pcsx2/common/Vulkan/SwapChain.cpp

836 lines
27 KiB
C++
Raw Normal View History

2021-11-06 06:53:01 +00:00
/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2021 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "common/Vulkan/SwapChain.h"
#include "common/Assertions.h"
#include "common/CocoaTools.h"
2021-11-06 06:53:01 +00:00
#include "common/Console.h"
#include "common/Vulkan/Context.h"
#include "common/Vulkan/Util.h"
#include <algorithm>
#include <array>
#include <cmath>
#if defined(VK_USE_PLATFORM_XLIB_KHR)
#include <X11/Xlib.h>
#endif
namespace Vulkan
{
SwapChain::SwapChain(const WindowInfo& wi, VkSurfaceKHR surface, VkPresentModeKHR preferred_present_mode)
2021-11-06 06:53:01 +00:00
: m_window_info(wi)
, m_surface(surface)
, m_preferred_present_mode(preferred_present_mode)
2021-11-06 06:53:01 +00:00
{
}
SwapChain::~SwapChain()
{
DestroySwapChainImages();
DestroySwapChain();
DestroySurface();
}
2022-12-25 05:56:43 +00:00
#if 0
// Unused for now, can be used for nogui
2021-11-06 06:53:01 +00:00
static VkSurfaceKHR CreateDisplaySurface(VkInstance instance, VkPhysicalDevice physical_device, WindowInfo* wi)
{
Console.WriteLn("Trying to create a VK_KHR_display surface of %ux%u", wi->surface_width, wi->surface_height);
u32 num_displays;
VkResult res = vkGetPhysicalDeviceDisplayPropertiesKHR(physical_device, &num_displays, nullptr);
if (res != VK_SUCCESS || num_displays == 0)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceDisplayPropertiesKHR() failed:");
return {};
}
std::vector<VkDisplayPropertiesKHR> displays(num_displays);
res = vkGetPhysicalDeviceDisplayPropertiesKHR(physical_device, &num_displays, displays.data());
if (res != VK_SUCCESS || num_displays != displays.size())
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceDisplayPropertiesKHR() failed:");
return {};
}
for (u32 display_index = 0; display_index < num_displays; display_index++)
{
const VkDisplayPropertiesKHR& props = displays[display_index];
DevCon.WriteLn("Testing display '%s'", props.displayName);
u32 num_modes;
res = vkGetDisplayModePropertiesKHR(physical_device, props.display, &num_modes, nullptr);
if (res != VK_SUCCESS || num_modes == 0)
{
LOG_VULKAN_ERROR(res, "vkGetDisplayModePropertiesKHR() failed:");
continue;
}
std::vector<VkDisplayModePropertiesKHR> modes(num_modes);
res = vkGetDisplayModePropertiesKHR(physical_device, props.display, &num_modes, modes.data());
if (res != VK_SUCCESS || num_modes != modes.size())
{
LOG_VULKAN_ERROR(res, "vkGetDisplayModePropertiesKHR() failed:");
continue;
}
const VkDisplayModePropertiesKHR* matched_mode = nullptr;
for (const VkDisplayModePropertiesKHR& mode : modes)
{
const float refresh_rate = static_cast<float>(mode.parameters.refreshRate) / 1000.0f;
DevCon.WriteLn(" Mode %ux%u @ %f", mode.parameters.visibleRegion.width,
mode.parameters.visibleRegion.height, refresh_rate);
if (!matched_mode && ((wi->surface_width == 0 && wi->surface_height == 0) ||
(mode.parameters.visibleRegion.width == wi->surface_width &&
mode.parameters.visibleRegion.height == wi->surface_height &&
(wi->surface_refresh_rate == 0.0f ||
std::abs(refresh_rate - wi->surface_refresh_rate) < 0.1f))))
{
matched_mode = &mode;
}
}
if (!matched_mode)
{
DevCon.WriteLn("No modes matched on '%s'", props.displayName);
continue;
}
u32 num_planes;
res = vkGetPhysicalDeviceDisplayPlanePropertiesKHR(physical_device, &num_planes, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR() failed:");
continue;
}
if (num_planes == 0)
continue;
std::vector<VkDisplayPlanePropertiesKHR> planes(num_planes);
res = vkGetPhysicalDeviceDisplayPlanePropertiesKHR(physical_device, &num_planes, planes.data());
if (res != VK_SUCCESS || num_planes != planes.size())
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR() failed:");
continue;
}
u32 plane_index = 0;
for (; plane_index < num_planes; plane_index++)
{
u32 supported_display_count;
res = vkGetDisplayPlaneSupportedDisplaysKHR(
physical_device, plane_index, &supported_display_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetDisplayPlaneSupportedDisplaysKHR() failed:");
continue;
}
if (supported_display_count == 0)
continue;
std::vector<VkDisplayKHR> supported_displays(supported_display_count);
res = vkGetDisplayPlaneSupportedDisplaysKHR(
physical_device, plane_index, &supported_display_count, supported_displays.data());
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetDisplayPlaneSupportedDisplaysKHR() failed:");
continue;
}
const bool is_supported = std::find(supported_displays.begin(), supported_displays.end(),
props.display) != supported_displays.end();
if (!is_supported)
continue;
break;
}
if (plane_index == num_planes)
{
DevCon.WriteLn("No planes matched on '%s'", props.displayName);
continue;
}
VkDisplaySurfaceCreateInfoKHR info = {};
info.sType = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR;
info.displayMode = matched_mode->displayMode;
info.planeIndex = plane_index;
info.planeStackIndex = planes[plane_index].currentStackIndex;
info.transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
info.globalAlpha = 1.0f;
info.alphaMode = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR;
info.imageExtent = matched_mode->parameters.visibleRegion;
VkSurfaceKHR surface;
res = vkCreateDisplayPlaneSurfaceKHR(instance, &info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDisplayPlaneSurfaceKHR() failed: ");
continue;
}
wi->surface_refresh_rate = static_cast<float>(matched_mode->parameters.refreshRate) / 1000.0f;
return surface;
}
return VK_NULL_HANDLE;
}
static std::vector<SwapChain::FullscreenModeInfo> GetDisplayModes(
VkInstance instance, VkPhysicalDevice physical_device, const WindowInfo& wi)
{
u32 num_displays;
VkResult res = vkGetPhysicalDeviceDisplayPropertiesKHR(physical_device, &num_displays, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceDisplayPropertiesKHR() failed:");
return {};
}
if (num_displays == 0)
{
Console.Error("No displays were returned");
return {};
}
std::vector<VkDisplayPropertiesKHR> displays(num_displays);
res = vkGetPhysicalDeviceDisplayPropertiesKHR(physical_device, &num_displays, displays.data());
if (res != VK_SUCCESS || num_displays != displays.size())
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceDisplayPropertiesKHR() failed:");
return {};
}
std::vector<SwapChain::FullscreenModeInfo> result;
for (u32 display_index = 0; display_index < num_displays; display_index++)
{
const VkDisplayPropertiesKHR& props = displays[display_index];
u32 num_modes;
res = vkGetDisplayModePropertiesKHR(physical_device, props.display, &num_modes, nullptr);
if (res != VK_SUCCESS || num_modes == 0)
{
LOG_VULKAN_ERROR(res, "vkGetDisplayModePropertiesKHR() failed:");
continue;
}
std::vector<VkDisplayModePropertiesKHR> modes(num_modes);
res = vkGetDisplayModePropertiesKHR(physical_device, props.display, &num_modes, modes.data());
if (res != VK_SUCCESS || num_modes != modes.size())
{
LOG_VULKAN_ERROR(res, "vkGetDisplayModePropertiesKHR() failed:");
continue;
}
for (const VkDisplayModePropertiesKHR& mode : modes)
{
const float refresh_rate = static_cast<float>(mode.parameters.refreshRate) / 1000.0f;
if (std::find_if(
result.begin(), result.end(), [&mode, refresh_rate](const SwapChain::FullscreenModeInfo& mi) {
return (mi.width == mode.parameters.visibleRegion.width &&
mi.height == mode.parameters.visibleRegion.height &&
mode.parameters.refreshRate == refresh_rate);
}) != result.end())
{
continue;
}
result.push_back(SwapChain::FullscreenModeInfo{static_cast<u32>(mode.parameters.visibleRegion.width),
static_cast<u32>(mode.parameters.visibleRegion.height), refresh_rate});
}
}
return result;
}
2022-12-25 05:56:43 +00:00
#endif
2021-11-06 06:53:01 +00:00
VkSurfaceKHR SwapChain::CreateVulkanSurface(VkInstance instance, VkPhysicalDevice physical_device, WindowInfo* wi)
{
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (wi->type == WindowInfo::Type::Win32)
{
VkWin32SurfaceCreateInfoKHR surface_create_info = {
VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR, // VkStructureType sType
nullptr, // const void* pNext
0, // VkWin32SurfaceCreateFlagsKHR flags
nullptr, // HINSTANCE hinstance
reinterpret_cast<HWND>(wi->window_handle) // HWND hwnd
};
VkSurfaceKHR surface;
VkResult res = vkCreateWin32SurfaceKHR(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateWin32SurfaceKHR failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
#if defined(VK_USE_PLATFORM_XLIB_KHR)
if (wi->type == WindowInfo::Type::X11)
{
VkXlibSurfaceCreateInfoKHR surface_create_info = {
VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR, // VkStructureType sType
nullptr, // const void* pNext
0, // VkXlibSurfaceCreateFlagsKHR flags
static_cast<Display*>(wi->display_connection), // Display* dpy
reinterpret_cast<Window>(wi->window_handle) // Window window
};
VkSurfaceKHR surface;
VkResult res = vkCreateXlibSurfaceKHR(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateXlibSurfaceKHR failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
#if defined(VK_USE_PLATFORM_WAYLAND_KHR)
if (wi->type == WindowInfo::Type::Wayland)
{
VkWaylandSurfaceCreateInfoKHR surface_create_info = {VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR,
nullptr, 0, static_cast<struct wl_display*>(wi->display_connection),
static_cast<struct wl_surface*>(wi->window_handle)};
VkSurfaceKHR surface;
VkResult res = vkCreateWaylandSurfaceKHR(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateWaylandSurfaceEXT failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
if (wi->type == WindowInfo::Type::Android)
{
VkAndroidSurfaceCreateInfoKHR surface_create_info = {
VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR, // VkStructureType sType
nullptr, // const void* pNext
0, // VkAndroidSurfaceCreateFlagsKHR flags
reinterpret_cast<ANativeWindow*>(wi->window_handle) // ANativeWindow* window
};
VkSurfaceKHR surface;
VkResult res = vkCreateAndroidSurfaceKHR(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateAndroidSurfaceKHR failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
#if defined(VK_USE_PLATFORM_METAL_EXT)
if (wi->type == WindowInfo::Type::MacOS)
{
if (!wi->surface_handle && !CocoaTools::CreateMetalLayer(wi))
2021-11-06 06:53:01 +00:00
return VK_NULL_HANDLE;
VkMetalSurfaceCreateInfoEXT surface_create_info = {VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT, nullptr,
0, static_cast<const CAMetalLayer*>(wi->surface_handle)};
VkSurfaceKHR surface;
VkResult res = vkCreateMetalSurfaceEXT(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateMetalSurfaceEXT failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#elif defined(VK_USE_PLATFORM_MACOS_MVK)
if (wi->type == WindowInfo::Type::MacOS)
{
VkMacOSSurfaceCreateInfoMVK surface_create_info = {
VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK, nullptr, 0, wi->window_handle};
VkSurfaceKHR surface;
VkResult res = vkCreateMacOSSurfaceMVK(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateMacOSSurfaceMVK failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
#if 0
if (wi->type == WindowInfo::Type::Display)
return CreateDisplaySurface(instance, physical_device, wi);
#endif
return VK_NULL_HANDLE;
}
void SwapChain::DestroyVulkanSurface(VkInstance instance, WindowInfo* wi, VkSurfaceKHR surface)
{
vkDestroySurfaceKHR(g_vulkan_context->GetVulkanInstance(), surface, nullptr);
#if defined(__APPLE__)
if (wi->type == WindowInfo::Type::MacOS && wi->surface_handle)
CocoaTools::DestroyMetalLayer(wi);
2021-11-06 06:53:01 +00:00
#endif
}
std::vector<SwapChain::FullscreenModeInfo> SwapChain::GetSurfaceFullscreenModes(
VkInstance instance, VkPhysicalDevice physical_device, const WindowInfo& wi)
{
#if 0
if (wi.type == WindowInfo::Type::Display)
return GetDisplayModes(instance, physical_device, wi);
#endif
return {};
}
std::unique_ptr<SwapChain> SwapChain::Create(const WindowInfo& wi, VkSurfaceKHR surface,
VkPresentModeKHR preferred_present_mode)
2021-11-06 06:53:01 +00:00
{
std::unique_ptr<SwapChain> swap_chain = std::make_unique<SwapChain>(wi, surface, preferred_present_mode);
if (!swap_chain->CreateSwapChain() || !swap_chain->SetupSwapChainImages())
2021-11-06 06:53:01 +00:00
return nullptr;
return swap_chain;
}
bool SwapChain::SelectSurfaceFormat()
{
u32 format_count;
VkResult res = vkGetPhysicalDeviceSurfaceFormatsKHR(
g_vulkan_context->GetPhysicalDevice(), m_surface, &format_count, nullptr);
if (res != VK_SUCCESS || format_count == 0)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceFormatsKHR failed: ");
return false;
}
std::vector<VkSurfaceFormatKHR> surface_formats(format_count);
res = vkGetPhysicalDeviceSurfaceFormatsKHR(
g_vulkan_context->GetPhysicalDevice(), m_surface, &format_count, surface_formats.data());
pxAssert(res == VK_SUCCESS);
// If there is a single undefined surface format, the device doesn't care, so we'll just use RGBA
if (surface_formats[0].format == VK_FORMAT_UNDEFINED)
{
m_surface_format.format = VK_FORMAT_R8G8B8A8_UNORM;
m_surface_format.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
return true;
}
// Try to find a suitable format.
for (const VkSurfaceFormatKHR& surface_format : surface_formats)
{
// Some drivers seem to return a SRGB format here (Intel Mesa).
// This results in gamma correction when presenting to the screen, which we don't want.
// Use a linear format instead, if this is the case.
m_surface_format.format = Util::GetLinearFormat(surface_format.format);
m_surface_format.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
return true;
}
pxFailRel("Failed to find a suitable format for swap chain buffers.");
return false;
}
bool SwapChain::SelectPresentMode()
{
VkResult res;
u32 mode_count;
res = vkGetPhysicalDeviceSurfacePresentModesKHR(
g_vulkan_context->GetPhysicalDevice(), m_surface, &mode_count, nullptr);
if (res != VK_SUCCESS || mode_count == 0)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceFormatsKHR failed: ");
return false;
}
std::vector<VkPresentModeKHR> present_modes(mode_count);
res = vkGetPhysicalDeviceSurfacePresentModesKHR(
g_vulkan_context->GetPhysicalDevice(), m_surface, &mode_count, present_modes.data());
pxAssert(res == VK_SUCCESS);
// Checks if a particular mode is supported, if it is, returns that mode.
auto CheckForMode = [&present_modes](VkPresentModeKHR check_mode) {
auto it = std::find_if(present_modes.begin(), present_modes.end(),
[check_mode](VkPresentModeKHR mode) { return check_mode == mode; });
return it != present_modes.end();
};
// Use preferred mode if available.
if (CheckForMode(m_preferred_present_mode))
2021-11-06 06:53:01 +00:00
{
m_present_mode = m_preferred_present_mode;
2021-11-06 06:53:01 +00:00
return true;
}
// Prefer mailbox over fifo for adaptive vsync/no-vsync.
if ((m_preferred_present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR ||
m_preferred_present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR) &&
CheckForMode(VK_PRESENT_MODE_MAILBOX_KHR))
2021-11-06 06:53:01 +00:00
{
m_present_mode = VK_PRESENT_MODE_MAILBOX_KHR;
2021-11-06 06:53:01 +00:00
return true;
}
// Fallback to FIFO if we're using any kind of vsync.
if (m_preferred_present_mode == VK_PRESENT_MODE_FIFO_KHR || m_preferred_present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR)
2021-11-06 06:53:01 +00:00
{
// This should never fail, FIFO is mandated.
if (CheckForMode(VK_PRESENT_MODE_FIFO_KHR))
{
m_present_mode = VK_PRESENT_MODE_FIFO_KHR;
return true;
}
2021-11-06 06:53:01 +00:00
}
// Fall back to whatever is available.
m_present_mode = present_modes[0];
return true;
}
bool SwapChain::CreateSwapChain()
{
// Look up surface properties to determine image count and dimensions
VkSurfaceCapabilitiesKHR surface_capabilities;
VkResult res = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
g_vulkan_context->GetPhysicalDevice(), m_surface, &surface_capabilities);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR failed: ");
return false;
}
// Select swap chain format and present mode
if (!SelectSurfaceFormat() || !SelectPresentMode())
return false;
DevCon.WriteLn("(SwapChain) Preferred present mode: %s, selected: %s",
Util::PresentModeToString(m_preferred_present_mode), Util::PresentModeToString(m_present_mode));
2021-11-06 06:53:01 +00:00
// Select number of images in swap chain, we prefer one buffer in the background to work on
u32 image_count = std::max(surface_capabilities.minImageCount + 1u, 2u);
// maxImageCount can be zero, in which case there isn't an upper limit on the number of buffers.
if (surface_capabilities.maxImageCount > 0)
image_count = std::min(image_count, surface_capabilities.maxImageCount);
// Determine the dimensions of the swap chain. Values of -1 indicate the size we specify here
// determines window size?
VkExtent2D size = surface_capabilities.currentExtent;
#ifndef ANDROID
if (size.width == UINT32_MAX)
#endif
{
size.width = m_window_info.surface_width;
size.height = m_window_info.surface_height;
}
size.width = std::clamp(
size.width, surface_capabilities.minImageExtent.width, surface_capabilities.maxImageExtent.width);
size.height = std::clamp(
size.height, surface_capabilities.minImageExtent.height, surface_capabilities.maxImageExtent.height);
// Prefer identity transform if possible
VkSurfaceTransformFlagBitsKHR transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
if (!(surface_capabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR))
transform = surface_capabilities.currentTransform;
// Select swap chain flags, we only need a colour attachment
VkImageUsageFlags image_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
if (!(surface_capabilities.supportedUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT))
{
Console.Error("Vulkan: Swap chain does not support usage as color attachment");
return false;
}
// Store the old/current swap chain when recreating for resize
VkSwapchainKHR old_swap_chain = m_swap_chain;
m_swap_chain = VK_NULL_HANDLE;
// Now we can actually create the swap chain
VkSwapchainCreateInfoKHR swap_chain_info = {VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, nullptr, 0, m_surface,
image_count, m_surface_format.format, m_surface_format.colorSpace, size, 1u, image_usage,
VK_SHARING_MODE_EXCLUSIVE, 0, nullptr, transform, VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, m_present_mode,
VK_TRUE, old_swap_chain};
std::array<uint32_t, 2> indices = {{
g_vulkan_context->GetGraphicsQueueFamilyIndex(),
g_vulkan_context->GetPresentQueueFamilyIndex(),
}};
if (g_vulkan_context->GetGraphicsQueueFamilyIndex() != g_vulkan_context->GetPresentQueueFamilyIndex())
{
swap_chain_info.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
swap_chain_info.queueFamilyIndexCount = 2;
swap_chain_info.pQueueFamilyIndices = indices.data();
}
if (m_swap_chain == VK_NULL_HANDLE)
{
res = vkCreateSwapchainKHR(g_vulkan_context->GetDevice(), &swap_chain_info, nullptr, &m_swap_chain);
}
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateSwapchainKHR failed: ");
return false;
}
// Now destroy the old swap chain, since it's been recreated.
// We can do this immediately since all work should have been completed before calling resize.
if (old_swap_chain != VK_NULL_HANDLE)
vkDestroySwapchainKHR(g_vulkan_context->GetDevice(), old_swap_chain, nullptr);
m_window_info.surface_width = std::max(1u, size.width);
m_window_info.surface_height = std::max(1u, size.height);
return true;
}
bool SwapChain::SetupSwapChainImages()
{
pxAssert(m_images.empty());
u32 image_count;
VkResult res = vkGetSwapchainImagesKHR(g_vulkan_context->GetDevice(), m_swap_chain, &image_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetSwapchainImagesKHR failed: ");
return false;
}
std::vector<VkImage> images(image_count);
res = vkGetSwapchainImagesKHR(g_vulkan_context->GetDevice(), m_swap_chain, &image_count, images.data());
pxAssert(res == VK_SUCCESS);
m_load_render_pass =
g_vulkan_context->GetRenderPass(m_surface_format.format, VK_FORMAT_UNDEFINED, VK_ATTACHMENT_LOAD_OP_LOAD);
m_clear_render_pass =
g_vulkan_context->GetRenderPass(m_surface_format.format, VK_FORMAT_UNDEFINED, VK_ATTACHMENT_LOAD_OP_CLEAR);
if (m_load_render_pass == VK_NULL_HANDLE || m_clear_render_pass == VK_NULL_HANDLE)
{
pxFailRel("Failed to get swap chain render passes.");
return false;
}
m_images.reserve(image_count);
m_current_image = 0;
2021-11-06 06:53:01 +00:00
for (u32 i = 0; i < image_count; i++)
{
SwapChainImage image;
image.image = images[i];
// Create texture object, which creates a view of the backbuffer
if (!image.texture.Adopt(image.image, VK_IMAGE_VIEW_TYPE_2D, m_window_info.surface_width,
m_window_info.surface_height, 1, 1, m_surface_format.format, VK_SAMPLE_COUNT_1_BIT))
{
return false;
}
image.framebuffer = image.texture.CreateFramebuffer(m_load_render_pass);
if (image.framebuffer == VK_NULL_HANDLE)
return false;
m_images.emplace_back(std::move(image));
}
m_semaphores.reserve(image_count);
m_current_semaphore = (image_count - 1);
for (u32 i = 0; i < image_count; i++)
{
ImageSemaphores sema;
const VkSemaphoreCreateInfo semaphore_info = {VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, nullptr, 0};
res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr, &sema.available_semaphore);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateSemaphore failed: ");
return false;
}
res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr, &sema.rendering_finished_semaphore);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateSemaphore failed: ");
vkDestroySemaphore(g_vulkan_context->GetDevice(), sema.available_semaphore, nullptr);
2021-11-06 06:53:01 +00:00
return false;
}
2021-11-06 06:53:01 +00:00
m_semaphores.push_back(sema);
2021-11-06 06:53:01 +00:00
}
return true;
}
void SwapChain::DestroySwapChainImages()
{
for (auto& it : m_images)
{
// Images themselves are cleaned up by the swap chain object
vkDestroyFramebuffer(g_vulkan_context->GetDevice(), it.framebuffer, nullptr);
}
m_images.clear();
for (auto& it : m_semaphores)
{
vkDestroySemaphore(g_vulkan_context->GetDevice(), it.rendering_finished_semaphore, nullptr);
vkDestroySemaphore(g_vulkan_context->GetDevice(), it.available_semaphore, nullptr);
}
m_semaphores.clear();
m_image_acquire_result.reset();
2021-11-06 06:53:01 +00:00
}
void SwapChain::DestroySwapChain()
{
if (m_swap_chain == VK_NULL_HANDLE)
return;
vkDestroySwapchainKHR(g_vulkan_context->GetDevice(), m_swap_chain, nullptr);
m_swap_chain = VK_NULL_HANDLE;
m_window_info.surface_width = 0;
m_window_info.surface_height = 0;
2021-11-06 06:53:01 +00:00
}
VkResult SwapChain::AcquireNextImage()
{
if (m_image_acquire_result.has_value())
return m_image_acquire_result.value();
2021-11-06 06:53:01 +00:00
if (!m_swap_chain)
return VK_ERROR_SURFACE_LOST_KHR;
// Use a different semaphore for each image.
m_current_semaphore = (m_current_semaphore + 1) % static_cast<u32>(m_semaphores.size());
const VkResult res = vkAcquireNextImageKHR(g_vulkan_context->GetDevice(), m_swap_chain, UINT64_MAX,
m_semaphores[m_current_semaphore].available_semaphore, VK_NULL_HANDLE, &m_current_image);
m_image_acquire_result = res;
return res;
2021-11-06 06:53:01 +00:00
}
void SwapChain::ReleaseCurrentImage()
{
m_image_acquire_result.reset();
}
bool SwapChain::ResizeSwapChain(u32 new_width, u32 new_height, float new_scale)
2021-11-06 06:53:01 +00:00
{
DestroySwapChainImages();
if (new_width != 0 && new_height != 0)
{
m_window_info.surface_width = new_width;
m_window_info.surface_height = new_height;
}
m_window_info.surface_scale = new_scale;
if (!CreateSwapChain() || !SetupSwapChainImages())
2021-11-06 06:53:01 +00:00
{
DestroySwapChainImages();
DestroySwapChain();
return false;
}
return true;
}
bool SwapChain::RecreateSwapChain()
{
DestroySwapChainImages();
if (!CreateSwapChain() || !SetupSwapChainImages())
2021-11-06 06:53:01 +00:00
{
DestroySwapChainImages();
DestroySwapChain();
return false;
}
return true;
}
bool SwapChain::SetVSync(VkPresentModeKHR preferred_mode)
2021-11-06 06:53:01 +00:00
{
if (m_preferred_present_mode == preferred_mode)
2021-11-06 06:53:01 +00:00
return true;
// Recreate the swap chain with the new present mode.
m_preferred_present_mode = preferred_mode;
2021-11-06 06:53:01 +00:00
return RecreateSwapChain();
}
bool SwapChain::RecreateSurface(const WindowInfo& new_wi)
{
// Destroy the old swap chain, images, and surface.
DestroySwapChainImages();
DestroySwapChain();
DestroySurface();
// Re-create the surface with the new native handle
m_window_info = new_wi;
m_surface = CreateVulkanSurface(
g_vulkan_context->GetVulkanInstance(), g_vulkan_context->GetPhysicalDevice(), &m_window_info);
if (m_surface == VK_NULL_HANDLE)
return false;
// The validation layers get angry at us if we don't call this before creating the swapchain.
VkBool32 present_supported = VK_TRUE;
VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(g_vulkan_context->GetPhysicalDevice(),
g_vulkan_context->GetPresentQueueFamilyIndex(), m_surface, &present_supported);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: ");
return false;
}
if (!present_supported)
{
pxFailRel("Recreated surface does not support presenting.");
return false;
}
// Finally re-create the swap chain
if (!CreateSwapChain())
return false;
if (!SetupSwapChainImages())
{
DestroySwapChain();
DestroySurface();
2021-11-06 06:53:01 +00:00
return false;
}
2021-11-06 06:53:01 +00:00
return true;
}
void SwapChain::DestroySurface()
{
if (m_surface == VK_NULL_HANDLE)
return;
DestroyVulkanSurface(g_vulkan_context->GetVulkanInstance(), &m_window_info, m_surface);
m_surface = VK_NULL_HANDLE;
}
} // namespace Vulkan