pcsx2/plugins/zzogl-pg/opengl/Regs.cpp

1259 lines
32 KiB
C++
Raw Normal View History

/* ZZ Open GL graphics plugin
* Copyright (c)2009-2010 zeydlitz@gmail.com, arcum42@gmail.com
* Based on Zerofrog's ZeroGS KOSMOS (c)2005-2008
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "GS.h"
#include "Mem.h"
#include "Regs.h"
#include "PS2Etypes.h"
#include "zerogs.h"
#include "targets.h"
#ifdef USE_OLD_REGS
const u32 g_primmult[8] = { 1, 2, 2, 3, 3, 3, 2, 0xff };
const u32 g_primsub[8] = { 1, 2, 1, 3, 1, 1, 2, 0 };
#ifdef _MSC_VER
#pragma warning(disable:4244)
#endif
GIFRegHandler g_GIFPackedRegHandlers[16];
GIFRegHandler g_GIFRegHandlers[256];
GIFRegHandler g_GIFTempRegHandlers[16] = {0};
// values for keeping track of changes
u32 s_uTex1Data[2][2] = {{0, }};
u32 s_uClampData[2] = {0, };
//u32 results[65535] = {0, };
// return true if triangle SHOULD be painted.
inline bool NoHighlights(int i)
{
// This is hack-code, I still in search of correct reason, why some triangles should not be drawn.
int dummy = 0;
u32 resultA = prim->iip + (2 * (prim->tme)) + (4 * (prim->fge)) + (8 * (prim->abe)) + (16 * (prim->aa1)) + (32 * (prim->fst)) + (64 * (prim->ctxt)) + (128 * (prim->fix));
// if ( results[resultA] == 0 ) {
// results[resultA] = 1;
// ZZLog::ERROR_LOG("%x = %d %d %d %d %d %d %d %d \n", resultA, prim->iip, (prim->tme), (prim->fge), (prim->abe) , (prim->aa1) ,(prim->fst), (prim->ctxt), (prim->fix)) ;
// }
// if (resultA == 0xb && ZeroGS::vb[i].zbuf.zmsk ) return false; //ATF
const pixTest curtest = ZeroGS::vb[i].test;
u32 result = curtest.ate + ((curtest.atst) << 1) +((curtest.afail) << 4) + ((curtest.date) << 6) + ((curtest.datm) << 7) + ((curtest.zte) << 8) + ((curtest.ztst)<< 9);
// if (resultA == 0xb)
// if ( results[result] == 0) {
// results[result] = 1;
// ZZLog::Error_Log("0x%x = %d %d %d %d %d %d %d %d ", result, curtest.ate, curtest.atst, curtest.aref, curtest.afail, curtest.date, curtest.datm, curtest.zte, curtest.ztst);
// }
//if (result == 0x50b && ZeroGS::vb[i].zbuf.zmsk ) return false; //ATF
//if ((resultA == 0x3a2a || resultA == 0x312a) && (result == 0x302 || result == 0x700) && (ZeroGS::vb[i].zbuf.zmsk)) return false; // Silent Hill:SM and Front Mission 5, result != 0x300
//if (((resultA == 0x3100) || (resultA == 0x3108)) && ((result == 0x54c) || (result == 0x50c)) && (ZeroGS::vb[i].zbuf.zmsk)) return false; // Okage
if ((resultA == 0x310a) && (result == 0x0)) return false; // Radiata Stories
//if (resultA == 0x3a6a && (result == 0x300 || result == 0x500) && ZeroGS::vb[i].zbuf.zmsk) return false; // Okami, result != 0x30d
//if ((resultA == 0x300b) && (result == 0x300) && ZeroGS::vb[i].zbuf.zmsk) return false; // ATF, but no Melty Blood
// Old code
return (!(conf.settings().xenosaga_spec) || !ZeroGS::vb[i].zbuf.zmsk || prim->iip) ;
}
void __gifCall GIFPackedRegHandlerNull(const u32* data)
{
FUNCLOG
ZZLog::Debug_Log("Unexpected packed reg handler %8.8lx_%8.8lx %x.", data[0], data[1], data[2]);
}
// All these just call their non-packed equivalent.
void __gifCall GIFPackedRegHandlerPRIM(const u32* data) { GIFRegHandlerPRIM(data); }
void __gifCall GIFPackedRegHandlerTEX0_1(const u32* data) { GIFRegHandlerTEX0_1(data); }
void __gifCall GIFPackedRegHandlerTEX0_2(const u32* data) { GIFRegHandlerTEX0_2(data); }
void __gifCall GIFPackedRegHandlerCLAMP_1(const u32* data) { GIFRegHandlerCLAMP_1(data); }
void __gifCall GIFPackedRegHandlerCLAMP_2(const u32* data) { GIFRegHandlerCLAMP_2(data); }
void __gifCall GIFPackedRegHandlerXYZF3(const u32* data) { GIFRegHandlerXYZF3(data); }
void __gifCall GIFPackedRegHandlerXYZ3(const u32* data) { GIFRegHandlerXYZ3(data); }
void __gifCall GIFPackedRegHandlerRGBA(const u32* data)
{
FUNCLOG
gs.rgba = (data[0] & 0xff) |
((data[1] & 0xff) << 8) |
((data[2] & 0xff) << 16) |
((data[3] & 0xff) << 24);
gs.vertexregs.rgba = gs.rgba;
gs.vertexregs.q = gs.q;
}
void __gifCall GIFPackedRegHandlerSTQ(const u32* data)
{
FUNCLOG
*(u32*)&gs.vertexregs.s = data[0] & 0xffffff00;
*(u32*)&gs.vertexregs.t = data[1] & 0xffffff00;
*(u32*)&gs.q = data[2];
}
void __gifCall GIFPackedRegHandlerUV(const u32* data)
{
FUNCLOG
gs.vertexregs.u = data[0] & 0x3fff;
gs.vertexregs.v = data[1] & 0x3fff;
}
void __forceinline KICK_VERTEX2()
{
FUNCLOG
if (++gs.primC >= (int)g_primmult[prim->prim])
{
if (NoHighlights(prim->ctxt)) (*ZeroGS::drawfn[prim->prim])();
gs.primC -= g_primsub[prim->prim];
}
}
void __forceinline KICK_VERTEX3()
{
FUNCLOG
if (++gs.primC >= (int)g_primmult[prim->prim])
{
gs.primC -= g_primsub[prim->prim];
if (prim->prim == 5)
{
/* tri fans need special processing */
if (gs.nTriFanVert == gs.primIndex)
gs.primIndex = (gs.primIndex + 1) % ArraySize(gs.gsvertex);
}
}
}
void __gifCall GIFPackedRegHandlerXYZF2(const u32* data)
{
FUNCLOG
gs.vertexregs.x = (data[0] >> 0) & 0xffff;
gs.vertexregs.y = (data[1] >> 0) & 0xffff;
gs.vertexregs.z = (data[2] >> 4) & 0xffffff;
gs.vertexregs.f = (data[3] >> 4) & 0xff;
gs.gsvertex[gs.primIndex] = gs.vertexregs;
gs.primIndex = (gs.primIndex + 1) % ArraySize(gs.gsvertex);
if (data[3] & 0x8000)
{
KICK_VERTEX3();
}
else
{
KICK_VERTEX2();
}
}
void __gifCall GIFPackedRegHandlerXYZ2(const u32* data)
{
FUNCLOG
gs.vertexregs.x = (data[0] >> 0) & 0xffff;
gs.vertexregs.y = (data[1] >> 0) & 0xffff;
gs.vertexregs.z = data[2];
gs.gsvertex[gs.primIndex] = gs.vertexregs;
gs.primIndex = (gs.primIndex + 1) % ArraySize(gs.gsvertex);
if (data[3] & 0x8000)
{
KICK_VERTEX3();
}
else
{
KICK_VERTEX2();
}
}
void __gifCall GIFPackedRegHandlerFOG(const u32* data)
{
FUNCLOG
gs.vertexregs.f = (data[3] & 0xff0) >> 4;
}
void __gifCall GIFPackedRegHandlerA_D(const u32* data)
{
FUNCLOG
if ((data[2] & 0xff) < 100)
g_GIFRegHandlers[data[2] & 0xff](data);
else
GIFRegHandlerNull(data);
}
void __gifCall GIFPackedRegHandlerNOP(const u32* data)
{
FUNCLOG
}
void tex0Write(int i, const u32 *data)
{
FUNCLOG
u32 psm = ZZOglGet_psm_TexBitsFix(data[0]);
if (m_Blocks[psm].bpp == 0)
{
// kh and others
return;
}
ZeroGS::vb[i].uNextTex0Data[0] = data[0];
ZeroGS::vb[i].uNextTex0Data[1] = data[1];
ZeroGS::vb[i].bNeedTexCheck = 1;
// don't update unless necessary
if (PSMT_ISCLUT(psm))
{
if (ZeroGS::CheckChangeInClut(data[1], psm))
{
// loading clut, so flush whole texture
ZeroGS::vb[i].FlushTexData();
}
// check if csa is the same!! (ffx bisaid island, grass)
else if ((data[1] & CPSM_CSA_BITMASK) != (ZeroGS::vb[i].uCurTex0Data[1] & CPSM_CSA_BITMASK))
{
ZeroGS::Flush(i); // flush any previous entries
}
}
}
void tex2Write(int i, const u32 *data)
{
FUNCLOG
tex0Info& tex0 = ZeroGS::vb[i].tex0;
ZeroGS::vb[i].FlushTexData();
u32 psm = ZZOglGet_psm_TexBitsFix(data[0]);
u32* s_uTex0Data = ZeroGS::vb[i].uCurTex0Data;
// don't update unless necessary
// if( ZZOglGet_psm_TexBitsFix(*s_uTex0Data) == ZZOglGet_psm_TexBitsFix(data[0]) ) { // psm is the same
if (ZZOglAllExceptClutIsSame(s_uTex0Data, data))
{
if (!PSMT_ISCLUT(psm)) return;
// have to write the CLUT again if changed
if (ZZOglClutMinusCLDunchanged(s_uTex0Data, data))
{
tex0.cld = ZZOglGet_cld_TexBits(data[1]);
if (tex0.cld != 0)
{
ZeroGS::texClutWrite(i);
// invalidate to make sure target didn't change!
ZeroGS::vb[i].bVarsTexSync = false;
}
return;
}
}
ZeroGS::Flush(i);
ZeroGS::vb[i].bVarsTexSync = false;
ZeroGS::vb[i].bTexConstsSync = false;
s_uTex0Data[0] = (s_uTex0Data[0] & ~0x03f00000) | (psm << 20);
s_uTex0Data[1] = (s_uTex0Data[1] & 0x1f) | (data[1] & ~0x1f);
tex0.psm = ZZOglGet_psm_TexBitsFix(data[0]);
if (PSMT_ISCLUT(tex0.psm)) ZeroGS::CluttingForFlushedTex(&tex0, data[1], i);
}
__forceinline void frameWrite(int i, const u32 *data)
{
FUNCLOG
frameInfo& gsfb = ZeroGS::vb[i].gsfb;
if ((gsfb.fbp == ZZOglGet_fbp_FrameBitsMult(data[0])) &&
(gsfb.fbw == ZZOglGet_fbw_FrameBitsMult(data[0])) &&
(gsfb.psm == ZZOglGet_psm_FrameBits(data[0])) &&
(gsfb.fbm == ZZOglGet_fbm_FrameBits(data[0])))
{
return;
}
ZeroGS::FlushBoth();
gsfb.fbp = ZZOglGet_fbp_FrameBitsMult(data[0]);
gsfb.fbw = ZZOglGet_fbw_FrameBitsMult(data[0]);
gsfb.psm = ZZOglGet_psm_FrameBits(data[0]);
gsfb.fbm = ZZOglGet_fbm_FrameBitsFix(data[0], data[1]);
gsfb.fbh = ZZOglGet_fbh_FrameBitsCalc(data[0]);
// gsfb.fbhCalc = gsfb.fbh;
ZeroGS::vb[i].bNeedFrameCheck = 1;
}
__forceinline void testWrite(int i, const u32 *data)
{
FUNCLOG
pixTest* test = &ZeroGS::vb[i].test;
if ((*(u32*)test & 0x0007ffff) == (data[0] & 0x0007ffff)) return;
ZeroGS::Flush(i);
*(u32*)test = data[0];
// test.ate = (data[0] ) & 0x1;
// test.atst = (data[0] >> 1) & 0x7;
// test.aref = (data[0] >> 4) & 0xff;
// test.afail = (data[0] >> 12) & 0x3;
// test.date = (data[0] >> 14) & 0x1;
// test.datm = (data[0] >> 15) & 0x1;
// test.zte = (data[0] >> 16) & 0x1;
// test.ztst = (data[0] >> 17) & 0x3;
}
#ifndef __LINUX__
__forceinline
#endif
void clampWrite(int i, const u32 *data)
{
FUNCLOG
clampInfo& clamp = ZeroGS::vb[i].clamp;
if ((s_uClampData[i] != data[0]) || (((clamp.minv >> 8) | (clamp.maxv << 2)) != (data[1]&0x0fff)))
{
ZeroGS::Flush(i);
s_uClampData[i] = data[0];
clamp.wms = (data[0]) & 0x3;
clamp.wmt = (data[0] >> 2) & 0x3;
clamp.minu = (data[0] >> 4) & 0x3ff;
clamp.maxu = (data[0] >> 14) & 0x3ff;
clamp.minv = ((data[0] >> 24) & 0xff) | ((data[1] & 0x3) << 8);
clamp.maxv = (data[1] >> 2) & 0x3ff;
ZeroGS::vb[i].bTexConstsSync = false;
}
}
void __gifCall GIFRegHandlerNull(const u32* data)
{
FUNCLOG
#ifdef _DEBUG
if ((((uptr)&data[2])&0xffff) == 0) return;
// 0x7f happens on a lot of games
if (data[2] != 0x7f && (data[0] || data[1]))
{
ZZLog::Debug_Log("Unexpected reg handler %x %x %x.", data[0], data[1], data[2]);
}
#endif
}
void __gifCall GIFRegHandlerPRIM(const u32 *data)
{
FUNCLOG
//if (data[0] & ~0x3ff)
//{
//ZZLog::Warn_Log("Warning: unknown bits in prim %8.8lx_%8.8lx", data[1], data[0]);
//}
gs.nTriFanVert = gs.primIndex;
gs.primC = 0;
prim->prim = (data[0]) & 0x7;
gs._prim[0].prim = (data[0]) & 0x7;
gs._prim[1].prim = (data[0]) & 0x7;
gs._prim[1]._val = (data[0] >> 3) & 0xff;
ZeroGS::Prim();
}
void __gifCall GIFRegHandlerRGBAQ(const u32* data)
{
FUNCLOG
gs.rgba = data[0];
gs.vertexregs.rgba = data[0];
*(u32*)&gs.vertexregs.q = data[1];
}
void __gifCall GIFRegHandlerST(const u32* data)
{
FUNCLOG
*(u32*)&gs.vertexregs.s = data[0] & 0xffffff00;
*(u32*)&gs.vertexregs.t = data[1] & 0xffffff00;
//*(u32*)&gs.q = data[2];
}
void __gifCall GIFRegHandlerUV(const u32* data)
{
FUNCLOG
gs.vertexregs.u = (data[0]) & 0x3fff;
gs.vertexregs.v = (data[0] >> 16) & 0x3fff;
}
void __gifCall GIFRegHandlerXYZF2(const u32* data)
{
FUNCLOG
gs.vertexregs.x = (data[0]) & 0xffff;
gs.vertexregs.y = (data[0] >> (16)) & 0xffff;
gs.vertexregs.z = data[1] & 0xffffff;
gs.vertexregs.f = data[1] >> 24;
gs.gsvertex[gs.primIndex] = gs.vertexregs;
gs.primIndex = (gs.primIndex + 1) % ARRAY_SIZE(gs.gsvertex);
KICK_VERTEX2();
}
void __gifCall GIFRegHandlerXYZ2(const u32* data)
{
FUNCLOG
gs.vertexregs.x = (data[0]) & 0xffff;
gs.vertexregs.y = (data[0] >> (16)) & 0xffff;
gs.vertexregs.z = data[1];
gs.gsvertex[gs.primIndex] = gs.vertexregs;
gs.primIndex = (gs.primIndex + 1) % ARRAY_SIZE(gs.gsvertex);
KICK_VERTEX2();
}
void __gifCall GIFRegHandlerTEX0_1(const u32* data)
{
FUNCLOG
if (!NoHighlights(0)) return;
tex0Write(0, data);
}
void __gifCall GIFRegHandlerTEX0_2(const u32* data)
{
FUNCLOG
if (!NoHighlights(1)) return;
tex0Write(1, data);
}
void __gifCall GIFRegHandlerCLAMP_1(const u32* data)
{
FUNCLOG
if (!NoHighlights(0)) return;
clampWrite(0, data);
}
void __gifCall GIFRegHandlerCLAMP_2(const u32* data)
{
FUNCLOG
if (!NoHighlights(1)) return;
clampWrite(1, data);
}
void __gifCall GIFRegHandlerFOG(const u32* data)
{
FUNCLOG
//gs.gsvertex[gs.primIndex].f = (data[1] >> 24); // shift to upper bits
gs.vertexregs.f = data[1] >> 24;
}
void __gifCall GIFRegHandlerXYZF3(const u32* data)
{
FUNCLOG
gs.vertexregs.x = (data[0]) & 0xffff;
gs.vertexregs.y = (data[0] >> (16)) & 0xffff;
gs.vertexregs.z = data[1] & 0xffffff;
gs.vertexregs.f = data[1] >> 24;
gs.gsvertex[gs.primIndex] = gs.vertexregs;
gs.primIndex = (gs.primIndex + 1) % ARRAY_SIZE(gs.gsvertex);
KICK_VERTEX3();
}
void __gifCall GIFRegHandlerXYZ3(const u32* data)
{
FUNCLOG
gs.vertexregs.x = (data[0]) & 0xffff;
gs.vertexregs.y = (data[0] >> (16)) & 0xffff;
gs.vertexregs.z = data[1];
gs.gsvertex[gs.primIndex] = gs.vertexregs;
gs.primIndex = (gs.primIndex + 1) % ARRAY_SIZE(gs.gsvertex);
KICK_VERTEX3();
}
void __gifCall GIFRegHandlerNOP(const u32* data)
{
FUNCLOG
}
void tex1Write(int i, const u32* data)
{
FUNCLOG
tex1Info& tex1 = ZeroGS::vb[i].tex1;
if (conf.bilinear == 1 && (tex1.mmag != ((data[0] >> 5) & 0x1) || tex1.mmin != ((data[0] >> 6) & 0x7)))
{
ZeroGS::Flush(i);
ZeroGS::vb[i].bVarsTexSync = false;
}
tex1.lcm = (data[0]) & 0x1;
tex1.mxl = (data[0] >> 2) & 0x7;
tex1.mmag = (data[0] >> 5) & 0x1;
tex1.mmin = (data[0] >> 6) & 0x7;
tex1.mtba = (data[0] >> 9) & 0x1;
tex1.l = (data[0] >> 19) & 0x3;
tex1.k = (data[1] >> 4) & 0xff;
}
void __gifCall GIFRegHandlerTEX1_1(const u32* data)
{
FUNCLOG
if (!NoHighlights(0)) return;
tex1Write(0, data);
}
void __gifCall GIFRegHandlerTEX1_2(const u32* data)
{
FUNCLOG
if (!NoHighlights(1)) return;
tex1Write(1, data);
}
void __gifCall GIFRegHandlerTEX2_1(const u32* data)
{
FUNCLOG
tex2Write(0, data);
}
void __gifCall GIFRegHandlerTEX2_2(const u32* data)
{
FUNCLOG
tex2Write(1, data);
}
void __gifCall GIFRegHandlerXYOFFSET_1(const u32* data)
{
FUNCLOG
// eliminator low 4 bits for now
ZeroGS::vb[0].offset.x = (data[0]) & 0xffff;
ZeroGS::vb[0].offset.y = (data[1]) & 0xffff;
// if( !conf.interlace ) {
// ZeroGS::vb[0].offset.x &= ~15;
// ZeroGS::vb[0].offset.y &= ~15;
// }
}
void __gifCall GIFRegHandlerXYOFFSET_2(const u32* data)
{
FUNCLOG
ZeroGS::vb[1].offset.x = (data[0]) & 0xffff;
ZeroGS::vb[1].offset.y = (data[1]) & 0xffff;
// if( !conf.interlace ) {
// ZeroGS::vb[1].offset.x &= ~15;
// ZeroGS::vb[1].offset.y &= ~15;
// }
}
void __gifCall GIFRegHandlerPRMODECONT(const u32* data)
{
FUNCLOG
gs.prac = data[0] & 0x1;
prim = &gs._prim[gs.prac];
ZeroGS::Prim();
}
void __gifCall GIFRegHandlerPRMODE(const u32* data)
{
FUNCLOG
gs._prim[0]._val = (data[0] >> 3) & 0xff;
if (gs.prac == 0) ZeroGS::Prim();
}
void __gifCall GIFRegHandlerTEXCLUT(const u32* data)
{
FUNCLOG
ZeroGS::vb[0].FlushTexData();
ZeroGS::vb[1].FlushTexData();
gs.clut.cbw = ((data[0]) & 0x3f) * 64;
gs.clut.cou = ((data[0] >> 6) & 0x3f) * 16;
gs.clut.cov = (data[0] >> 12) & 0x3ff;
}
void __gifCall GIFRegHandlerSCANMSK(const u32* data)
{
FUNCLOG
// ZeroGS::FlushBoth();
// ZeroGS::ResolveC(&ZeroGS::vb[0]);
// ZeroGS::ResolveZ(&ZeroGS::vb[0]);
gs.smask = data[0] & 0x3;
}
void __gifCall GIFRegHandlerMIPTBP1_1(const u32* data)
{
FUNCLOG
miptbpInfo& miptbp0 = ZeroGS::vb[0].miptbp0;
miptbp0.tbp[0] = (data[0]) & 0x3fff;
miptbp0.tbw[0] = (data[0] >> 14) & 0x3f;
miptbp0.tbp[1] = ((data[0] >> 20) & 0xfff) | ((data[1] & 0x3) << 12);
miptbp0.tbw[1] = (data[1] >> 2) & 0x3f;
miptbp0.tbp[2] = (data[1] >> 8) & 0x3fff;
miptbp0.tbw[2] = (data[1] >> 22) & 0x3f;
}
void __gifCall GIFRegHandlerMIPTBP1_2(const u32* data)
{
FUNCLOG
miptbpInfo& miptbp0 = ZeroGS::vb[1].miptbp0;
miptbp0.tbp[0] = (data[0]) & 0x3fff;
miptbp0.tbw[0] = (data[0] >> 14) & 0x3f;
miptbp0.tbp[1] = ((data[0] >> 20) & 0xfff) | ((data[1] & 0x3) << 12);
miptbp0.tbw[1] = (data[1] >> 2) & 0x3f;
miptbp0.tbp[2] = (data[1] >> 8) & 0x3fff;
miptbp0.tbw[2] = (data[1] >> 22) & 0x3f;
}
void __gifCall GIFRegHandlerMIPTBP2_1(const u32* data)
{
FUNCLOG
miptbpInfo& miptbp1 = ZeroGS::vb[0].miptbp1;
miptbp1.tbp[0] = (data[0]) & 0x3fff;
miptbp1.tbw[0] = (data[0] >> 14) & 0x3f;
miptbp1.tbp[1] = ((data[0] >> 20) & 0xfff) | ((data[1] & 0x3) << 12);
miptbp1.tbw[1] = (data[1] >> 2) & 0x3f;
miptbp1.tbp[2] = (data[1] >> 8) & 0x3fff;
miptbp1.tbw[2] = (data[1] >> 22) & 0x3f;
}
void __gifCall GIFRegHandlerMIPTBP2_2(const u32* data)
{
FUNCLOG
miptbpInfo& miptbp1 = ZeroGS::vb[1].miptbp1;
miptbp1.tbp[0] = (data[0]) & 0x3fff;
miptbp1.tbw[0] = (data[0] >> 14) & 0x3f;
miptbp1.tbp[1] = ((data[0] >> 20) & 0xfff) | ((data[1] & 0x3) << 12);
miptbp1.tbw[1] = (data[1] >> 2) & 0x3f;
miptbp1.tbp[2] = (data[1] >> 8) & 0x3fff;
miptbp1.tbw[2] = (data[1] >> 22) & 0x3f;
}
void __gifCall GIFRegHandlerTEXA(const u32* data)
{
FUNCLOG
texaInfo newinfo;
newinfo.aem = (data[0] >> 15) & 0x1;
newinfo.ta[0] = data[0] & 0xff;
newinfo.ta[1] = data[1] & 0xff;
if (*(u32*)&newinfo != *(u32*)&gs.texa)
{
ZeroGS::FlushBoth();
*(u32*)&gs.texa = *(u32*) & newinfo;
gs.texa.fta[0] = newinfo.ta[0] / 255.0f;
gs.texa.fta[1] = newinfo.ta[1] / 255.0f;
ZeroGS::vb[0].bTexConstsSync = false;
ZeroGS::vb[1].bTexConstsSync = false;
}
}
void __gifCall GIFRegHandlerFOGCOL(const u32* data)
{
FUNCLOG
ZeroGS::SetFogColor(data[0]&0xffffff);
}
void __gifCall GIFRegHandlerTEXFLUSH(const u32* data)
{
FUNCLOG
ZeroGS::SetTexFlush();
}
void __gifCall GIFRegHandlerSCISSOR_1(const u32* data)
{
FUNCLOG
Rect2& scissor = ZeroGS::vb[0].scissor;
Rect2 newscissor;
newscissor.x0 = ((data[0]) & 0x7ff) << 3;
newscissor.x1 = ((data[0] >> 16) & 0x7ff) << 3;
newscissor.y0 = ((data[1]) & 0x7ff) << 3;
newscissor.y1 = ((data[1] >> 16) & 0x7ff) << 3;
if (newscissor.x1 != scissor.x1 || newscissor.y1 != scissor.y1 ||
newscissor.x0 != scissor.x0 || newscissor.y0 != scissor.y0)
{
ZeroGS::Flush(0);
scissor = newscissor;
ZeroGS::vb[0].bNeedFrameCheck = 1;
}
}
void __gifCall GIFRegHandlerSCISSOR_2(const u32* data)
{
FUNCLOG
Rect2& scissor = ZeroGS::vb[1].scissor;
Rect2 newscissor;
newscissor.x0 = ((data[0]) & 0x7ff) << 3;
newscissor.x1 = ((data[0] >> 16) & 0x7ff) << 3;
newscissor.y0 = ((data[1]) & 0x7ff) << 3;
newscissor.y1 = ((data[1] >> 16) & 0x7ff) << 3;
if (newscissor.x1 != scissor.x1 || newscissor.y1 != scissor.y1 ||
newscissor.x0 != scissor.x0 || newscissor.y0 != scissor.y0)
{
ZeroGS::Flush(1);
scissor = newscissor;
// flush everything
ZeroGS::vb[1].bNeedFrameCheck = 1;
}
}
void __gifCall GIFRegHandlerALPHA_1(const u32* data)
{
FUNCLOG
alphaInfo newalpha;
newalpha.abcd = *(u8*)data;
newalpha.fix = *(u8*)(data + 1);
if (*(u16*)&newalpha != *(u16*)&ZeroGS::vb[0].alpha)
{
ZeroGS::Flush(0);
if (newalpha.a == 3) newalpha.a = 0;
if (newalpha.b == 3) newalpha.b = 0;
if (newalpha.c == 3) newalpha.c = 0;
if (newalpha.d == 3) newalpha.d = 0;
*(u16*)&ZeroGS::vb[0].alpha = *(u16*) & newalpha;
}
}
void __gifCall GIFRegHandlerALPHA_2(const u32* data)
{
FUNCLOG
alphaInfo newalpha;
newalpha.abcd = *(u8*)data;
newalpha.fix = *(u8*)(data + 1);
if (*(u16*)&newalpha != *(u16*)&ZeroGS::vb[1].alpha)
{
ZeroGS::Flush(1);
if (newalpha.a == 3) newalpha.a = 0;
if (newalpha.b == 3) newalpha.b = 0;
if (newalpha.c == 3) newalpha.c = 0;
if (newalpha.d == 3) newalpha.d = 0;
*(u16*)&ZeroGS::vb[1].alpha = *(u16*) & newalpha;
}
}
void __gifCall GIFRegHandlerDIMX(const u32* data)
{
FUNCLOG
}
void __gifCall GIFRegHandlerDTHE(const u32* data)
{
FUNCLOG
gs.dthe = data[0] & 0x1;
}
void __gifCall GIFRegHandlerCOLCLAMP(const u32* data)
{
FUNCLOG
gs.colclamp = data[0] & 0x1;
}
void __gifCall GIFRegHandlerTEST_1(const u32* data)
{
FUNCLOG
testWrite(0, data);
}
void __gifCall GIFRegHandlerTEST_2(const u32* data)
{
FUNCLOG
testWrite(1, data);
}
void __gifCall GIFRegHandlerPABE(const u32* data)
{
FUNCLOG
//ZeroGS::SetAlphaChanged(0, GPUREG_PABE);
//ZeroGS::SetAlphaChanged(1, GPUREG_PABE);
ZeroGS::FlushBoth();
gs.pabe = *data & 0x1;
}
void __gifCall GIFRegHandlerFBA_1(const u32* data)
{
FUNCLOG
ZeroGS::FlushBoth();
ZeroGS::vb[0].fba.fba = *data & 0x1;
}
void __gifCall GIFRegHandlerFBA_2(const u32* data)
{
FUNCLOG
ZeroGS::FlushBoth();
ZeroGS::vb[1].fba.fba = *data & 0x1;
}
void __gifCall GIFRegHandlerFRAME_1(const u32* data)
{
FUNCLOG
frameWrite(0, data);
}
void __gifCall GIFRegHandlerFRAME_2(const u32* data)
{
FUNCLOG
frameWrite(1, data);
}
void __gifCall GIFRegHandlerZBUF_1(const u32* data)
{
FUNCLOG
zbufInfo& zbuf = ZeroGS::vb[0].zbuf;
int psm = (0x30 | ((data[0] >> 24) & 0xf));
if (zbuf.zbp == (data[0] & 0x1ff) * 32 &&
zbuf.psm == psm &&
zbuf.zmsk == (data[1] & 0x1))
{
return;
}
// error detection
if (m_Blocks[psm].bpp == 0) return;
ZeroGS::FlushBoth();
zbuf.zbp = (data[0] & 0x1ff) * 32;
zbuf.psm = 0x30 | ((data[0] >> 24) & 0xf);
zbuf.zmsk = data[1] & 0x1;
ZeroGS::vb[0].zprimmask = 0xffffffff;
if (zbuf.psm > 0x31) ZeroGS::vb[0].zprimmask = 0xffff;
ZeroGS::vb[0].bNeedZCheck = 1;
}
void __gifCall GIFRegHandlerZBUF_2(const u32* data)
{
FUNCLOG
zbufInfo& zbuf = ZeroGS::vb[1].zbuf;
int psm = (0x30 | ((data[0] >> 24) & 0xf));
if (zbuf.zbp == (data[0] & 0x1ff) * 32 &&
zbuf.psm == psm &&
zbuf.zmsk == (data[1] & 0x1))
{
return;
}
// error detection
if (m_Blocks[psm].bpp == 0) return;
ZeroGS::FlushBoth();
zbuf.zbp = (data[0] & 0x1ff) * 32;
zbuf.psm = 0x30 | ((data[0] >> 24) & 0xf);
zbuf.zmsk = data[1] & 0x1;
ZeroGS::vb[1].bNeedZCheck = 1;
ZeroGS::vb[1].zprimmask = 0xffffffff;
if (zbuf.psm > 0x31) ZeroGS::vb[1].zprimmask = 0xffff;
}
void __gifCall GIFRegHandlerBITBLTBUF(const u32* data)
{
FUNCLOG
gs.srcbufnew.bp = ((data[0]) & 0x3fff); // * 64;
gs.srcbufnew.bw = ((data[0] >> 16) & 0x3f) * 64;
gs.srcbufnew.psm = (data[0] >> 24) & 0x3f;
gs.dstbufnew.bp = ((data[1]) & 0x3fff); // * 64;
gs.dstbufnew.bw = ((data[1] >> 16) & 0x3f) * 64;
gs.dstbufnew.psm = (data[1] >> 24) & 0x3f;
if (gs.dstbufnew.bw == 0) gs.dstbufnew.bw = 64;
}
void __gifCall GIFRegHandlerTRXPOS(const u32* data)
{
FUNCLOG
gs.trxposnew.sx = (data[0]) & 0x7ff;
gs.trxposnew.sy = (data[0] >> 16) & 0x7ff;
gs.trxposnew.dx = (data[1]) & 0x7ff;
gs.trxposnew.dy = (data[1] >> 16) & 0x7ff;
gs.trxposnew.dir = (data[1] >> 27) & 0x3;
}
void __gifCall GIFRegHandlerTRXREG(const u32* data)
{
FUNCLOG
gs.imageWtemp = data[0] & 0xfff;
gs.imageHtemp = data[1] & 0xfff;
}
void __gifCall GIFRegHandlerTRXDIR(const u32* data)
{
FUNCLOG
// terminate any previous transfers
switch (gs.imageTransfer)
{
case 0: // host->loc
gs.imageTransfer = -1;
break;
case 1: // loc->host
ZeroGS::TerminateLocalHost();
break;
}
gs.srcbuf = gs.srcbufnew;
gs.dstbuf = gs.dstbufnew;
gs.trxpos = gs.trxposnew;
gs.imageTransfer = data[0] & 0x3;
gs.imageWnew = gs.imageWtemp;
gs.imageHnew = gs.imageHtemp;
if (gs.imageWnew > 0 && gs.imageHnew > 0)
{
switch (gs.imageTransfer)
{
case 0: // host->loc
ZeroGS::InitTransferHostLocal();
break;
case 1: // loc->host
ZeroGS::InitTransferLocalHost();
break;
case 2:
ZeroGS::TransferLocalLocal();
break;
case 3:
gs.imageTransfer = -1;
break;
default:
assert(0);
}
}
else
{
#if defined(ZEROGS_DEVBUILD)
ZZLog::Warn_Log("Dummy transfer.");
#endif
gs.imageTransfer = -1;
}
}
void __gifCall GIFRegHandlerHWREG(const u32* data)
{
FUNCLOG
if (gs.imageTransfer == 0)
{
ZeroGS::TransferHostLocal(data, 2);
}
else
{
#if defined(ZEROGS_DEVBUILD)
ZZLog::Error_Log("ZeroGS: HWREG!? %8.8x_%8.8x", data[0], data[1]);
//assert(0);
#endif
}
}
extern int g_GSMultiThreaded;
void __gifCall GIFRegHandlerSIGNAL(const u32* data)
{
FUNCLOG
if (!g_GSMultiThreaded)
{
SIGLBLID->SIGID = (SIGLBLID->SIGID & ~data[1]) | (data[0] & data[1]);
// if (gs.CSRw & 0x1) CSR->SIGNAL = 1;
// if (!IMR->SIGMSK && GSirq)
// GSirq();
if (gs.CSRw & 0x1)
{
CSR->SIGNAL = 1;
//gs.CSRw &= ~1;
}
if (!IMR->SIGMSK && GSirq) GSirq();
}
}
void __gifCall GIFRegHandlerFINISH(const u32* data)
{
FUNCLOG
if (!g_GSMultiThreaded)
{
if (gs.CSRw & 0x2) CSR->FINISH = 1;
if (!IMR->FINISHMSK && GSirq) GSirq();
// if( gs.CSRw & 2 ) {
// //gs.CSRw &= ~2;
// //CSR->FINISH = 0;
//
//
// }
// CSR->FINISH = 1;
//
// if( !IMR->FINISHMSK && GSirq )
// GSirq();
}
}
void __gifCall GIFRegHandlerLABEL(const u32* data)
{
FUNCLOG
if (!g_GSMultiThreaded)
{
SIGLBLID->LBLID = (SIGLBLID->LBLID & ~data[1]) | (data[0] & data[1]);
}
}
void SetMultithreaded()
{
// Some older versions of PCSX2 didn't properly set the irq callback to NULL
// in multithreaded mode (possibly because ZeroGS itself would assert in such
// cases), and didn't bind them to a dummy callback either. PCSX2 handles all
// IRQs internally when multithreaded anyway -- so let's ignore them here:
if (g_GSMultiThreaded)
{
g_GIFRegHandlers[GIF_A_D_REG_SIGNAL] = &GIFRegHandlerNull;
g_GIFRegHandlers[GIF_A_D_REG_FINISH] = &GIFRegHandlerNull;
g_GIFRegHandlers[GIF_A_D_REG_LABEL] = &GIFRegHandlerNull;
}
else
{
g_GIFRegHandlers[GIF_A_D_REG_SIGNAL] = &GIFRegHandlerSIGNAL;
g_GIFRegHandlers[GIF_A_D_REG_FINISH] = &GIFRegHandlerFINISH;
g_GIFRegHandlers[GIF_A_D_REG_LABEL] = &GIFRegHandlerLABEL;
}
}
void ResetRegs()
{
for (int i = 0; i < 16; i++)
{
g_GIFPackedRegHandlers[i] = &GIFPackedRegHandlerNull;
}
g_GIFPackedRegHandlers[GIF_REG_PRIM] = &GIFPackedRegHandlerPRIM;
g_GIFPackedRegHandlers[GIF_REG_RGBA] = &GIFPackedRegHandlerRGBA;
g_GIFPackedRegHandlers[GIF_REG_STQ] = &GIFPackedRegHandlerSTQ;
g_GIFPackedRegHandlers[GIF_REG_UV] = &GIFPackedRegHandlerUV;
g_GIFPackedRegHandlers[GIF_REG_XYZF2] = &GIFPackedRegHandlerXYZF2;
g_GIFPackedRegHandlers[GIF_REG_XYZ2] = &GIFPackedRegHandlerXYZ2;
g_GIFPackedRegHandlers[GIF_REG_TEX0_1] = &GIFPackedRegHandlerTEX0_1;
g_GIFPackedRegHandlers[GIF_REG_TEX0_2] = &GIFPackedRegHandlerTEX0_2;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_1] = &GIFPackedRegHandlerCLAMP_1;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_2] = &GIFPackedRegHandlerCLAMP_2;
g_GIFPackedRegHandlers[GIF_REG_FOG] = &GIFPackedRegHandlerFOG;
g_GIFPackedRegHandlers[GIF_REG_XYZF3] = &GIFPackedRegHandlerXYZF3;
g_GIFPackedRegHandlers[GIF_REG_XYZ3] = &GIFPackedRegHandlerXYZ3;
g_GIFPackedRegHandlers[GIF_REG_A_D] = &GIFPackedRegHandlerA_D;
g_GIFPackedRegHandlers[GIF_REG_NOP] = &GIFPackedRegHandlerNOP;
for (int i = 0; i < 256; i++)
{
g_GIFRegHandlers[i] = &GIFPackedRegHandlerNull;
}
g_GIFRegHandlers[GIF_A_D_REG_PRIM] = &GIFRegHandlerPRIM;
g_GIFRegHandlers[GIF_A_D_REG_RGBAQ] = &GIFRegHandlerRGBAQ;
g_GIFRegHandlers[GIF_A_D_REG_ST] = &GIFRegHandlerST;
g_GIFRegHandlers[GIF_A_D_REG_UV] = &GIFRegHandlerUV;
g_GIFRegHandlers[GIF_A_D_REG_XYZF2] = &GIFRegHandlerXYZF2;
g_GIFRegHandlers[GIF_A_D_REG_XYZ2] = &GIFRegHandlerXYZ2;
g_GIFRegHandlers[GIF_A_D_REG_TEX0_1] = &GIFRegHandlerTEX0_1;
g_GIFRegHandlers[GIF_A_D_REG_TEX0_2] = &GIFRegHandlerTEX0_2;
g_GIFRegHandlers[GIF_A_D_REG_CLAMP_1] = &GIFRegHandlerCLAMP_1;
g_GIFRegHandlers[GIF_A_D_REG_CLAMP_2] = &GIFRegHandlerCLAMP_2;
g_GIFRegHandlers[GIF_A_D_REG_FOG] = &GIFRegHandlerFOG;
g_GIFRegHandlers[GIF_A_D_REG_XYZF3] = &GIFRegHandlerXYZF3;
g_GIFRegHandlers[GIF_A_D_REG_XYZ3] = &GIFRegHandlerXYZ3;
g_GIFRegHandlers[GIF_A_D_REG_NOP] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_TEX1_1] = &GIFRegHandlerTEX1_1;
g_GIFRegHandlers[GIF_A_D_REG_TEX1_2] = &GIFRegHandlerTEX1_2;
g_GIFRegHandlers[GIF_A_D_REG_TEX2_1] = &GIFRegHandlerTEX2_1;
g_GIFRegHandlers[GIF_A_D_REG_TEX2_2] = &GIFRegHandlerTEX2_2;
g_GIFRegHandlers[GIF_A_D_REG_XYOFFSET_1] = &GIFRegHandlerXYOFFSET_1;
g_GIFRegHandlers[GIF_A_D_REG_XYOFFSET_2] = &GIFRegHandlerXYOFFSET_2;
g_GIFRegHandlers[GIF_A_D_REG_PRMODECONT] = &GIFRegHandlerPRMODECONT;
g_GIFRegHandlers[GIF_A_D_REG_PRMODE] = &GIFRegHandlerPRMODE;
g_GIFRegHandlers[GIF_A_D_REG_TEXCLUT] = &GIFRegHandlerTEXCLUT;
g_GIFRegHandlers[GIF_A_D_REG_SCANMSK] = &GIFRegHandlerSCANMSK;
g_GIFRegHandlers[GIF_A_D_REG_MIPTBP1_1] = &GIFRegHandlerMIPTBP1_1;
g_GIFRegHandlers[GIF_A_D_REG_MIPTBP1_2] = &GIFRegHandlerMIPTBP1_2;
g_GIFRegHandlers[GIF_A_D_REG_MIPTBP2_1] = &GIFRegHandlerMIPTBP2_1;
g_GIFRegHandlers[GIF_A_D_REG_MIPTBP2_2] = &GIFRegHandlerMIPTBP2_2;
g_GIFRegHandlers[GIF_A_D_REG_TEXA] = &GIFRegHandlerTEXA;
g_GIFRegHandlers[GIF_A_D_REG_FOGCOL] = &GIFRegHandlerFOGCOL;
g_GIFRegHandlers[GIF_A_D_REG_TEXFLUSH] = &GIFRegHandlerTEXFLUSH;
g_GIFRegHandlers[GIF_A_D_REG_SCISSOR_1] = &GIFRegHandlerSCISSOR_1;
g_GIFRegHandlers[GIF_A_D_REG_SCISSOR_2] = &GIFRegHandlerSCISSOR_2;
g_GIFRegHandlers[GIF_A_D_REG_ALPHA_1] = &GIFRegHandlerALPHA_1;
g_GIFRegHandlers[GIF_A_D_REG_ALPHA_2] = &GIFRegHandlerALPHA_2;
g_GIFRegHandlers[GIF_A_D_REG_DIMX] = &GIFRegHandlerDIMX;
g_GIFRegHandlers[GIF_A_D_REG_DTHE] = &GIFRegHandlerDTHE;
g_GIFRegHandlers[GIF_A_D_REG_COLCLAMP] = &GIFRegHandlerCOLCLAMP;
g_GIFRegHandlers[GIF_A_D_REG_TEST_1] = &GIFRegHandlerTEST_1;
g_GIFRegHandlers[GIF_A_D_REG_TEST_2] = &GIFRegHandlerTEST_2;
g_GIFRegHandlers[GIF_A_D_REG_PABE] = &GIFRegHandlerPABE;
g_GIFRegHandlers[GIF_A_D_REG_FBA_1] = &GIFRegHandlerFBA_1;
g_GIFRegHandlers[GIF_A_D_REG_FBA_2] = &GIFRegHandlerFBA_2;
g_GIFRegHandlers[GIF_A_D_REG_FRAME_1] = &GIFRegHandlerFRAME_1;
g_GIFRegHandlers[GIF_A_D_REG_FRAME_2] = &GIFRegHandlerFRAME_2;
g_GIFRegHandlers[GIF_A_D_REG_ZBUF_1] = &GIFRegHandlerZBUF_1;
g_GIFRegHandlers[GIF_A_D_REG_ZBUF_2] = &GIFRegHandlerZBUF_2;
g_GIFRegHandlers[GIF_A_D_REG_BITBLTBUF] = &GIFRegHandlerBITBLTBUF;
g_GIFRegHandlers[GIF_A_D_REG_TRXPOS] = &GIFRegHandlerTRXPOS;
g_GIFRegHandlers[GIF_A_D_REG_TRXREG] = &GIFRegHandlerTRXREG;
g_GIFRegHandlers[GIF_A_D_REG_TRXDIR] = &GIFRegHandlerTRXDIR;
g_GIFRegHandlers[GIF_A_D_REG_HWREG] = &GIFRegHandlerHWREG;
SetMultithreaded();
}
void WriteTempRegs()
{
memcpy(g_GIFTempRegHandlers, g_GIFPackedRegHandlers, sizeof(g_GIFTempRegHandlers));
}
void SetFrameSkip(bool skip)
{
if (skip)
{
g_GIFPackedRegHandlers[GIF_REG_PRIM] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_RGBA] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_STQ] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_UV] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_XYZF2] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_XYZ2] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_1] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_2] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_FOG] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_XYZF3] = &GIFPackedRegHandlerNOP;
g_GIFPackedRegHandlers[GIF_REG_XYZ3] = &GIFPackedRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_PRIM] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_RGBAQ] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_ST] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_UV] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_XYZF2] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_XYZ2] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_XYZF3] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_XYZ3] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_PRMODECONT] = &GIFRegHandlerNOP;
g_GIFRegHandlers[GIF_A_D_REG_PRMODE] = &GIFRegHandlerNOP;
}
else
{
g_GIFPackedRegHandlers[GIF_REG_PRIM] = &GIFPackedRegHandlerPRIM;
g_GIFPackedRegHandlers[GIF_REG_RGBA] = &GIFPackedRegHandlerRGBA;
g_GIFPackedRegHandlers[GIF_REG_STQ] = &GIFPackedRegHandlerSTQ;
g_GIFPackedRegHandlers[GIF_REG_UV] = &GIFPackedRegHandlerUV;
g_GIFPackedRegHandlers[GIF_REG_XYZF2] = &GIFPackedRegHandlerXYZF2;
g_GIFPackedRegHandlers[GIF_REG_XYZ2] = &GIFPackedRegHandlerXYZ2;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_1] = &GIFPackedRegHandlerCLAMP_1;
g_GIFPackedRegHandlers[GIF_REG_CLAMP_2] = &GIFPackedRegHandlerCLAMP_2;
g_GIFPackedRegHandlers[GIF_REG_FOG] = &GIFPackedRegHandlerFOG;
g_GIFPackedRegHandlers[GIF_REG_XYZF3] = &GIFPackedRegHandlerXYZF3;
g_GIFPackedRegHandlers[GIF_REG_XYZ3] = &GIFPackedRegHandlerXYZ3;
g_GIFRegHandlers[GIF_A_D_REG_PRIM] = &GIFRegHandlerPRIM;
g_GIFRegHandlers[GIF_A_D_REG_RGBAQ] = &GIFRegHandlerRGBAQ;
g_GIFRegHandlers[GIF_A_D_REG_ST] = &GIFRegHandlerST;
g_GIFRegHandlers[GIF_A_D_REG_UV] = &GIFRegHandlerUV;
g_GIFRegHandlers[GIF_A_D_REG_XYZF2] = &GIFRegHandlerXYZF2;
g_GIFRegHandlers[GIF_A_D_REG_XYZ2] = &GIFRegHandlerXYZ2;
g_GIFRegHandlers[GIF_A_D_REG_XYZF3] = &GIFRegHandlerXYZF3;
g_GIFRegHandlers[GIF_A_D_REG_XYZ3] = &GIFRegHandlerXYZ3;
g_GIFRegHandlers[GIF_A_D_REG_PRMODECONT] = &GIFRegHandlerPRMODECONT;
g_GIFRegHandlers[GIF_A_D_REG_PRMODE] = &GIFRegHandlerPRMODE;
}
}
#endif