissor);
GSVector4 r = lrf.min(scissor);
GSVector4i lr = GSVector4i(l.xxyy(r));
int left = lr.extract32<0>();
int right = lr.extract32<2>();
int pixels = right - left;
if(pixels > 0)
{
scan.tc = edge.tc + dedge.tc * dy;
GSVector8 prestep((l - p0).xxxx());
scan.p = scan.p + dscan.p * prestep.extract<0>();
scan.tc = scan.tc + dscan.tc * prestep;
AddScanline(e++, pixels, left, top, (GSVertexSW&)scan);
}
top++;
if(!IsOneOfMyScanlines(top))
{
top += (m_threads - 1) << m_thread_height;
}
}
m_edge.count += e - &m_edge.buff[m_edge.count];
}
#else
void GSRasterizer::DrawTriangle(const GSVertexSW* vertex, const uint32* index)
{
GSVertexSW dv[3];
GSVertexSW edge;
GSVertexSW dedge;
GSVertexSW dscan;
GSVector4 y0011 = vertex[index[0]].p.yyyy(vertex[index[1]].p);
GSVector4 y1221 = vertex[index[1]].p.yyyy(vertex[index[2]].p).xzzx();
int m1 = (y0011 > y1221).mask() & 7;
int i[3];
i[0] = index[s_ysort[m1][0]];
i[1] = index[s_ysort[m1][1]];
i[2] = index[s_ysort[m1][2]];
const GSVertexSW& v0 = vertex[i[0]];
const GSVertexSW& v1 = vertex[i[1]];
const GSVertexSW& v2 = vertex[i[2]];
y0011 = v0.p.yyyy(v1.p);
y1221 = v1.p.yyyy(v2.p).xzzx();
m1 = (y0011 == y1221).mask() & 7;
// if(i == 0) => y0 < y1 < y2
// if(i == 1) => y0 == y1 < y2
// if(i == 4) => y0 < y1 == y2
if(m1 == 7) return; // y0 == y1 == y2
GSVector4 tbf = y0011.xzxz(y1221).ceil();
GSVector4 tbmax = tbf.max(m_fscissor_y);
GSVector4 tbmin = tbf.min(m_fscissor_y);
GSVector4i tb = GSVector4i(tbmax.xzyw(tbmin)); // max(y0, t) max(y1, t) min(y1, b) min(y2, b)
dv[0] = v1 - v0;
dv[1] = v2 - v0;
dv[2] = v2 - v1;
GSVector4 cross = dv[0].p * dv[1].p.yxwz();
cross = (cross - cross.yxwz()).yyyy(); // select the second component, the negated cross product
// the longest horizontal span would be cross.x / dv[1].p.y, but we don't need its actual value
int m2 = cross.upl(cross == GSVector4::zero()).mask();
if(m2 & 2) return;
m2 &= 1;
GSVector4 dxy01 = dv[0].p.xyxy(dv[1].p);
GSVector4 dx = dxy01.xzxy(dv[2].p);
GSVector4 dy = dxy01.ywyx(dv[2].p);
GSVector4 ddx[3];
ddx[0] = dx / dy;
ddx[1] = ddx[0].yxzw();
ddx[2] = ddx[0].xzyw();
// Precision is important here. Don't use reciprocal, it will break Jak3/Xenosaga1
GSVector4 dxy01c = dxy01 / cross;
/*
dscan = dv[1] * dxy01c.yyyy() - dv[0] * dxy01c.wwww();
dedge = dv[0] * dxy01c.zzzz() - dv[1] * dxy01c.xxxx();
*/
dscan.p = dv[1].p * dxy01c.yyyy() - dv[0].p * dxy01c.wwww();
dscan.t = dv[1].t * dxy01c.yyyy() - dv[0].t * dxy01c.wwww();
dscan.c = dv[1].c * dxy01c.yyyy() - dv[0].c * dxy01c.wwww();
dedge.p = dv[0].p * dxy01c.zzzz() - dv[1].p * dxy01c.xxxx();
dedge.t = dv[0].t * dxy01c.zzzz() - dv[1].t * dxy01c.xxxx();
dedge.c = dv[0].c * dxy01c.zzzz() - dv[1].c * dxy01c.xxxx();
if(m1 & 1)
{
if(tb.y < tb.w)
{
edge = vertex[i[1 - m2]];
edge.p = edge.p.insert32<0, 1>(vertex[i[m2]].p);
dedge.p = ddx[2 - (m2 << 1)].yzzw(dedge.p);
DrawTriangleSection(tb.x, tb.w, edge, dedge, dscan, vertex[i[1 - m2]].p);
}
}
else
{
if(tb.x < tb.z)
{
edge = v0;
edge.p = edge.p.xxzw();
dedge.p = ddx[m2].xyzw(dedge.p);
DrawTriangleSection(tb.x, tb.z, edge, dedge, dscan, v0.p);
}
if(tb.y < tb.w)
{
edge = v1;
edge.p = (v0.p.xxxx() + ddx[m2] * dv[0].p.yyyy()).xyzw(edge.p);
dedge.p = ddx[2 - (m2 << 1)].yzzw(dedge.p);
DrawTriangleSection(tb.y, tb.w, edge, dedge, dscan, v1.p);
}
}
Flush(vertex, index, dscan);
if(m_ds->HasEdge())
{
GSVector4 a = dx.abs() < dy.abs(); // |dx| <= |dy|
GSVector4 b = dx < GSVector4::zero(); // dx < 0
GSVector4 c = cross < GSVector4::zero(); // longest.p.x < 0
int orientation = a.mask();
int side = ((a | b) ^ c).mask() ^ 2; // evil
DrawEdge(v0, v1, dv[0], orientation & 1, side & 1);
DrawEdge(v0, v2, dv[1], orientation & 2, side & 2);
DrawEdge(v1, v2, dv[2], orientation & 4, side & 4);
Flush(vertex, index, GSVertexSW::zero(), true);
}
}
void GSRasterizer::DrawTriangleSection(int top, int bottom, GSVertexSW& edge, const GSVertexSW& dedge, const GSVertexSW& dscan, const GSVector4& p0)
{
ASSERT(top < bottom);
ASSERT(edge.p.x <= edge.p.y);
GSVertexSW* RESTRICT e = &m_edge.buff[m_edge.count];
GSVector4 scissor = m_fscissor_x;
top = FindMyNextScanline(top);
while(top < bottom)
{
GSVector4 dy = GSVector4(top) - p0.yyyy();
GSVertexSW scan;
scan.p = edge.p + dedge.p * dy;
GSVector4 lrf = scan.p.ceil();
GSVector4 l = lrf.max(scissor);
GSVector4 r = lrf.min(scissor);
GSVector4i lr = GSVector4i(l.xxyy(r));
int left = lr.extract32<0>();
int right = lr.extract32<2>();
int pixels = right - left;
if(pixels > 0)
{
scan.t = edge.t + dedge.t * dy;
scan.c = edge.c + dedge.c * dy;
GSVector4 prestep = (l - p0).xxxx();
scan.p = scan.p + dscan.p * prestep;
scan.t = scan.t + dscan.t * prestep;
scan.c = scan.c + dscan.c * prestep;
AddScanline(e++, pixels, left, top, scan);
}
top++;
if(!IsOneOfMyScanlines(top))
{
top += (m_threads - 1) << m_thread_height;
}
}
m_edge.count += e - &m_edge.buff[m_edge.count];
}
#endif
void GSRasterizer::DrawSprite(const GSVertexSW* vertex, const uint32* index)
{
const GSVertexSW& v0 = vertex[index[0]];
const GSVertexSW& v1 = vertex[index[1]];
GSVector4 mask = (v0.p < v1.p).xyzw(GSVector4::zero());
GSVertexSW v[2];
v[0].p = v1.p.blend32(v0.p, mask);
v[0].t = v1.t.blend32(v0.t, mask);
v[0].c = v1.c;
v[1].p = v0.p.blend32(v1.p, mask);
v[1].t = v0.t.blend32(v1.t, mask);
GSVector4i r(v[0].p.xyxy(v[1].p).ceil());
r = r.rintersect(m_scissor);
if(r.rempty()) return;
GSVertexSW scan = v[0];
if(m_ds->IsSolidRect())
{
if(m_threads == 1)
{
m_ds->DrawRect(r, scan);
int pixels = r.width() * r.height();
m_pixels.actual += pixels;
m_pixels.total += pixels;
}
else
{
int top = FindMyNextScanline(r.top);
int bottom = r.bottom;
while(top < bottom)
{
r.top = top;
r.bottom = std::min<int>((top + (1 << m_thread_height)) & ~((1 << m_thread_height) - 1), bottom);
m_ds->DrawRect(r, scan);
int pixels = r.width() * r.height();
m_pixels.actual += pixels;
m_pixels.total += pixels;
top = r.bottom + ((m_threads - 1) << m_thread_height);
}
}
return;
}
GSVertexSW dv = v[1] - v[0];
GSVector4 dt = dv.t / dv.p.xyxy();
GSVertexSW dedge;
GSVertexSW dscan;
dedge.t = GSVector4::zero().insert32<1, 1>(dt);
dscan.t = GSVector4::zero().insert32<0, 0>(dt);
GSVector4 prestep = GSVector4(r.left, r.top) - scan.p;
int m = (prestep == GSVector4::zero()).mask();
if((m & 2) == 0) scan.t += dedge.t * prestep.yyyy();
if((m & 1) == 0) scan.t += dscan.t * prestep.xxxx();
m_ds->SetupPrim(vertex, index, dscan);
while(1)
{
if(IsOneOfMyScanlines(r.top))
{
DrawScanline(r.width(), r.left, r.top, scan);
}
if(++r.top >= r.bottom) break;
scan.t += dedge.t;
}
}
void GSRasterizer::DrawEdge(const GSVertexSW& v0, const GSVertexSW& v1, const GSVertexSW& dv, int orientation, int side)
{
// orientation:
// - true: |dv.p.y| > |dv.p.x|
// - false |dv.p.x| > |dv.p.y|
// side:
// - true: top/left edge
// - false: bottom/right edge
// TODO: bit slow and too much duplicated code
// TODO: inner pre-step is still missing (hardly noticable)
// TODO: it does not always line up with the edge of the surrounded triangle
GSVertexSW* RESTRICT e = &m_edge.buff[m_edge.count];
if(orientation)
{
GSVector4 tbf = v0.p.yyyy(v1.p).ceil(); // t t b b
GSVector4 tbmax = tbf.max(m_fscissor_y); // max(t, st) max(t, sb) max(b, st) max(b, sb)
GSVector4 tbmin = tbf.min(m_fscissor_y); // min(t, st) min(t, sb) min(b, st) min(b, sb)
GSVector4i tb = GSVector4i(tbmax.xzyw(tbmin)); // max(t, st) max(b, sb) min(t, st) min(b, sb)
int top, bottom;
GSVertexSW edge, dedge;
if((dv.p >= GSVector4::zero()).mask() & 2)
{
top = tb.extract32<0>(); // max(t, st)
bottom = tb.extract32<3>(); // min(b, sb)
if(top >= bottom) return;
edge = v0;
dedge = dv / dv.p.yyyy();
edge += dedge * (tbmax.xxxx() - edge.p.yyyy());
}
else
{
top = tb.extract32<1>(); // max(b, st)
bottom = tb.extract32<2>(); // min(t, sb)
if(top >= bottom) return;
edge = v1;
dedge = dv / dv.p.yyyy();
edge += dedge * (tbmax.zzzz() - edge.p.yyyy());
}
GSVector4i p = GSVector4i(edge.p.upl(dedge.p) * 0x10000);
int x = p.extract32<0>();
int dx = p.extract32<1>();
if(side)
{
while(1)
{
int xi = x >> 16;
int xf = x & 0xffff;
if(m_scissor.left <= xi && xi < m_scissor.right && IsOneOfMyScanlines(top))
{
AddScanline(e, 1, xi, top, edge);
e->t.u32[3] = (0x10000 - xf) & 0xffff;
e++;
}
if(++top >= bottom) break;
edge += dedge;
x += dx;
}
}
else
{
while(1)
{
int xi = (x >> 16) + 1;
int xf = x & 0xffff;
if(m_scissor.left <= xi && xi < m_scissor.right && IsOneOfMyScanlines(top))
{
AddScanline(e, 1, xi, top, edge);
e->t.u32[3] = xf;
e++;
}
if(++top >= bottom) break;
edge += dedge;
x += dx;
}
}
}
else
{
GSVector4 lrf = v0.p.xxxx(v1.p).ceil(); // l l r r
GSVector4 lrmax = lrf.max(m_fscissor_x); // max(l, sl) max(l, sr) max(r, sl) max(r, sr)
GSVector4 lrmin = lrf.min(m_fscissor_x); // min(l, sl) min(l, sr) min(r, sl) min(r, sr)
GSVector4i lr = GSVector4i(lrmax.xzyw(lrmin)); // max(l, sl) max(r, sl) min(l, sr) min(r, sr)
int left, right;
GSVertexSW edge, dedge;
if((dv.p >= GSVector4::zero()).mask() & 1)
{
left = lr.extract32<0>(); // max(l, sl)
right = lr.extract32<3>(); // min(r, sr)
if(left >= right) return;
edge = v0;
dedge = dv / dv.p.xxxx();
edge += dedge * (lrmax.xxxx() - edge.p.xxxx());
}
else
{
left = lr.extract32<1>(); // max(r, sl)
right = lr.extract32<2>(); // min(l, sr)
if(left >= right) return;
edge = v1;
dedge = dv / dv.p.xxxx();
edge += dedge * (lrmax.zzzz() - edge.p.xxxx());
}
GSVector4i p = GSVector4i(edge.p.upl(dedge.p) * 0x10000);
int y = p.extract32<2>();
int dy = p.extract32<3>();
if(side)
{
while(1)
{
int yi = y >> 16;
int yf = y & 0xffff;
if(m_scissor.top <= yi && yi < m_scissor.bottom && IsOneOfMyScanlines(yi))
{
AddScanline(e, 1, left, yi, edge);
e->t.u32[3] = (0x10000 - yf) & 0xffff;
e++;
}
if(++left >= right) break;
edge += dedge;
y += dy;
}
}
else
{
while(1)
{
int yi = (y >> 16) + 1;
int yf = y & 0xffff;
if(m_scissor.top <= yi && yi < m_scissor.bottom && IsOneOfMyScanlines(yi))
{
AddScanline(e, 1, left, yi, edge);
e->t.u32[3] = yf;
e++;
}
if(++left >= right) break;
edge += dedge;
y += dy;
}
}
}
m_edge.count += e - &m_edge.buff[m_edge.count];
}
void GSRasterizer::AddScanline(GSVertexSW* e, int pixels, int left, int top, const GSVertexSW& scan)
{
*e = scan;
e->_pad.i32[0] = pixels;
e->_pad.i32[1] = left;
e->_pad.i32[2] = top;
}
void GSRasterizer::Flush(const GSVertexSW* vertex, const uint32* index, const GSVertexSW& dscan, bool edge)
{
// TODO: on win64 this could be the place where xmm6-15 are preserved (not by each DrawScanline)
int count = m_edge.count;
if(count > 0)
{
m_ds->SetupPrim(vertex, index, dscan);
const GSVertexSW* RESTRICT e = m_edge.buff;
const GSVertexSW* RESTRICT ee = e + count;
if(!edge)
{
do
{
int pixels = e->_pad.i32[0];
int left = e->_pad.i32[1];
int top = e->_pad.i32[2];
DrawScanline(pixels, left, top, *e++);
}
while(e < ee);
}
else
{
do
{
int pixels = e->_pad.i32[0];
int left = e->_pad.i32[1];
int top = e->_pad.i32[2];
DrawEdge(pixels, left, top, *e++);
}
while(e < ee);
}
m_edge.count = 0;
}
}
#if _M_SSE >= 0x501
#define PIXELS_PER_LOOP 8
#else
#define PIXELS_PER_LOOP 4
#endif
void GSRasterizer::DrawScanline(int pixels, int left, int top, const GSVertexSW& scan)
{
m_pixels.actual += pixels;
m_pixels.total += ((left + pixels + (PIXELS_PER_LOOP - 1)) & ~(PIXELS_PER_LOOP - 1)) - (left & (PIXELS_PER_LOOP - 1));
//m_pixels.total += ((left + pixels + (PIXELS_PER_LOOP - 1)) & ~(PIXELS_PER_LOOP - 1)) - left;
ASSERT(m_pixels.actual <= m_pixels.total);
m_ds->DrawScanline(pixels, left, top, scan);
}
void GSRasterizer::DrawEdge(int pixels, int left, int top, const GSVertexSW& scan)
{
m_pixels.actual += 1;
m_pixels.total += PIXELS_PER_LOOP - 1;
ASSERT(m_pixels.actual <= m_pixels.total);
m_ds->DrawEdge(pixels, left, top, scan);
}
//
GSRasterizerList::GSRasterizerList(int threads, GSPerfMon* perfmon)
: m_perfmon(perfmon)
{
m_thread_height = compute_best_thread_height(threads);
int rows = (2048 >> m_thread_height) + 16;
m_scanline = (uint8*)_aligned_malloc(rows, 64);
int row = 0;
while(row < rows)
{
for(int i = 0; i < threads; i++, row++)
{
m_scanline[row] = (uint8)i;
}
}
}
GSRasterizerList::~GSRasterizerList()
{
_aligned_free(m_scanline);
}
2017-05-26 16:37:20 +00:00
void GSRasterizerList::Queue(const std::shared_ptr<GSRasterizerData>& data)
{
GSVector4i r = data->bbox.rintersect(data->scissor);
ASSERT(r.top >= 0 && r.top < 2048 && r.bottom >= 0 && r.bottom < 2048);
int top = r.top >> m_thread_height;
int bottom = std::min<int>((r.bottom + (1 << m_thread_height) - 1) >> m_thread_height, top + m_workers.size());
while(top < bottom)
{
m_workers[m_scanline[top++]]->Push(data);
}
}
void GSRasterizerList::Sync()
{
if(!IsSynced())
{
for(size_t i = 0; i < m_workers.size(); i++)
{
m_workers[i]->Wait();
}
m_perfmon->Put(GSPerfMon::SyncPoint, 1);
}
}
bool GSRasterizerList::IsSynced() const
{
for(size_t i = 0; i < m_workers.size(); i++)
{
if(!m_workers[i]->IsEmpty())
{
return false;
}
}
return true;
}
int GSRasterizerList::GetPixels(bool reset)
{
int pixels = 0;
for(size_t i = 0; i < m_workers.size(); i++)
{
pixels += m_r[i]->GetPixels(reset);
}
return pixels;
}