mgba/src/gb/video.c

961 lines
37 KiB
C

/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <mgba/internal/gb/video.h>
#include <mgba/core/sync.h>
#include <mgba/core/thread.h>
#include <mgba/core/cache-set.h>
#include <mgba/internal/gb/gb.h>
#include <mgba/internal/gb/io.h>
#include <mgba/internal/gb/renderers/cache-set.h>
#include <mgba/internal/gb/serialize.h>
#include <mgba/internal/sm83/sm83.h>
#include <mgba-util/memory.h>
mLOG_DEFINE_CATEGORY(GB_VIDEO, "GB Video", "gb.video");
static void GBVideoDummyRendererInit(struct GBVideoRenderer* renderer, enum GBModel model, bool borders);
static void GBVideoDummyRendererDeinit(struct GBVideoRenderer* renderer);
static uint8_t GBVideoDummyRendererWriteVideoRegister(struct GBVideoRenderer* renderer, uint16_t address, uint8_t value);
static void GBVideoDummyRendererWriteSGBPacket(struct GBVideoRenderer* renderer, uint8_t* data);
static void GBVideoDummyRendererWritePalette(struct GBVideoRenderer* renderer, int index, uint16_t value);
static void GBVideoDummyRendererWriteVRAM(struct GBVideoRenderer* renderer, uint16_t address);
static void GBVideoDummyRendererWriteOAM(struct GBVideoRenderer* renderer, uint16_t oam);
static void GBVideoDummyRendererDrawRange(struct GBVideoRenderer* renderer, int startX, int endX, int y);
static void GBVideoDummyRendererFinishScanline(struct GBVideoRenderer* renderer, int y);
static void GBVideoDummyRendererFinishFrame(struct GBVideoRenderer* renderer);
static void GBVideoDummyRendererEnableSGBBorder(struct GBVideoRenderer* renderer, bool enable);
static void GBVideoDummyRendererGetPixels(struct GBVideoRenderer* renderer, size_t* stride, const void** pixels);
static void GBVideoDummyRendererPutPixels(struct GBVideoRenderer* renderer, size_t stride, const void* pixels);
static void _cleanOAM(struct GBVideo* video, int y);
static void _endMode0(struct mTiming* timing, void* context, uint32_t cyclesLate);
static void _endMode1(struct mTiming* timing, void* context, uint32_t cyclesLate);
static void _endMode2(struct mTiming* timing, void* context, uint32_t cyclesLate);
static void _endMode3(struct mTiming* timing, void* context, uint32_t cyclesLate);
static void _updateFrameCount(struct mTiming* timing, void* context, uint32_t cyclesLate);
void GBVideoInit(struct GBVideo* video) {
video->renderer = NULL;
video->vram = anonymousMemoryMap(GB_SIZE_VRAM);
video->frameskip = 0;
video->modeEvent.context = video;
video->modeEvent.name = "GB Video Mode";
video->modeEvent.callback = NULL;
video->modeEvent.priority = 8;
video->frameEvent.context = video;
video->frameEvent.name = "GB Video Frame";
video->frameEvent.callback = _updateFrameCount;
video->frameEvent.priority = 9;
video->dmgPalette[0] = 0x7FFF;
video->dmgPalette[1] = 0x56B5;
video->dmgPalette[2] = 0x294A;
video->dmgPalette[3] = 0x0000;
video->dmgPalette[4] = 0x7FFF;
video->dmgPalette[5] = 0x56B5;
video->dmgPalette[6] = 0x294A;
video->dmgPalette[7] = 0x0000;
video->dmgPalette[8] = 0x7FFF;
video->dmgPalette[9] = 0x56B5;
video->dmgPalette[10] = 0x294A;
video->dmgPalette[11] = 0x0000;
video->sgbBorders = true;
}
void GBVideoReset(struct GBVideo* video) {
video->ly = 0;
video->x = 0;
video->mode = 1;
video->stat = 1;
video->frameCounter = 0;
video->frameskipCounter = 0;
GBVideoSwitchBank(video, 0);
memset(video->vram, 0, GB_SIZE_VRAM);
video->renderer->vram = video->vram;
memset(&video->oam, 0, sizeof(video->oam));
video->renderer->oam = &video->oam;
memset(&video->palette, 0, sizeof(video->palette));
if (video->p->model & GB_MODEL_SGB) {
if (video->renderer->sgbCharRam) {
memset(video->renderer->sgbCharRam, 0, SGB_SIZE_CHAR_RAM);
} else {
video->renderer->sgbCharRam = anonymousMemoryMap(SGB_SIZE_CHAR_RAM);
}
if (video->renderer->sgbMapRam) {
memset(video->renderer->sgbMapRam, 0, SGB_SIZE_MAP_RAM);
} else {
video->renderer->sgbMapRam = anonymousMemoryMap(SGB_SIZE_MAP_RAM);
}
if (video->renderer->sgbPalRam) {
memset(video->renderer->sgbPalRam, 0, SGB_SIZE_PAL_RAM);
} else {
video->renderer->sgbPalRam = anonymousMemoryMap(SGB_SIZE_PAL_RAM);
}
if (video->renderer->sgbAttributeFiles) {
memset(video->renderer->sgbAttributeFiles, 0, SGB_SIZE_ATF_RAM);
} else {
video->renderer->sgbAttributeFiles = anonymousMemoryMap(SGB_SIZE_ATF_RAM);
}
if (!video->renderer->sgbAttributes) {
video->renderer->sgbAttributes = malloc(90 * 45);
}
memset(video->renderer->sgbAttributes, 0, 90 * 45);
video->sgbCommandHeader = 0;
video->sgbBufferIndex = 0;
} else {
if (video->renderer->sgbCharRam) {
mappedMemoryFree(video->renderer->sgbCharRam, SGB_SIZE_CHAR_RAM);
video->renderer->sgbCharRam = NULL;
}
if (video->renderer->sgbMapRam) {
mappedMemoryFree(video->renderer->sgbMapRam, SGB_SIZE_MAP_RAM);
video->renderer->sgbMapRam = NULL;
}
if (video->renderer->sgbPalRam) {
mappedMemoryFree(video->renderer->sgbPalRam, SGB_SIZE_PAL_RAM);
video->renderer->sgbPalRam = NULL;
}
if (video->renderer->sgbAttributeFiles) {
mappedMemoryFree(video->renderer->sgbAttributeFiles, SGB_SIZE_ATF_RAM);
video->renderer->sgbAttributeFiles = NULL;
}
if (video->renderer->sgbAttributes) {
free(video->renderer->sgbAttributes);
video->renderer->sgbAttributes = NULL;
}
}
video->palette[0] = video->dmgPalette[0];
video->palette[1] = video->dmgPalette[1];
video->palette[2] = video->dmgPalette[2];
video->palette[3] = video->dmgPalette[3];
video->palette[8 * 4 + 0] = video->dmgPalette[4];
video->palette[8 * 4 + 1] = video->dmgPalette[5];
video->palette[8 * 4 + 2] = video->dmgPalette[6];
video->palette[8 * 4 + 3] = video->dmgPalette[7];
video->palette[9 * 4 + 0] = video->dmgPalette[8];
video->palette[9 * 4 + 1] = video->dmgPalette[9];
video->palette[9 * 4 + 2] = video->dmgPalette[10];
video->palette[9 * 4 + 3] = video->dmgPalette[11];
if (!video->renderer) {
mLOG(GB_VIDEO, FATAL, "No renderer associated");
return;
}
video->renderer->deinit(video->renderer);
video->renderer->init(video->renderer, video->p->model, video->sgbBorders);
video->renderer->writePalette(video->renderer, 0, video->palette[0]);
video->renderer->writePalette(video->renderer, 1, video->palette[1]);
video->renderer->writePalette(video->renderer, 2, video->palette[2]);
video->renderer->writePalette(video->renderer, 3, video->palette[3]);
video->renderer->writePalette(video->renderer, 8 * 4 + 0, video->palette[8 * 4 + 0]);
video->renderer->writePalette(video->renderer, 8 * 4 + 1, video->palette[8 * 4 + 1]);
video->renderer->writePalette(video->renderer, 8 * 4 + 2, video->palette[8 * 4 + 2]);
video->renderer->writePalette(video->renderer, 8 * 4 + 3, video->palette[8 * 4 + 3]);
video->renderer->writePalette(video->renderer, 9 * 4 + 0, video->palette[9 * 4 + 0]);
video->renderer->writePalette(video->renderer, 9 * 4 + 1, video->palette[9 * 4 + 1]);
video->renderer->writePalette(video->renderer, 9 * 4 + 2, video->palette[9 * 4 + 2]);
video->renderer->writePalette(video->renderer, 9 * 4 + 3, video->palette[9 * 4 + 3]);
}
void GBVideoDeinit(struct GBVideo* video) {
video->renderer->deinit(video->renderer);
mappedMemoryFree(video->vram, GB_SIZE_VRAM);
if (video->renderer->sgbCharRam) {
mappedMemoryFree(video->renderer->sgbCharRam, SGB_SIZE_CHAR_RAM);
video->renderer->sgbCharRam = NULL;
}
if (video->renderer->sgbMapRam) {
mappedMemoryFree(video->renderer->sgbMapRam, SGB_SIZE_MAP_RAM);
video->renderer->sgbMapRam = NULL;
}
if (video->renderer->sgbPalRam) {
mappedMemoryFree(video->renderer->sgbPalRam, SGB_SIZE_PAL_RAM);
video->renderer->sgbPalRam = NULL;
}
if (video->renderer->sgbAttributeFiles) {
mappedMemoryFree(video->renderer->sgbAttributeFiles, SGB_SIZE_ATF_RAM);
video->renderer->sgbAttributeFiles = NULL;
}
if (video->renderer->sgbAttributes) {
free(video->renderer->sgbAttributes);
video->renderer->sgbAttributes = NULL;
}
}
void GBVideoDummyRendererCreate(struct GBVideoRenderer* renderer) {
static const struct GBVideoRenderer dummyRenderer = {
.init = GBVideoDummyRendererInit,
.deinit = GBVideoDummyRendererDeinit,
.writeVideoRegister = GBVideoDummyRendererWriteVideoRegister,
.writeSGBPacket = GBVideoDummyRendererWriteSGBPacket,
.writeVRAM = GBVideoDummyRendererWriteVRAM,
.writeOAM = GBVideoDummyRendererWriteOAM,
.writePalette = GBVideoDummyRendererWritePalette,
.drawRange = GBVideoDummyRendererDrawRange,
.finishScanline = GBVideoDummyRendererFinishScanline,
.finishFrame = GBVideoDummyRendererFinishFrame,
.enableSGBBorder = GBVideoDummyRendererEnableSGBBorder,
.getPixels = GBVideoDummyRendererGetPixels,
.putPixels = GBVideoDummyRendererPutPixels,
};
memcpy(renderer, &dummyRenderer, sizeof(*renderer));
}
void GBVideoAssociateRenderer(struct GBVideo* video, struct GBVideoRenderer* renderer) {
if (video->renderer) {
video->renderer->deinit(video->renderer);
renderer->cache = video->renderer->cache;
renderer->sgbRenderMode = video->renderer->sgbRenderMode;
renderer->sgbCharRam = video->renderer->sgbCharRam;
renderer->sgbMapRam = video->renderer->sgbMapRam;
renderer->sgbPalRam = video->renderer->sgbPalRam;
renderer->sgbAttributeFiles = video->renderer->sgbAttributeFiles;
renderer->sgbAttributes = video->renderer->sgbAttributes;
} else {
renderer->cache = NULL;
renderer->sgbRenderMode = 0;
renderer->sgbCharRam = NULL;
renderer->sgbMapRam = NULL;
renderer->sgbPalRam = NULL;
renderer->sgbAttributeFiles = NULL;
renderer->sgbAttributes = NULL;
}
video->renderer = renderer;
renderer->vram = video->vram;
video->renderer->init(video->renderer, video->p->model, video->sgbBorders);
}
static bool _statIRQAsserted(GBRegisterSTAT stat) {
// TODO: variable for the IRQ line value?
if (GBRegisterSTATIsLYCIRQ(stat) && GBRegisterSTATIsLYC(stat)) {
return true;
}
switch (GBRegisterSTATGetMode(stat)) {
case 0:
if (GBRegisterSTATIsHblankIRQ(stat)) {
return true;
}
break;
case 1:
if (GBRegisterSTATIsVblankIRQ(stat)) {
return true;
}
break;
case 2:
if (GBRegisterSTATIsOAMIRQ(stat)) {
return true;
}
break;
case 3:
break;
}
return false;
}
void GBVideoSkipBIOS(struct GBVideo* video) {
video->mode = 1;
video->modeEvent.callback = _endMode1;
int32_t next;
if (video->p->model & GB_MODEL_CGB) {
video->ly = GB_VIDEO_VERTICAL_PIXELS;
video->p->memory.io[GB_REG_LY] = video->ly;
video->stat = GBRegisterSTATClearLYC(video->stat);
next = 20;
} else {
video->ly = GB_VIDEO_VERTICAL_TOTAL_PIXELS;
video->p->memory.io[GB_REG_LY] = 0;
next = 56;
}
video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_VBLANK);
GBUpdateIRQs(video->p);
video->p->memory.io[GB_REG_STAT] = video->stat;
mTimingDeschedule(&video->p->timing, &video->modeEvent);
mTimingSchedule(&video->p->timing, &video->modeEvent, next << 1);
}
void _endMode0(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GBVideo* video = context;
if (video->frameskipCounter <= 0) {
video->renderer->finishScanline(video->renderer, video->ly);
}
int lyc = video->p->memory.io[GB_REG_LYC];
int32_t next;
++video->ly;
video->p->memory.io[GB_REG_LY] = video->ly;
GBRegisterSTAT oldStat = video->stat;
if (video->ly < GB_VIDEO_VERTICAL_PIXELS) {
next = GB_VIDEO_MODE_2_LENGTH;
video->mode = 2;
video->modeEvent.callback = _endMode2;
} else {
next = GB_VIDEO_HORIZONTAL_LENGTH;
video->mode = 1;
video->modeEvent.callback = _endMode1;
mTimingDeschedule(&video->p->timing, &video->frameEvent);
mTimingSchedule(&video->p->timing, &video->frameEvent, -cyclesLate);
if (!_statIRQAsserted(oldStat) && GBRegisterSTATIsOAMIRQ(video->stat)) {
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
}
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_VBLANK);
}
video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
}
// LYC stat is delayed 1 T-cycle
oldStat = video->stat;
video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->ly);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
}
GBUpdateIRQs(video->p);
video->p->memory.io[GB_REG_STAT] = video->stat;
mTimingSchedule(timing, &video->modeEvent, (next << 1) - cyclesLate);
}
void _endMode1(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GBVideo* video = context;
if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) {
return;
}
int lyc = video->p->memory.io[GB_REG_LYC];
// TODO: One M-cycle delay
++video->ly;
int32_t next;
if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS + 1) {
video->ly = 0;
video->p->memory.io[GB_REG_LY] = video->ly;
next = GB_VIDEO_MODE_2_LENGTH;
video->mode = 2;
video->modeEvent.callback = _endMode2;
} else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS) {
video->p->memory.io[GB_REG_LY] = 0;
next = GB_VIDEO_HORIZONTAL_LENGTH - 8;
} else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS - 1) {
video->p->memory.io[GB_REG_LY] = video->ly;
next = 8;
} else {
video->p->memory.io[GB_REG_LY] = video->ly;
next = GB_VIDEO_HORIZONTAL_LENGTH;
}
GBRegisterSTAT oldStat = video->stat;
video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->p->memory.io[GB_REG_LY]);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p);
}
video->p->memory.io[GB_REG_STAT] = video->stat;
mTimingSchedule(timing, &video->modeEvent, (next << 1) - cyclesLate);
}
void _endMode2(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GBVideo* video = context;
_cleanOAM(video, video->ly);
video->x = -(video->p->memory.io[GB_REG_SCX] & 7);
video->dotClock = mTimingCurrentTime(timing) - cyclesLate + 10 - (video->x << 1);
int32_t next = GB_VIDEO_MODE_3_LENGTH_BASE + video->objMax * 6 - video->x;
video->mode = 3;
video->modeEvent.callback = _endMode3;
GBRegisterSTAT oldStat = video->stat;
video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p);
}
video->p->memory.io[GB_REG_STAT] = video->stat;
mTimingSchedule(timing, &video->modeEvent, (next << 1) - cyclesLate);
}
void _endMode3(struct mTiming* timing, void* context, uint32_t cyclesLate) {
struct GBVideo* video = context;
GBVideoProcessDots(video, cyclesLate);
if (video->ly < GB_VIDEO_VERTICAL_PIXELS && video->p->memory.isHdma && video->p->memory.io[GB_REG_HDMA5] != 0xFF) {
video->p->memory.hdmaRemaining = 0x10;
video->p->cpuBlocked = true;
mTimingDeschedule(timing, &video->p->memory.hdmaEvent);
mTimingSchedule(timing, &video->p->memory.hdmaEvent, 0);
}
video->mode = 0;
video->modeEvent.callback = _endMode0;
GBRegisterSTAT oldStat = video->stat;
video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p);
}
video->p->memory.io[GB_REG_STAT] = video->stat;
// TODO: Cache SCX & 7 in case it changes
int32_t next = GB_VIDEO_MODE_0_LENGTH_BASE - video->objMax * 6 - (video->p->memory.io[GB_REG_SCX] & 7);
mTimingSchedule(timing, &video->modeEvent, (next << 1) - cyclesLate);
}
void _updateFrameCount(struct mTiming* timing, void* context, uint32_t cyclesLate) {
UNUSED(cyclesLate);
struct GBVideo* video = context;
if (video->p->cpu->executionState != SM83_CORE_FETCH) {
mTimingSchedule(timing, &video->frameEvent, (4 - ((video->p->cpu->executionState + 1) & 3)) * (2 - video->p->doubleSpeed));
return;
}
if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) {
mTimingSchedule(timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH << 1);
}
--video->frameskipCounter;
if (video->frameskipCounter < 0) {
video->renderer->finishFrame(video->renderer);
video->frameskipCounter = video->frameskip;
}
GBFrameEnded(video->p);
mCoreSyncPostFrame(video->p->sync);
++video->frameCounter;
video->p->earlyExit = true;
GBFrameStarted(video->p);
}
static void _cleanOAM(struct GBVideo* video, int y) {
int spriteHeight = 8;
if (GBRegisterLCDCIsObjSize(video->p->memory.io[GB_REG_LCDC])) {
spriteHeight = 16;
}
int o = 0;
int i;
for (i = 0; i < GB_VIDEO_MAX_OBJ && o < GB_VIDEO_MAX_LINE_OBJ; ++i) {
uint8_t oy = video->oam.obj[i].y;
if (y < oy - 16 || y >= oy - 16 + spriteHeight) {
continue;
}
++o;
}
video->objMax = o;
}
void GBVideoProcessDots(struct GBVideo* video, uint32_t cyclesLate) {
if (video->mode != 3) {
return;
}
int oldX = video->x;
video->x = ((int32_t) (mTimingCurrentTime(&video->p->timing) - cyclesLate - video->dotClock)) >> 1;
if (video->x > GB_VIDEO_HORIZONTAL_PIXELS) {
video->x = GB_VIDEO_HORIZONTAL_PIXELS;
} else if (video->x < 0) {
return;
}
if (oldX < 0) {
oldX = 0;
}
if (video->frameskipCounter <= 0) {
video->renderer->drawRange(video->renderer, oldX, video->x, video->ly);
}
}
void GBVideoWriteLCDC(struct GBVideo* video, GBRegisterLCDC value) {
if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) && GBRegisterLCDCIsEnable(value)) {
video->mode = 2;
video->modeEvent.callback = _endMode2;
int32_t next = GB_VIDEO_MODE_2_LENGTH - 5; // TODO: Why is this fudge factor needed? Might be related to T-cycles for load/store differing
mTimingDeschedule(&video->p->timing, &video->modeEvent);
mTimingSchedule(&video->p->timing, &video->modeEvent, next << 1);
video->ly = 0;
video->p->memory.io[GB_REG_LY] = 0;
GBRegisterSTAT oldStat = video->stat;
video->stat = GBRegisterSTATSetMode(video->stat, 0);
video->stat = GBRegisterSTATSetLYC(video->stat, video->ly == video->p->memory.io[GB_REG_LYC]);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p);
}
video->p->memory.io[GB_REG_STAT] = video->stat;
video->renderer->writePalette(video->renderer, 0, video->palette[0]);
mTimingDeschedule(&video->p->timing, &video->frameEvent);
}
if (GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) && !GBRegisterLCDCIsEnable(value)) {
// TODO: Fix serialization; this gets internal and visible modes out of sync
video->mode = 0;
video->stat = GBRegisterSTATSetMode(video->stat, 0);
video->p->memory.io[GB_REG_STAT] = video->stat;
video->ly = 0;
video->p->memory.io[GB_REG_LY] = 0;
video->renderer->writePalette(video->renderer, 0, video->dmgPalette[0]);
mTimingDeschedule(&video->p->timing, &video->modeEvent);
mTimingDeschedule(&video->p->timing, &video->frameEvent);
mTimingSchedule(&video->p->timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH << 1);
}
video->p->memory.io[GB_REG_STAT] = video->stat;
}
void GBVideoWriteSTAT(struct GBVideo* video, GBRegisterSTAT value) {
GBRegisterSTAT oldStat = video->stat;
video->stat = (video->stat & 0x7) | (value & 0x78);
if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) || video->p->model >= GB_MODEL_CGB) {
return;
}
if (!_statIRQAsserted(oldStat) && video->mode < 3) {
// TODO: variable for the IRQ line value?
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p);
}
}
void GBVideoWriteLYC(struct GBVideo* video, uint8_t value) {
GBRegisterSTAT oldStat = video->stat;
if (GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) {
video->stat = GBRegisterSTATSetLYC(video->stat, value == video->ly);
if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) {
video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT);
GBUpdateIRQs(video->p);
}
}
video->p->memory.io[GB_REG_STAT] = video->stat;
}
void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value) {
if (video->p->model < GB_MODEL_SGB) {
switch (address) {
case GB_REG_BGP:
video->palette[0] = video->dmgPalette[value & 3];
video->palette[1] = video->dmgPalette[(value >> 2) & 3];
video->palette[2] = video->dmgPalette[(value >> 4) & 3];
video->palette[3] = video->dmgPalette[(value >> 6) & 3];
video->renderer->writePalette(video->renderer, 0, video->palette[0]);
video->renderer->writePalette(video->renderer, 1, video->palette[1]);
video->renderer->writePalette(video->renderer, 2, video->palette[2]);
video->renderer->writePalette(video->renderer, 3, video->palette[3]);
break;
case GB_REG_OBP0:
video->palette[8 * 4 + 0] = video->dmgPalette[(value & 3) + 4];
video->palette[8 * 4 + 1] = video->dmgPalette[((value >> 2) & 3) + 4];
video->palette[8 * 4 + 2] = video->dmgPalette[((value >> 4) & 3) + 4];
video->palette[8 * 4 + 3] = video->dmgPalette[((value >> 6) & 3) + 4];
video->renderer->writePalette(video->renderer, 8 * 4 + 0, video->palette[8 * 4 + 0]);
video->renderer->writePalette(video->renderer, 8 * 4 + 1, video->palette[8 * 4 + 1]);
video->renderer->writePalette(video->renderer, 8 * 4 + 2, video->palette[8 * 4 + 2]);
video->renderer->writePalette(video->renderer, 8 * 4 + 3, video->palette[8 * 4 + 3]);
break;
case GB_REG_OBP1:
video->palette[9 * 4 + 0] = video->dmgPalette[(value & 3) + 8];
video->palette[9 * 4 + 1] = video->dmgPalette[((value >> 2) & 3) + 8];
video->palette[9 * 4 + 2] = video->dmgPalette[((value >> 4) & 3) + 8];
video->palette[9 * 4 + 3] = video->dmgPalette[((value >> 6) & 3) + 8];
video->renderer->writePalette(video->renderer, 9 * 4 + 0, video->palette[9 * 4 + 0]);
video->renderer->writePalette(video->renderer, 9 * 4 + 1, video->palette[9 * 4 + 1]);
video->renderer->writePalette(video->renderer, 9 * 4 + 2, video->palette[9 * 4 + 2]);
video->renderer->writePalette(video->renderer, 9 * 4 + 3, video->palette[9 * 4 + 3]);
break;
}
} else if (video->p->model >= GB_MODEL_CGB) {
switch (address) {
case GB_REG_BCPD:
if (video->mode != 3) {
if (video->bcpIndex & 1) {
video->palette[video->bcpIndex >> 1] &= 0x00FF;
video->palette[video->bcpIndex >> 1] |= value << 8;
} else {
video->palette[video->bcpIndex >> 1] &= 0xFF00;
video->palette[video->bcpIndex >> 1] |= value;
}
video->renderer->writePalette(video->renderer, video->bcpIndex >> 1, video->palette[video->bcpIndex >> 1]);
}
if (video->bcpIncrement) {
++video->bcpIndex;
video->bcpIndex &= 0x3F;
video->p->memory.io[GB_REG_BCPS] &= 0x80;
video->p->memory.io[GB_REG_BCPS] |= video->bcpIndex;
}
video->p->memory.io[GB_REG_BCPD] = video->palette[video->bcpIndex >> 1] >> (8 * (video->bcpIndex & 1));
break;
case GB_REG_OCPD:
if (video->mode != 3) {
if (video->ocpIndex & 1) {
video->palette[8 * 4 + (video->ocpIndex >> 1)] &= 0x00FF;
video->palette[8 * 4 + (video->ocpIndex >> 1)] |= value << 8;
} else {
video->palette[8 * 4 + (video->ocpIndex >> 1)] &= 0xFF00;
video->palette[8 * 4 + (video->ocpIndex >> 1)] |= value;
}
video->renderer->writePalette(video->renderer, 8 * 4 + (video->ocpIndex >> 1), video->palette[8 * 4 + (video->ocpIndex >> 1)]);
}
if (video->ocpIncrement) {
++video->ocpIndex;
video->ocpIndex &= 0x3F;
video->p->memory.io[GB_REG_OCPS] &= 0x80;
video->p->memory.io[GB_REG_OCPS] |= video->ocpIndex;
}
video->p->memory.io[GB_REG_OCPD] = video->palette[8 * 4 + (video->ocpIndex >> 1)] >> (8 * (video->ocpIndex & 1));
break;
}
} else {
video->renderer->writeVideoRegister(video->renderer, address, value);
}
}
void GBVideoSwitchBank(struct GBVideo* video, uint8_t value) {
value &= 1;
video->vramBank = &video->vram[value * GB_SIZE_VRAM_BANK0];
video->vramCurrentBank = value;
}
void GBVideoSetPalette(struct GBVideo* video, unsigned index, uint32_t color) {
if (index >= 12) {
return;
}
video->dmgPalette[index] = M_RGB8_TO_RGB5(color);
}
void GBVideoDisableCGB(struct GBVideo* video) {
video->dmgPalette[0] = video->palette[0];
video->dmgPalette[1] = video->palette[1];
video->dmgPalette[2] = video->palette[2];
video->dmgPalette[3] = video->palette[3];
video->dmgPalette[4] = video->palette[8 * 4 + 0];
video->dmgPalette[5] = video->palette[8 * 4 + 1];
video->dmgPalette[6] = video->palette[8 * 4 + 2];
video->dmgPalette[7] = video->palette[8 * 4 + 3];
video->dmgPalette[8] = video->palette[9 * 4 + 0];
video->dmgPalette[9] = video->palette[9 * 4 + 1];
video->dmgPalette[10] = video->palette[9 * 4 + 2];
video->dmgPalette[11] = video->palette[9 * 4 + 3];
video->renderer->deinit(video->renderer);
video->renderer->init(video->renderer, video->p->model, video->sgbBorders);
}
void GBVideoWriteSGBPacket(struct GBVideo* video, uint8_t* data) {
int i;
if (!(video->sgbCommandHeader & 7)) {
video->sgbBufferIndex = 0;
if ((data[0] >> 3) > SGB_OBJ_TRN) {
video->sgbCommandHeader = 0;
return;
}
video->sgbCommandHeader = data[0];
}
--video->sgbCommandHeader;
memcpy(&video->sgbPacketBuffer[video->sgbBufferIndex << 4], data, 16);
++video->sgbBufferIndex;
if (video->sgbCommandHeader & 7) {
return;
}
switch (video->sgbCommandHeader >> 3) {
case SGB_PAL01:
video->palette[0] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8);
video->palette[1] = video->sgbPacketBuffer[3] | (video->sgbPacketBuffer[4] << 8);
video->palette[2] = video->sgbPacketBuffer[5] | (video->sgbPacketBuffer[6] << 8);
video->palette[3] = video->sgbPacketBuffer[7] | (video->sgbPacketBuffer[8] << 8);
video->palette[4] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8);
video->palette[5] = video->sgbPacketBuffer[9] | (video->sgbPacketBuffer[10] << 8);
video->palette[6] = video->sgbPacketBuffer[11] | (video->sgbPacketBuffer[12] << 8);
video->palette[7] = video->sgbPacketBuffer[13] | (video->sgbPacketBuffer[14] << 8);
video->palette[8] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8);
video->palette[12] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8);
video->renderer->writePalette(video->renderer, 0, video->palette[0]);
video->renderer->writePalette(video->renderer, 1, video->palette[1]);
video->renderer->writePalette(video->renderer, 2, video->palette[2]);
video->renderer->writePalette(video->renderer, 3, video->palette[3]);
video->renderer->writePalette(video->renderer, 4, video->palette[4]);
video->renderer->writePalette(video->renderer, 5, video->palette[5]);
video->renderer->writePalette(video->renderer, 6, video->palette[6]);
video->renderer->writePalette(video->renderer, 7, video->palette[7]);
video->renderer->writePalette(video->renderer, 8, video->palette[8]);
video->renderer->writePalette(video->renderer, 12, video->palette[12]);
break;
case SGB_PAL23:
video->palette[9] = video->sgbPacketBuffer[3] | (video->sgbPacketBuffer[4] << 8);
video->palette[10] = video->sgbPacketBuffer[5] | (video->sgbPacketBuffer[6] << 8);
video->palette[11] = video->sgbPacketBuffer[7] | (video->sgbPacketBuffer[8] << 8);
video->palette[13] = video->sgbPacketBuffer[9] | (video->sgbPacketBuffer[10] << 8);
video->palette[14] = video->sgbPacketBuffer[11] | (video->sgbPacketBuffer[12] << 8);
video->palette[15] = video->sgbPacketBuffer[13] | (video->sgbPacketBuffer[14] << 8);
video->renderer->writePalette(video->renderer, 9, video->palette[9]);
video->renderer->writePalette(video->renderer, 10, video->palette[10]);
video->renderer->writePalette(video->renderer, 11, video->palette[11]);
video->renderer->writePalette(video->renderer, 13, video->palette[13]);
video->renderer->writePalette(video->renderer, 14, video->palette[14]);
video->renderer->writePalette(video->renderer, 15, video->palette[15]);
break;
case SGB_PAL03:
video->palette[0] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8);
video->palette[1] = video->sgbPacketBuffer[3] | (video->sgbPacketBuffer[4] << 8);
video->palette[2] = video->sgbPacketBuffer[5] | (video->sgbPacketBuffer[6] << 8);
video->palette[3] = video->sgbPacketBuffer[7] | (video->sgbPacketBuffer[8] << 8);
video->palette[4] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8);
video->palette[8] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8);
video->palette[12] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8);
video->palette[13] = video->sgbPacketBuffer[9] | (video->sgbPacketBuffer[10] << 8);
video->palette[14] = video->sgbPacketBuffer[11] | (video->sgbPacketBuffer[12] << 8);
video->palette[15] = video->sgbPacketBuffer[13] | (video->sgbPacketBuffer[14] << 8);
video->renderer->writePalette(video->renderer, 0, video->palette[0]);
video->renderer->writePalette(video->renderer, 1, video->palette[1]);
video->renderer->writePalette(video->renderer, 2, video->palette[2]);
video->renderer->writePalette(video->renderer, 3, video->palette[3]);
video->renderer->writePalette(video->renderer, 4, video->palette[4]);
video->renderer->writePalette(video->renderer, 8, video->palette[8]);
video->renderer->writePalette(video->renderer, 12, video->palette[12]);
video->renderer->writePalette(video->renderer, 13, video->palette[13]);
video->renderer->writePalette(video->renderer, 14, video->palette[14]);
video->renderer->writePalette(video->renderer, 15, video->palette[15]);
break;
case SGB_PAL12:
video->palette[5] = video->sgbPacketBuffer[3] | (video->sgbPacketBuffer[4] << 8);
video->palette[6] = video->sgbPacketBuffer[5] | (video->sgbPacketBuffer[6] << 8);
video->palette[7] = video->sgbPacketBuffer[7] | (video->sgbPacketBuffer[8] << 8);
video->palette[9] = video->sgbPacketBuffer[9] | (video->sgbPacketBuffer[10] << 8);
video->palette[10] = video->sgbPacketBuffer[11] | (video->sgbPacketBuffer[12] << 8);
video->palette[11] = video->sgbPacketBuffer[13] | (video->sgbPacketBuffer[14] << 8);
video->renderer->writePalette(video->renderer, 5, video->palette[5]);
video->renderer->writePalette(video->renderer, 6, video->palette[6]);
video->renderer->writePalette(video->renderer, 7, video->palette[7]);
video->renderer->writePalette(video->renderer, 9, video->palette[9]);
video->renderer->writePalette(video->renderer, 10, video->palette[10]);
video->renderer->writePalette(video->renderer, 11, video->palette[11]);
break;
case SGB_PAL_SET:
for (i = 0; i < 4; ++i) {
uint16_t entry = (video->sgbPacketBuffer[2 + (i * 2)] << 8) | video->sgbPacketBuffer[1 + (i * 2)];
if (entry >= 0x200) {
mLOG(GB, STUB, "Unimplemented SGB palette overflow: %03X", entry);
continue;
}
LOAD_16LE(video->palette[i * 4 + 0], entry * 8 + 0, video->renderer->sgbPalRam);
video->renderer->writePalette(video->renderer, i * 4 + 0, video->palette[i * 4 + 0]);
LOAD_16LE(video->palette[i * 4 + 1], entry * 8 + 2, video->renderer->sgbPalRam);
video->renderer->writePalette(video->renderer, i * 4 + 1, video->palette[i * 4 + 1]);
LOAD_16LE(video->palette[i * 4 + 2], entry * 8 + 4, video->renderer->sgbPalRam);
video->renderer->writePalette(video->renderer, i * 4 + 2, video->palette[i * 4 + 2]);
LOAD_16LE(video->palette[i * 4 + 3], entry * 8 + 6, video->renderer->sgbPalRam);
video->renderer->writePalette(video->renderer, i * 4 + 3, video->palette[i * 4 + 3]);
}
break;
case SGB_ATTR_BLK:
case SGB_ATTR_DIV:
case SGB_ATTR_CHR:
case SGB_ATTR_LIN:
case SGB_PAL_TRN:
case SGB_ATRC_EN:
case SGB_CHR_TRN:
case SGB_PCT_TRN:
case SGB_ATTR_TRN:
case SGB_ATTR_SET:
break;
case SGB_MLT_REQ:
if ((video->sgbPacketBuffer[1] & 0x3) == 2) { // XXX: This unmasked increment appears to be an SGB hardware bug
++video->p->sgbCurrentController;
}
video->p->sgbControllers = video->sgbPacketBuffer[1] & 0x3;
video->p->sgbCurrentController &= video->p->sgbControllers;
return;
case SGB_MASK_EN:
video->renderer->sgbRenderMode = video->sgbPacketBuffer[1] & 0x3;
break;
default:
mLOG(GB, STUB, "Unimplemented SGB command: %02X", video->sgbPacketBuffer[0] >> 3);
return;
}
video->renderer->writeSGBPacket(video->renderer, video->sgbPacketBuffer);
}
static void GBVideoDummyRendererInit(struct GBVideoRenderer* renderer, enum GBModel model, bool borders) {
UNUSED(renderer);
UNUSED(model);
UNUSED(borders);
// Nothing to do
}
static void GBVideoDummyRendererDeinit(struct GBVideoRenderer* renderer) {
UNUSED(renderer);
// Nothing to do
}
static uint8_t GBVideoDummyRendererWriteVideoRegister(struct GBVideoRenderer* renderer, uint16_t address, uint8_t value) {
if (renderer->cache) {
GBVideoCacheWriteVideoRegister(renderer->cache, address, value);
}
return value;
}
static void GBVideoDummyRendererWriteSGBPacket(struct GBVideoRenderer* renderer, uint8_t* data) {
UNUSED(renderer);
UNUSED(data);
}
static void GBVideoDummyRendererWriteVRAM(struct GBVideoRenderer* renderer, uint16_t address) {
if (renderer->cache) {
mCacheSetWriteVRAM(renderer->cache, address);
}
}
static void GBVideoDummyRendererWriteOAM(struct GBVideoRenderer* renderer, uint16_t oam) {
UNUSED(renderer);
UNUSED(oam);
// Nothing to do
}
static void GBVideoDummyRendererWritePalette(struct GBVideoRenderer* renderer, int index, uint16_t value) {
if (renderer->cache) {
mCacheSetWritePalette(renderer->cache, index, mColorFrom555(value));
}
}
static void GBVideoDummyRendererDrawRange(struct GBVideoRenderer* renderer, int startX, int endX, int y) {
UNUSED(renderer);
UNUSED(endX);
UNUSED(startX);
UNUSED(y);
// Nothing to do
}
static void GBVideoDummyRendererFinishScanline(struct GBVideoRenderer* renderer, int y) {
UNUSED(renderer);
UNUSED(y);
// Nothing to do
}
static void GBVideoDummyRendererFinishFrame(struct GBVideoRenderer* renderer) {
UNUSED(renderer);
// Nothing to do
}
static void GBVideoDummyRendererEnableSGBBorder(struct GBVideoRenderer* renderer, bool enable) {
UNUSED(renderer);
UNUSED(enable);
// Nothing to do
}
static void GBVideoDummyRendererGetPixels(struct GBVideoRenderer* renderer, size_t* stride, const void** pixels) {
UNUSED(renderer);
UNUSED(stride);
UNUSED(pixels);
// Nothing to do
}
static void GBVideoDummyRendererPutPixels(struct GBVideoRenderer* renderer, size_t stride, const void* pixels) {
UNUSED(renderer);
UNUSED(stride);
UNUSED(pixels);
// Nothing to do
}
void GBVideoSerialize(const struct GBVideo* video, struct GBSerializedState* state) {
STORE_16LE(video->x, 0, &state->video.x);
STORE_16LE(video->ly, 0, &state->video.ly);
STORE_32LE(video->frameCounter, 0, &state->video.frameCounter);
STORE_32LE(video->dotClock, 0, &state->video.dotCounter);
state->video.vramCurrentBank = video->vramCurrentBank;
GBSerializedVideoFlags flags = 0;
flags = GBSerializedVideoFlagsSetBcpIncrement(flags, video->bcpIncrement);
flags = GBSerializedVideoFlagsSetOcpIncrement(flags, video->ocpIncrement);
flags = GBSerializedVideoFlagsSetMode(flags, video->mode);
flags = GBSerializedVideoFlagsSetNotModeEventScheduled(flags, !mTimingIsScheduled(&video->p->timing, &video->modeEvent));
flags = GBSerializedVideoFlagsSetNotFrameEventScheduled(flags, !mTimingIsScheduled(&video->p->timing, &video->frameEvent));
state->video.flags = flags;
STORE_16LE(video->bcpIndex, 0, &state->video.bcpIndex);
STORE_16LE(video->ocpIndex, 0, &state->video.ocpIndex);
size_t i;
for (i = 0; i < 64; ++i) {
STORE_16LE(video->palette[i], i * 2, state->video.palette);
}
STORE_32LE(video->modeEvent.when - mTimingCurrentTime(&video->p->timing), 0, &state->video.nextMode);
STORE_32LE(video->frameEvent.when - mTimingCurrentTime(&video->p->timing), 0, &state->video.nextFrame);
memcpy(state->vram, video->vram, GB_SIZE_VRAM);
memcpy(state->oam, &video->oam.raw, GB_SIZE_OAM);
}
void GBVideoDeserialize(struct GBVideo* video, const struct GBSerializedState* state) {
LOAD_16LE(video->x, 0, &state->video.x);
LOAD_16LE(video->ly, 0, &state->video.ly);
LOAD_32LE(video->frameCounter, 0, &state->video.frameCounter);
LOAD_32LE(video->dotClock, 0, &state->video.dotCounter);
video->x = (int16_t) video->x; // Ensure proper sign extension--the LOAD_16 is unsigned
video->vramCurrentBank = state->video.vramCurrentBank;
GBSerializedVideoFlags flags = state->video.flags;
video->bcpIncrement = GBSerializedVideoFlagsGetBcpIncrement(flags);
video->ocpIncrement = GBSerializedVideoFlagsGetOcpIncrement(flags);
video->mode = GBSerializedVideoFlagsGetMode(flags);
LOAD_16LE(video->bcpIndex, 0, &state->video.bcpIndex);
video->bcpIndex &= 0x3F;
LOAD_16LE(video->ocpIndex, 0, &state->video.ocpIndex);
video->ocpIndex &= 0x3F;
switch (video->mode) {
case 0:
video->modeEvent.callback = _endMode0;
break;
case 1:
video->modeEvent.callback = _endMode1;
break;
case 2:
video->modeEvent.callback = _endMode2;
break;
case 3:
video->modeEvent.callback = _endMode3;
break;
}
uint32_t when;
LOAD_32LE(when, 0, &state->video.nextMode);
if (!GBSerializedVideoFlagsIsNotModeEventScheduled(flags)) {
mTimingSchedule(&video->p->timing, &video->modeEvent, when);
} else {
video->modeEvent.when = when + mTimingCurrentTime(&video->p->timing);
}
LOAD_32LE(when, 0, &state->video.nextFrame);
if (!GBSerializedVideoFlagsIsNotFrameEventScheduled(flags)) {
mTimingSchedule(&video->p->timing, &video->frameEvent, when);
} else {
video->frameEvent.when = when + mTimingCurrentTime(&video->p->timing);
}
video->renderer->deinit(video->renderer);
video->renderer->init(video->renderer, video->p->model, video->sgbBorders);
size_t i;
for (i = 0; i < 64; ++i) {
LOAD_16LE(video->palette[i], i * 2, state->video.palette);
video->renderer->writePalette(video->renderer, i, video->palette[i]);
}
memcpy(video->vram, state->vram, GB_SIZE_VRAM);
memcpy(&video->oam.raw, state->oam, GB_SIZE_OAM);
_cleanOAM(video, video->ly);
GBVideoSwitchBank(video, video->vramCurrentBank);
}