pcsx2/plugins/spu2-x/src/PS2E-spu2.cpp

641 lines
13 KiB
C++
Raw Normal View History

/* SPU2-X, A plugin for Emulating the Sound Processing Unit of the Playstation 2
* Developed and maintained by the Pcsx2 Development Team.
*
* Original portions from SPU2ghz are (c) 2008 by David Quintana [gigaherz]
*
* SPU2-X is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* SPU2-X is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with SPU2-X. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Global.h"
#include "PS2E-spu2.h"
#include "Dma.h"
#include "Dialogs.h"
#include "x86emitter/tools.h"
#ifdef _MSC_VER
# include "svnrev.h"
#endif
// Uncomment to enable debug keys
//#define DEBUG_KEYS
// PCSX2 expects ASNI, not unicode, so this MUST always be char...
static char libraryName[256];
static bool IsOpened = false;
static bool IsInitialized = false;
static u32 pClocks = 0;
u32* cyclePtr = NULL;
u32 lClocks = 0;
#ifdef _MSC_VER
HINSTANCE hInstance;
BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpvReserved)
{
if( dwReason == DLL_PROCESS_ATTACH )
{
hInstance = hinstDLL;
}
else if( dwReason == DLL_PROCESS_DETACH )
{
// TODO : perform shutdown procedure, just in case PCSX2 itself failed
// to for some reason..
}
return TRUE;
}
#endif
static void InitLibraryName()
{
#ifdef SPU2X_PUBLIC_RELEASE
// Public Release!
// Output a simplified string that's just our name:
strcpy( libraryName, "SPU2-X" );
#else
#ifdef SVN_REV_UNKNOWN
// Unknown revision.
// Output a name that includes devbuild status but not
// subversion revision tags:
strcpy( libraryName, "SPU2-X"
#ifdef DEBUG_FAST
"-Debug"
#elif defined( PCSX2_DEBUG )
"-Debug/Strict" // strict debugging is slow!
#elif defined( PCSX2_DEVBUILD )
"-Dev"
#else
""
#endif
);
#else
// Use TortoiseSVN's SubWCRev utility's output
// to label the specific revision:
sprintf_s( libraryName, "SPU2-X r%d%s"
#ifdef DEBUG_FAST
"-Debug"
#elif defined( PCSX2_DEBUG )
"-Debug/Strict" // strict debugging is slow!
#elif defined( PCSX2_DEVBUILD )
"-Dev"
#else
""
#endif
,SVN_REV,
SVN_MODS ? "m" : ""
);
#endif
#endif
}
static bool cpu_detected = false;
static bool CheckSSE()
{
// I'll worry about checking sse2 in Linux later.
#ifndef __LINUX__
if( !cpu_detected )
{
cpudetectInit();
cpu_detected = true;
}
if( !x86caps.hasStreamingSIMDExtensions || !x86caps.hasStreamingSIMD2Extensions )
{
SysMessage( "Your CPU does not support SSE2 instructions.\nThe SPU2-X plugin requires SSE2 to run." );
return false;
}
#endif
return true;
}
EXPORT_C_(u32) PS2EgetLibType()
{
return PS2E_LT_SPU2;
}
EXPORT_C_(char*) PS2EgetLibName()
{
InitLibraryName();
return libraryName;
}
EXPORT_C_(u32) PS2EgetLibVersion2(u32 type)
{
return (PS2E_SPU2_VERSION<<16) | (VersionInfo::Release<<8) | VersionInfo::Revision;
}
EXPORT_C_(void) SPU2configure()
{
if( !CheckSSE() ) return;
configure();
}
EXPORT_C_(void) SPU2about()
{
AboutBox();
}
EXPORT_C_(s32) SPU2test()
{
if( !CheckSSE() ) return -1;
ReadSettings();
if( SndBuffer::Test() != 0 )
{
// TODO : Implement a proper dialog that allows the user to test different audio out drivers.
const wchar_t* wtf = mods[OutputModule]->GetIdent();
SysMessage( L"The '%s' driver test failed. Please configure\na different SoundOut module and try again.", wtf );
return -1;
}
return 0;
}
// --------------------------------------------------------------------------------------
// DMA 4/7 Callbacks from Core Emulator
// --------------------------------------------------------------------------------------
u16* DMABaseAddr;
void (* _irqcallback)();
void (* dma4callback)();
void (* dma7callback)();
EXPORT_C_(u32) CALLBACK SPU2ReadMemAddr(int core)
{
return Cores[core].MADR;
}
EXPORT_C_(void) CALLBACK SPU2WriteMemAddr(int core,u32 value)
{
Cores[core].MADR = value;
}
EXPORT_C_(void) CALLBACK SPU2setDMABaseAddr(uptr baseaddr)
{
DMABaseAddr = (u16*)baseaddr;
}
EXPORT_C_(void) CALLBACK SPU2setSettingsDir(const char* dir)
{
CfgSetSettingsDir( dir );
}
EXPORT_C_(s32) SPU2dmaRead(s32 channel, u32* data, u32 bytesLeft, u32* bytesProcessed)
{
if(channel==4)
return Cores[0].NewDmaRead(data,bytesLeft, bytesProcessed);
else
return Cores[1].NewDmaRead(data,bytesLeft, bytesProcessed);
}
EXPORT_C_(s32) SPU2dmaWrite(s32 channel, u32* data, u32 bytesLeft, u32* bytesProcessed)
{
if(channel==4)
return Cores[0].NewDmaWrite(data,bytesLeft, bytesProcessed);
else
return Cores[1].NewDmaWrite(data,bytesLeft, bytesProcessed);
}
EXPORT_C_(void) SPU2dmaInterrupt(s32 channel)
{
if(channel==4)
return Cores[0].NewDmaInterrupt();
else
return Cores[1].NewDmaInterrupt();
}
#ifdef ENABLE_NEW_IOPDMA_SPU2
EXPORT_C_(void) SPU2irqCallback(void (*SPU2callback)())
{
_irqcallback = SPU2callback;
}
#else
EXPORT_C_(void) SPU2irqCallback(void (*SPU2callback)(),void (*DMA4callback)(),void (*DMA7callback)())
{
_irqcallback = SPU2callback;
dma4callback = DMA4callback;
dma7callback = DMA7callback;
}
#endif
EXPORT_C_(void) CALLBACK SPU2readDMA4Mem(u16 *pMem, u32 size) // size now in 16bit units
{
if( cyclePtr != NULL ) TimeUpdate( *cyclePtr );
FileLog("[%10d] SPU2 readDMA4Mem size %x\n",Cycles, size<<1);
Cores[0].DoDMAread(pMem, size);
}
EXPORT_C_(void) CALLBACK SPU2writeDMA4Mem(u16* pMem, u32 size) // size now in 16bit units
{
if( cyclePtr != NULL ) TimeUpdate( *cyclePtr );
FileLog("[%10d] SPU2 writeDMA4Mem size %x at address %x\n",Cycles, size<<1, Cores[0].TSA);
#ifdef S2R_ENABLE
if(!replay_mode)
s2r_writedma4(Cycles,pMem,size);
#endif
Cores[0].DoDMAwrite(pMem,size);
}
EXPORT_C_(void) CALLBACK SPU2interruptDMA4()
{
FileLog("[%10d] SPU2 interruptDMA4\n",Cycles);
Cores[0].Regs.STATX |= 0x80;
//Cores[0].Regs.ATTR &= ~0x30;
}
EXPORT_C_(void) CALLBACK SPU2interruptDMA7()
{
FileLog("[%10d] SPU2 interruptDMA7\n",Cycles);
Cores[1].Regs.STATX |= 0x80;
//Cores[1].Regs.ATTR &= ~0x30;
}
EXPORT_C_(void) CALLBACK SPU2readDMA7Mem(u16* pMem, u32 size)
{
if( cyclePtr != NULL ) TimeUpdate( *cyclePtr );
FileLog("[%10d] SPU2 readDMA7Mem size %x\n",Cycles, size<<1);
Cores[1].DoDMAread(pMem,size);
}
EXPORT_C_(void) CALLBACK SPU2writeDMA7Mem(u16* pMem, u32 size)
{
if( cyclePtr != NULL ) TimeUpdate( *cyclePtr );
FileLog("[%10d] SPU2 writeDMA7Mem size %x at address %x\n",Cycles, size<<1, Cores[1].TSA);
#ifdef S2R_ENABLE
if(!replay_mode)
s2r_writedma7(Cycles,pMem,size);
#endif
Cores[1].DoDMAwrite(pMem,size);
}
EXPORT_C_(s32) SPU2init()
{
assert( regtable[0x400] == NULL );
//s32 c=0,v=0;
ReadSettings();
#ifdef SPU2_LOG
if(AccessLog())
{
spu2Log = fopen( Unicode::Convert( AccessLogFileName ).c_str(), "w" );
setvbuf(spu2Log, NULL, _IONBF, 0);
FileLog("SPU2init\n");
}
#endif
srand((unsigned)time(NULL));
if (IsInitialized)
{
ConLog( " * SPU2: Already initialized - Ignoring SPU2init signal." );
return 0;
}
IsInitialized = true;
spu2regs = (short*)malloc(0x010000);
_spu2mem = (short*)malloc(0x200000);
// adpcm decoder cache:
// the cache data size is determined by taking the number of adpcm blocks
// (2MB / 16) and multiplying it by the decoded block size (28 samples).
// Thus: pcm_cache_data = 7,340,032 bytes (ouch!)
// Expanded: 16 bytes expands to 56 bytes [3.5:1 ratio]
// Resulting in 2MB * 3.5.
pcm_cache_data = (PcmCacheEntry*)calloc( pcm_BlockCount, sizeof(PcmCacheEntry) );
if( (spu2regs == NULL) || (_spu2mem == NULL) ||
(pcm_cache_data == NULL) )
{
SysMessage("SPU2: Error allocating Memory\n"); return -1;
}
// Patch up a copy of regtable that directly maps "NULLs" to SPU2 memory.
memcpy(regtable, regtable_original, sizeof(regtable));
for(int mem=0;mem<0x800;mem++)
{
u16 *ptr = regtable[mem>>1];
if(!ptr) {
regtable[mem>>1] = &(spu2Ru16(mem));
}
}
memset(spu2regs, 0, 0x010000);
memset(_spu2mem, 0, 0x200000);
Cores[0].Reset(0);
Cores[1].Reset(1);
DMALogOpen();
/*for(v=0;v<16384;v++)
{
logvolume[v]=(s32)(s32)floor(log((double)(v+1))*3376.7);
}*/
// Initializes lowpass filter for reverb in mixer.cpp
//LowPassFilterInit();
InitADSR();
#ifdef STREAM_DUMP
il0=fopen("logs/spu2input0.pcm","wb");
il1=fopen("logs/spu2input1.pcm","wb");
#endif
#ifdef EFFECTS_DUMP
el0=fopen("logs/spu2fx0.pcm","wb");
el1=fopen("logs/spu2fx1.pcm","wb");
#endif
#ifdef S2R_ENABLE
if(!replay_mode)
s2r_open("replay_dump.s2r");
#endif
return 0;
}
uptr gsWindowHandle = 0;
EXPORT_C_(s32) SPU2open(void *pDsp)
{
if( IsOpened ) return 0;
FileLog("[%10d] SPU2 Open\n",Cycles);
if( pDsp != NULL )
gsWindowHandle = *(uptr*)pDsp;
else
gsWindowHandle = 0;
/*
if(debugDialogOpen==0)
{
hDebugDialog = CreateDialogParam(hInstance,MAKEINTRESOURCE(IDD_DEBUG),0,DebugProc,0);
ShowWindow(hDebugDialog,SW_SHOWNORMAL);
debugDialogOpen=1;
}*/
IsOpened = true;
lClocks = (cyclePtr!=NULL) ? *cyclePtr : 0;
try
{
SndBuffer::Init();
spdif_init();
#ifndef __LINUX__
DspLoadLibrary(dspPlugin,dspPluginModule);
#endif
WaveDump::Open();
}
catch( std::exception& ex )
{
fprintf( stderr, "SPU2-X Error: Could not initialize device, or something.\nReason: %s", ex.what() );
SPU2close();
return -1;
}
return 0;
}
EXPORT_C_(void) SPU2close()
{
if( !IsOpened ) return;
IsOpened = false;
FileLog("[%10d] SPU2 Close\n",Cycles);
#ifndef __LINUX__
DspCloseLibrary();
#endif
spdif_shutdown();
SndBuffer::Cleanup();
}
EXPORT_C_(void) SPU2shutdown()
{
if(!IsInitialized) return;
IsInitialized = false;
ConLog( " * SPU2: Shutting down.\n" );
SPU2close();
#ifdef S2R_ENABLE
if(!replay_mode)
s2r_close();
#endif
DoFullDump();
#ifdef STREAM_DUMP
fclose(il0);
fclose(il1);
#endif
#ifdef EFFECTS_DUMP
fclose(el0);
fclose(el1);
#endif
WaveDump::Close();
DMALogClose();
safe_free(spu2regs);
safe_free(_spu2mem);
safe_free( pcm_cache_data );
spu2regs = NULL;
_spu2mem = NULL;
pcm_cache_data = NULL;
#ifdef SPU2_LOG
if(!AccessLog()) return;
FileLog("[%10d] SPU2shutdown\n",Cycles);
if(spu2Log) fclose(spu2Log);
#endif
}
EXPORT_C_(void) SPU2setClockPtr(u32 *ptr)
{
cyclePtr = ptr;
}
bool numpad_plus = false, numpad_plus_old = false;
#ifdef DEBUG_KEYS
u32 lastTicks;
bool lState[5];
#endif
EXPORT_C_(void) SPU2async(u32 cycles)
{
DspUpdate();
if(cyclePtr != NULL)
{
TimeUpdate( *cyclePtr );
}
else
{
pClocks += cycles;
TimeUpdate( pClocks );
}
#ifdef DEBUG_KEYS
u32 curTicks = GetTickCount();
if((curTicks - lastTicks) >= 100)
{
int oldI = Interpolation;
bool cState[5];
for(int i=0;i<5;i++)
{
cState[i] = !!(GetAsyncKeyState(VK_NUMPAD0+i)&0x8000);
if(cState[i] && !lState[i])
Interpolation = i;
lState[i] = cState[i];
}
if(Interpolation != oldI)
{
printf("Interpolation set to %d", Interpolation);
switch(Interpolation)
{
case 0: printf(" - Nearest.\n"); break;
case 1: printf(" - Linear.\n"); break;
case 2: printf(" - Cubic.\n"); break;
case 3: printf(" - Hermite.\n"); break;
case 4: printf(" - Catmull-Rom.\n"); break;
default: printf(" (unknown).\n"); break;
}
}
lastTicks = curTicks;
}
#endif
}
EXPORT_C_(u16) SPU2read(u32 rmem)
{
// if(!replay_mode)
// s2r_readreg(Cycles,rmem);
u16 ret=0xDEAD; u32 core=0, mem=rmem&0xFFFF, omem=mem;
if (mem & 0x400) { omem^=0x400; core=1; }
if(rmem==0x1f9001AC)
{
ret = Cores[core].DmaRead();
}
else
{
if( cyclePtr != NULL )
TimeUpdate( *cyclePtr );
if (rmem>>16 == 0x1f80)
{
ret = Cores[0].ReadRegPS1(rmem);
}
else if( (mem&0xFFFF) >= 0x800 )
{
ret = spu2Ru16(mem);
ConLog(" * SPU2: Read from reg>=0x800: %x value %x\n",mem,ret);
}
else
{
ret = *(regtable[(mem>>1)]);
//FileLog("[%10d] SPU2 read mem %x (core %d, register %x): %x\n",Cycles, mem, core, (omem & 0x7ff), ret);
SPU2writeLog( "read", rmem, ret );
}
}
return ret;
}
EXPORT_C_(void) SPU2write(u32 rmem, u16 value)
{
#ifdef S2R_ENABLE
if(!replay_mode)
s2r_writereg(Cycles,rmem,value);
#endif
// Note: Reverb/Effects are very sensitive to having precise update timings.
// If the SPU2 isn't in in sync with the IOP, samples can end up playing at rather
// incorrect pitches and loop lengths.
if( cyclePtr != NULL )
TimeUpdate( *cyclePtr );
if (rmem>>16 == 0x1f80)
Cores[0].WriteRegPS1(rmem,value);
else
{
SPU2writeLog( "write", rmem, value );
SPU2_FastWrite( rmem, value );
}
}
// if start is 1, starts recording spu2 data, else stops
// returns a non zero value if successful
// for now, pData is not used
EXPORT_C_(int) SPU2setupRecording(int start, void* pData)
{
if(start==0)
RecordStop();
else if(start==1)
RecordStart();
return 0;
}
EXPORT_C_(s32) SPU2freeze(int mode, freezeData *data)
{
if( mode == FREEZE_SIZE )
{
data->size = Savestate::SizeIt();
return 0;
}
jASSUME( mode == FREEZE_LOAD || mode == FREEZE_SAVE );
jASSUME( data != NULL );
if( data->data == NULL ) return -1;
Savestate::DataBlock& spud = (Savestate::DataBlock&)*(data->data);
switch( mode )
{
case FREEZE_LOAD: return Savestate::ThawIt( spud );
case FREEZE_SAVE: return Savestate::FreezeIt( spud );
jNO_DEFAULT;
}
// technically unreachable, but kills a warning:
return 0;
}