/* Copyright (c) 2013-2016 Jeffrey Pfau * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include #include #include #include #include mLOG_DEFINE_CATEGORY(GB_VIDEO, "GB Video", "gb.video"); static void GBVideoDummyRendererInit(struct GBVideoRenderer* renderer, enum GBModel model, bool borders); static void GBVideoDummyRendererDeinit(struct GBVideoRenderer* renderer); static uint8_t GBVideoDummyRendererWriteVideoRegister(struct GBVideoRenderer* renderer, uint16_t address, uint8_t value); static void GBVideoDummyRendererWriteSGBPacket(struct GBVideoRenderer* renderer, uint8_t* data); static void GBVideoDummyRendererWritePalette(struct GBVideoRenderer* renderer, int index, uint16_t value); static void GBVideoDummyRendererWriteVRAM(struct GBVideoRenderer* renderer, uint16_t address); static void GBVideoDummyRendererWriteOAM(struct GBVideoRenderer* renderer, uint16_t oam); static void GBVideoDummyRendererDrawRange(struct GBVideoRenderer* renderer, int startX, int endX, int y); static void GBVideoDummyRendererFinishScanline(struct GBVideoRenderer* renderer, int y); static void GBVideoDummyRendererFinishFrame(struct GBVideoRenderer* renderer); static void GBVideoDummyRendererEnableSGBBorder(struct GBVideoRenderer* renderer, bool enable); static void GBVideoDummyRendererGetPixels(struct GBVideoRenderer* renderer, size_t* stride, const void** pixels); static void GBVideoDummyRendererPutPixels(struct GBVideoRenderer* renderer, size_t stride, const void* pixels); static void _cleanOAM(struct GBVideo* video, int y); static void _endMode0(struct mTiming* timing, void* context, uint32_t cyclesLate); static void _endMode1(struct mTiming* timing, void* context, uint32_t cyclesLate); static void _endMode2(struct mTiming* timing, void* context, uint32_t cyclesLate); static void _endMode3(struct mTiming* timing, void* context, uint32_t cyclesLate); static void _updateFrameCount(struct mTiming* timing, void* context, uint32_t cyclesLate); void GBVideoInit(struct GBVideo* video) { video->renderer = NULL; video->vram = anonymousMemoryMap(GB_SIZE_VRAM); video->frameskip = 0; video->modeEvent.context = video; video->modeEvent.name = "GB Video Mode"; video->modeEvent.callback = NULL; video->modeEvent.priority = 8; video->frameEvent.context = video; video->frameEvent.name = "GB Video Frame"; video->frameEvent.callback = _updateFrameCount; video->frameEvent.priority = 9; video->dmgPalette[0] = 0x7FFF; video->dmgPalette[1] = 0x56B5; video->dmgPalette[2] = 0x294A; video->dmgPalette[3] = 0x0000; video->dmgPalette[4] = 0x7FFF; video->dmgPalette[5] = 0x56B5; video->dmgPalette[6] = 0x294A; video->dmgPalette[7] = 0x0000; video->dmgPalette[8] = 0x7FFF; video->dmgPalette[9] = 0x56B5; video->dmgPalette[10] = 0x294A; video->dmgPalette[11] = 0x0000; video->sgbBorders = true; } void GBVideoReset(struct GBVideo* video) { video->ly = 0; video->x = 0; video->mode = 1; video->stat = 1; video->frameCounter = 0; video->frameskipCounter = 0; GBVideoSwitchBank(video, 0); memset(video->vram, 0, GB_SIZE_VRAM); video->renderer->vram = video->vram; memset(&video->oam, 0, sizeof(video->oam)); video->renderer->oam = &video->oam; memset(&video->palette, 0, sizeof(video->palette)); if (video->p->model & GB_MODEL_SGB) { if (video->renderer->sgbCharRam) { memset(video->renderer->sgbCharRam, 0, SGB_SIZE_CHAR_RAM); } else { video->renderer->sgbCharRam = anonymousMemoryMap(SGB_SIZE_CHAR_RAM); } if (video->renderer->sgbMapRam) { memset(video->renderer->sgbMapRam, 0, SGB_SIZE_MAP_RAM); } else { video->renderer->sgbMapRam = anonymousMemoryMap(SGB_SIZE_MAP_RAM); } if (video->renderer->sgbPalRam) { memset(video->renderer->sgbPalRam, 0, SGB_SIZE_PAL_RAM); } else { video->renderer->sgbPalRam = anonymousMemoryMap(SGB_SIZE_PAL_RAM); } if (video->renderer->sgbAttributeFiles) { memset(video->renderer->sgbAttributeFiles, 0, SGB_SIZE_ATF_RAM); } else { video->renderer->sgbAttributeFiles = anonymousMemoryMap(SGB_SIZE_ATF_RAM); } if (!video->renderer->sgbAttributes) { video->renderer->sgbAttributes = malloc(90 * 45); } memset(video->renderer->sgbAttributes, 0, 90 * 45); video->sgbCommandHeader = 0; video->sgbBufferIndex = 0; } else { if (video->renderer->sgbCharRam) { mappedMemoryFree(video->renderer->sgbCharRam, SGB_SIZE_CHAR_RAM); video->renderer->sgbCharRam = NULL; } if (video->renderer->sgbMapRam) { mappedMemoryFree(video->renderer->sgbMapRam, SGB_SIZE_MAP_RAM); video->renderer->sgbMapRam = NULL; } if (video->renderer->sgbPalRam) { mappedMemoryFree(video->renderer->sgbPalRam, SGB_SIZE_PAL_RAM); video->renderer->sgbPalRam = NULL; } if (video->renderer->sgbAttributeFiles) { mappedMemoryFree(video->renderer->sgbAttributeFiles, SGB_SIZE_ATF_RAM); video->renderer->sgbAttributeFiles = NULL; } if (video->renderer->sgbAttributes) { free(video->renderer->sgbAttributes); video->renderer->sgbAttributes = NULL; } } video->palette[0] = video->dmgPalette[0]; video->palette[1] = video->dmgPalette[1]; video->palette[2] = video->dmgPalette[2]; video->palette[3] = video->dmgPalette[3]; video->palette[8 * 4 + 0] = video->dmgPalette[4]; video->palette[8 * 4 + 1] = video->dmgPalette[5]; video->palette[8 * 4 + 2] = video->dmgPalette[6]; video->palette[8 * 4 + 3] = video->dmgPalette[7]; video->palette[9 * 4 + 0] = video->dmgPalette[8]; video->palette[9 * 4 + 1] = video->dmgPalette[9]; video->palette[9 * 4 + 2] = video->dmgPalette[10]; video->palette[9 * 4 + 3] = video->dmgPalette[11]; if (!video->renderer) { mLOG(GB_VIDEO, FATAL, "No renderer associated"); return; } video->renderer->deinit(video->renderer); video->renderer->init(video->renderer, video->p->model, video->sgbBorders); video->renderer->writePalette(video->renderer, 0, video->palette[0]); video->renderer->writePalette(video->renderer, 1, video->palette[1]); video->renderer->writePalette(video->renderer, 2, video->palette[2]); video->renderer->writePalette(video->renderer, 3, video->palette[3]); video->renderer->writePalette(video->renderer, 8 * 4 + 0, video->palette[8 * 4 + 0]); video->renderer->writePalette(video->renderer, 8 * 4 + 1, video->palette[8 * 4 + 1]); video->renderer->writePalette(video->renderer, 8 * 4 + 2, video->palette[8 * 4 + 2]); video->renderer->writePalette(video->renderer, 8 * 4 + 3, video->palette[8 * 4 + 3]); video->renderer->writePalette(video->renderer, 9 * 4 + 0, video->palette[9 * 4 + 0]); video->renderer->writePalette(video->renderer, 9 * 4 + 1, video->palette[9 * 4 + 1]); video->renderer->writePalette(video->renderer, 9 * 4 + 2, video->palette[9 * 4 + 2]); video->renderer->writePalette(video->renderer, 9 * 4 + 3, video->palette[9 * 4 + 3]); } void GBVideoDeinit(struct GBVideo* video) { video->renderer->deinit(video->renderer); mappedMemoryFree(video->vram, GB_SIZE_VRAM); if (video->renderer->sgbCharRam) { mappedMemoryFree(video->renderer->sgbCharRam, SGB_SIZE_CHAR_RAM); video->renderer->sgbCharRam = NULL; } if (video->renderer->sgbMapRam) { mappedMemoryFree(video->renderer->sgbMapRam, SGB_SIZE_MAP_RAM); video->renderer->sgbMapRam = NULL; } if (video->renderer->sgbPalRam) { mappedMemoryFree(video->renderer->sgbPalRam, SGB_SIZE_PAL_RAM); video->renderer->sgbPalRam = NULL; } if (video->renderer->sgbAttributeFiles) { mappedMemoryFree(video->renderer->sgbAttributeFiles, SGB_SIZE_ATF_RAM); video->renderer->sgbAttributeFiles = NULL; } if (video->renderer->sgbAttributes) { free(video->renderer->sgbAttributes); video->renderer->sgbAttributes = NULL; } } void GBVideoDummyRendererCreate(struct GBVideoRenderer* renderer) { static const struct GBVideoRenderer dummyRenderer = { .init = GBVideoDummyRendererInit, .deinit = GBVideoDummyRendererDeinit, .writeVideoRegister = GBVideoDummyRendererWriteVideoRegister, .writeSGBPacket = GBVideoDummyRendererWriteSGBPacket, .writeVRAM = GBVideoDummyRendererWriteVRAM, .writeOAM = GBVideoDummyRendererWriteOAM, .writePalette = GBVideoDummyRendererWritePalette, .drawRange = GBVideoDummyRendererDrawRange, .finishScanline = GBVideoDummyRendererFinishScanline, .finishFrame = GBVideoDummyRendererFinishFrame, .enableSGBBorder = GBVideoDummyRendererEnableSGBBorder, .getPixels = GBVideoDummyRendererGetPixels, .putPixels = GBVideoDummyRendererPutPixels, }; memcpy(renderer, &dummyRenderer, sizeof(*renderer)); } void GBVideoAssociateRenderer(struct GBVideo* video, struct GBVideoRenderer* renderer) { if (video->renderer) { video->renderer->deinit(video->renderer); renderer->cache = video->renderer->cache; renderer->sgbRenderMode = video->renderer->sgbRenderMode; renderer->sgbCharRam = video->renderer->sgbCharRam; renderer->sgbMapRam = video->renderer->sgbMapRam; renderer->sgbPalRam = video->renderer->sgbPalRam; renderer->sgbAttributeFiles = video->renderer->sgbAttributeFiles; renderer->sgbAttributes = video->renderer->sgbAttributes; } else { renderer->cache = NULL; renderer->sgbRenderMode = 0; renderer->sgbCharRam = NULL; renderer->sgbMapRam = NULL; renderer->sgbPalRam = NULL; renderer->sgbAttributeFiles = NULL; renderer->sgbAttributes = NULL; } video->renderer = renderer; renderer->vram = video->vram; video->renderer->init(video->renderer, video->p->model, video->sgbBorders); } static bool _statIRQAsserted(GBRegisterSTAT stat) { // TODO: variable for the IRQ line value? if (GBRegisterSTATIsLYCIRQ(stat) && GBRegisterSTATIsLYC(stat)) { return true; } switch (GBRegisterSTATGetMode(stat)) { case 0: if (GBRegisterSTATIsHblankIRQ(stat)) { return true; } break; case 1: if (GBRegisterSTATIsVblankIRQ(stat)) { return true; } break; case 2: if (GBRegisterSTATIsOAMIRQ(stat)) { return true; } break; case 3: break; } return false; } void GBVideoSkipBIOS(struct GBVideo* video) { video->mode = 1; video->modeEvent.callback = _endMode1; int32_t next; if (video->p->model & GB_MODEL_CGB) { video->ly = GB_VIDEO_VERTICAL_PIXELS; video->p->memory.io[GB_REG_LY] = video->ly; video->stat = GBRegisterSTATClearLYC(video->stat); next = 20; } else { video->ly = GB_VIDEO_VERTICAL_TOTAL_PIXELS; video->p->memory.io[GB_REG_LY] = 0; next = 56; } video->stat = GBRegisterSTATSetMode(video->stat, video->mode); video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_VBLANK); GBUpdateIRQs(video->p); video->p->memory.io[GB_REG_STAT] = video->stat; mTimingDeschedule(&video->p->timing, &video->modeEvent); mTimingSchedule(&video->p->timing, &video->modeEvent, next << 1); } void _endMode0(struct mTiming* timing, void* context, uint32_t cyclesLate) { struct GBVideo* video = context; if (video->frameskipCounter <= 0) { video->renderer->finishScanline(video->renderer, video->ly); } int lyc = video->p->memory.io[GB_REG_LYC]; int32_t next; ++video->ly; video->p->memory.io[GB_REG_LY] = video->ly; GBRegisterSTAT oldStat = video->stat; if (video->ly < GB_VIDEO_VERTICAL_PIXELS) { next = GB_VIDEO_MODE_2_LENGTH; video->mode = 2; video->modeEvent.callback = _endMode2; } else { next = GB_VIDEO_HORIZONTAL_LENGTH; video->mode = 1; video->modeEvent.callback = _endMode1; mTimingDeschedule(&video->p->timing, &video->frameEvent); mTimingSchedule(&video->p->timing, &video->frameEvent, -cyclesLate); if (!_statIRQAsserted(oldStat) && GBRegisterSTATIsOAMIRQ(video->stat)) { video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); } video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_VBLANK); } video->stat = GBRegisterSTATSetMode(video->stat, video->mode); if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); } // LYC stat is delayed 1 T-cycle oldStat = video->stat; video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->ly); if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); } GBUpdateIRQs(video->p); video->p->memory.io[GB_REG_STAT] = video->stat; mTimingSchedule(timing, &video->modeEvent, (next << 1) - cyclesLate); } void _endMode1(struct mTiming* timing, void* context, uint32_t cyclesLate) { struct GBVideo* video = context; if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) { return; } int lyc = video->p->memory.io[GB_REG_LYC]; // TODO: One M-cycle delay ++video->ly; int32_t next; if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS + 1) { video->ly = 0; video->p->memory.io[GB_REG_LY] = video->ly; next = GB_VIDEO_MODE_2_LENGTH; video->mode = 2; video->modeEvent.callback = _endMode2; } else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS) { video->p->memory.io[GB_REG_LY] = 0; next = GB_VIDEO_HORIZONTAL_LENGTH - 8; } else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS - 1) { video->p->memory.io[GB_REG_LY] = video->ly; next = 8; } else { video->p->memory.io[GB_REG_LY] = video->ly; next = GB_VIDEO_HORIZONTAL_LENGTH; } GBRegisterSTAT oldStat = video->stat; video->stat = GBRegisterSTATSetMode(video->stat, video->mode); video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->p->memory.io[GB_REG_LY]); if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); GBUpdateIRQs(video->p); } video->p->memory.io[GB_REG_STAT] = video->stat; mTimingSchedule(timing, &video->modeEvent, (next << 1) - cyclesLate); } void _endMode2(struct mTiming* timing, void* context, uint32_t cyclesLate) { struct GBVideo* video = context; _cleanOAM(video, video->ly); video->x = -(video->p->memory.io[GB_REG_SCX] & 7); video->dotClock = mTimingCurrentTime(timing) - cyclesLate + 10 - (video->x << 1); int32_t next = GB_VIDEO_MODE_3_LENGTH_BASE + video->objMax * 6 - video->x; video->mode = 3; video->modeEvent.callback = _endMode3; GBRegisterSTAT oldStat = video->stat; video->stat = GBRegisterSTATSetMode(video->stat, video->mode); if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); GBUpdateIRQs(video->p); } video->p->memory.io[GB_REG_STAT] = video->stat; mTimingSchedule(timing, &video->modeEvent, (next << 1) - cyclesLate); } void _endMode3(struct mTiming* timing, void* context, uint32_t cyclesLate) { struct GBVideo* video = context; GBVideoProcessDots(video, cyclesLate); if (video->ly < GB_VIDEO_VERTICAL_PIXELS && video->p->memory.isHdma && video->p->memory.io[GB_REG_HDMA5] != 0xFF) { video->p->memory.hdmaRemaining = 0x10; video->p->cpuBlocked = true; mTimingDeschedule(timing, &video->p->memory.hdmaEvent); mTimingSchedule(timing, &video->p->memory.hdmaEvent, 0); } video->mode = 0; video->modeEvent.callback = _endMode0; GBRegisterSTAT oldStat = video->stat; video->stat = GBRegisterSTATSetMode(video->stat, video->mode); if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); GBUpdateIRQs(video->p); } video->p->memory.io[GB_REG_STAT] = video->stat; // TODO: Cache SCX & 7 in case it changes int32_t next = GB_VIDEO_MODE_0_LENGTH_BASE - video->objMax * 6 - (video->p->memory.io[GB_REG_SCX] & 7); mTimingSchedule(timing, &video->modeEvent, (next << 1) - cyclesLate); } void _updateFrameCount(struct mTiming* timing, void* context, uint32_t cyclesLate) { UNUSED(cyclesLate); struct GBVideo* video = context; if (video->p->cpu->executionState != SM83_CORE_FETCH) { mTimingSchedule(timing, &video->frameEvent, (4 - ((video->p->cpu->executionState + 1) & 3)) * (2 - video->p->doubleSpeed)); return; } if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) { mTimingSchedule(timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH << 1); } --video->frameskipCounter; if (video->frameskipCounter < 0) { video->renderer->finishFrame(video->renderer); video->frameskipCounter = video->frameskip; } GBFrameEnded(video->p); mCoreSyncPostFrame(video->p->sync); ++video->frameCounter; video->p->earlyExit = true; GBFrameStarted(video->p); } static void _cleanOAM(struct GBVideo* video, int y) { int spriteHeight = 8; if (GBRegisterLCDCIsObjSize(video->p->memory.io[GB_REG_LCDC])) { spriteHeight = 16; } int o = 0; int i; for (i = 0; i < GB_VIDEO_MAX_OBJ && o < GB_VIDEO_MAX_LINE_OBJ; ++i) { uint8_t oy = video->oam.obj[i].y; if (y < oy - 16 || y >= oy - 16 + spriteHeight) { continue; } ++o; } video->objMax = o; } void GBVideoProcessDots(struct GBVideo* video, uint32_t cyclesLate) { if (video->mode != 3) { return; } int oldX = video->x; video->x = ((int32_t) (mTimingCurrentTime(&video->p->timing) - cyclesLate - video->dotClock)) >> 1; if (video->x > GB_VIDEO_HORIZONTAL_PIXELS) { video->x = GB_VIDEO_HORIZONTAL_PIXELS; } else if (video->x < 0) { return; } if (oldX < 0) { oldX = 0; } if (video->frameskipCounter <= 0) { video->renderer->drawRange(video->renderer, oldX, video->x, video->ly); } } void GBVideoWriteLCDC(struct GBVideo* video, GBRegisterLCDC value) { if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) && GBRegisterLCDCIsEnable(value)) { video->mode = 2; video->modeEvent.callback = _endMode2; int32_t next = GB_VIDEO_MODE_2_LENGTH - 5; // TODO: Why is this fudge factor needed? Might be related to T-cycles for load/store differing mTimingDeschedule(&video->p->timing, &video->modeEvent); mTimingSchedule(&video->p->timing, &video->modeEvent, next << 1); video->ly = 0; video->p->memory.io[GB_REG_LY] = 0; GBRegisterSTAT oldStat = video->stat; video->stat = GBRegisterSTATSetMode(video->stat, 0); video->stat = GBRegisterSTATSetLYC(video->stat, video->ly == video->p->memory.io[GB_REG_LYC]); if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); GBUpdateIRQs(video->p); } video->p->memory.io[GB_REG_STAT] = video->stat; video->renderer->writePalette(video->renderer, 0, video->palette[0]); mTimingDeschedule(&video->p->timing, &video->frameEvent); } if (GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) && !GBRegisterLCDCIsEnable(value)) { // TODO: Fix serialization; this gets internal and visible modes out of sync video->mode = 0; video->stat = GBRegisterSTATSetMode(video->stat, 0); video->p->memory.io[GB_REG_STAT] = video->stat; video->ly = 0; video->p->memory.io[GB_REG_LY] = 0; video->renderer->writePalette(video->renderer, 0, video->dmgPalette[0]); mTimingDeschedule(&video->p->timing, &video->modeEvent); mTimingDeschedule(&video->p->timing, &video->frameEvent); mTimingSchedule(&video->p->timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH << 1); } video->p->memory.io[GB_REG_STAT] = video->stat; } void GBVideoWriteSTAT(struct GBVideo* video, GBRegisterSTAT value) { GBRegisterSTAT oldStat = video->stat; video->stat = (video->stat & 0x7) | (value & 0x78); if (!GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC]) || video->p->model >= GB_MODEL_CGB) { return; } if (!_statIRQAsserted(oldStat) && video->mode < 3) { // TODO: variable for the IRQ line value? video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); GBUpdateIRQs(video->p); } } void GBVideoWriteLYC(struct GBVideo* video, uint8_t value) { GBRegisterSTAT oldStat = video->stat; if (GBRegisterLCDCIsEnable(video->p->memory.io[GB_REG_LCDC])) { video->stat = GBRegisterSTATSetLYC(video->stat, value == video->ly); if (!_statIRQAsserted(oldStat) && _statIRQAsserted(video->stat)) { video->p->memory.io[GB_REG_IF] |= (1 << GB_IRQ_LCDSTAT); GBUpdateIRQs(video->p); } } video->p->memory.io[GB_REG_STAT] = video->stat; } void GBVideoWritePalette(struct GBVideo* video, uint16_t address, uint8_t value) { if (video->p->model < GB_MODEL_SGB) { switch (address) { case GB_REG_BGP: video->palette[0] = video->dmgPalette[value & 3]; video->palette[1] = video->dmgPalette[(value >> 2) & 3]; video->palette[2] = video->dmgPalette[(value >> 4) & 3]; video->palette[3] = video->dmgPalette[(value >> 6) & 3]; video->renderer->writePalette(video->renderer, 0, video->palette[0]); video->renderer->writePalette(video->renderer, 1, video->palette[1]); video->renderer->writePalette(video->renderer, 2, video->palette[2]); video->renderer->writePalette(video->renderer, 3, video->palette[3]); break; case GB_REG_OBP0: video->palette[8 * 4 + 0] = video->dmgPalette[(value & 3) + 4]; video->palette[8 * 4 + 1] = video->dmgPalette[((value >> 2) & 3) + 4]; video->palette[8 * 4 + 2] = video->dmgPalette[((value >> 4) & 3) + 4]; video->palette[8 * 4 + 3] = video->dmgPalette[((value >> 6) & 3) + 4]; video->renderer->writePalette(video->renderer, 8 * 4 + 0, video->palette[8 * 4 + 0]); video->renderer->writePalette(video->renderer, 8 * 4 + 1, video->palette[8 * 4 + 1]); video->renderer->writePalette(video->renderer, 8 * 4 + 2, video->palette[8 * 4 + 2]); video->renderer->writePalette(video->renderer, 8 * 4 + 3, video->palette[8 * 4 + 3]); break; case GB_REG_OBP1: video->palette[9 * 4 + 0] = video->dmgPalette[(value & 3) + 8]; video->palette[9 * 4 + 1] = video->dmgPalette[((value >> 2) & 3) + 8]; video->palette[9 * 4 + 2] = video->dmgPalette[((value >> 4) & 3) + 8]; video->palette[9 * 4 + 3] = video->dmgPalette[((value >> 6) & 3) + 8]; video->renderer->writePalette(video->renderer, 9 * 4 + 0, video->palette[9 * 4 + 0]); video->renderer->writePalette(video->renderer, 9 * 4 + 1, video->palette[9 * 4 + 1]); video->renderer->writePalette(video->renderer, 9 * 4 + 2, video->palette[9 * 4 + 2]); video->renderer->writePalette(video->renderer, 9 * 4 + 3, video->palette[9 * 4 + 3]); break; } } else if (video->p->model >= GB_MODEL_CGB) { switch (address) { case GB_REG_BCPD: if (video->mode != 3) { if (video->bcpIndex & 1) { video->palette[video->bcpIndex >> 1] &= 0x00FF; video->palette[video->bcpIndex >> 1] |= value << 8; } else { video->palette[video->bcpIndex >> 1] &= 0xFF00; video->palette[video->bcpIndex >> 1] |= value; } video->renderer->writePalette(video->renderer, video->bcpIndex >> 1, video->palette[video->bcpIndex >> 1]); } if (video->bcpIncrement) { ++video->bcpIndex; video->bcpIndex &= 0x3F; video->p->memory.io[GB_REG_BCPS] &= 0x80; video->p->memory.io[GB_REG_BCPS] |= video->bcpIndex; } video->p->memory.io[GB_REG_BCPD] = video->palette[video->bcpIndex >> 1] >> (8 * (video->bcpIndex & 1)); break; case GB_REG_OCPD: if (video->mode != 3) { if (video->ocpIndex & 1) { video->palette[8 * 4 + (video->ocpIndex >> 1)] &= 0x00FF; video->palette[8 * 4 + (video->ocpIndex >> 1)] |= value << 8; } else { video->palette[8 * 4 + (video->ocpIndex >> 1)] &= 0xFF00; video->palette[8 * 4 + (video->ocpIndex >> 1)] |= value; } video->renderer->writePalette(video->renderer, 8 * 4 + (video->ocpIndex >> 1), video->palette[8 * 4 + (video->ocpIndex >> 1)]); } if (video->ocpIncrement) { ++video->ocpIndex; video->ocpIndex &= 0x3F; video->p->memory.io[GB_REG_OCPS] &= 0x80; video->p->memory.io[GB_REG_OCPS] |= video->ocpIndex; } video->p->memory.io[GB_REG_OCPD] = video->palette[8 * 4 + (video->ocpIndex >> 1)] >> (8 * (video->ocpIndex & 1)); break; } } else { video->renderer->writeVideoRegister(video->renderer, address, value); } } void GBVideoSwitchBank(struct GBVideo* video, uint8_t value) { value &= 1; video->vramBank = &video->vram[value * GB_SIZE_VRAM_BANK0]; video->vramCurrentBank = value; } void GBVideoSetPalette(struct GBVideo* video, unsigned index, uint32_t color) { if (index >= 12) { return; } video->dmgPalette[index] = M_RGB8_TO_RGB5(color); } void GBVideoDisableCGB(struct GBVideo* video) { video->dmgPalette[0] = video->palette[0]; video->dmgPalette[1] = video->palette[1]; video->dmgPalette[2] = video->palette[2]; video->dmgPalette[3] = video->palette[3]; video->dmgPalette[4] = video->palette[8 * 4 + 0]; video->dmgPalette[5] = video->palette[8 * 4 + 1]; video->dmgPalette[6] = video->palette[8 * 4 + 2]; video->dmgPalette[7] = video->palette[8 * 4 + 3]; video->dmgPalette[8] = video->palette[9 * 4 + 0]; video->dmgPalette[9] = video->palette[9 * 4 + 1]; video->dmgPalette[10] = video->palette[9 * 4 + 2]; video->dmgPalette[11] = video->palette[9 * 4 + 3]; video->renderer->deinit(video->renderer); video->renderer->init(video->renderer, video->p->model, video->sgbBorders); } void GBVideoWriteSGBPacket(struct GBVideo* video, uint8_t* data) { int i; if (!(video->sgbCommandHeader & 7)) { video->sgbBufferIndex = 0; if ((data[0] >> 3) > SGB_OBJ_TRN) { video->sgbCommandHeader = 0; return; } video->sgbCommandHeader = data[0]; } --video->sgbCommandHeader; memcpy(&video->sgbPacketBuffer[video->sgbBufferIndex << 4], data, 16); ++video->sgbBufferIndex; if (video->sgbCommandHeader & 7) { return; } switch (video->sgbCommandHeader >> 3) { case SGB_PAL01: video->palette[0] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8); video->palette[1] = video->sgbPacketBuffer[3] | (video->sgbPacketBuffer[4] << 8); video->palette[2] = video->sgbPacketBuffer[5] | (video->sgbPacketBuffer[6] << 8); video->palette[3] = video->sgbPacketBuffer[7] | (video->sgbPacketBuffer[8] << 8); video->palette[4] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8); video->palette[5] = video->sgbPacketBuffer[9] | (video->sgbPacketBuffer[10] << 8); video->palette[6] = video->sgbPacketBuffer[11] | (video->sgbPacketBuffer[12] << 8); video->palette[7] = video->sgbPacketBuffer[13] | (video->sgbPacketBuffer[14] << 8); video->palette[8] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8); video->palette[12] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8); video->renderer->writePalette(video->renderer, 0, video->palette[0]); video->renderer->writePalette(video->renderer, 1, video->palette[1]); video->renderer->writePalette(video->renderer, 2, video->palette[2]); video->renderer->writePalette(video->renderer, 3, video->palette[3]); video->renderer->writePalette(video->renderer, 4, video->palette[4]); video->renderer->writePalette(video->renderer, 5, video->palette[5]); video->renderer->writePalette(video->renderer, 6, video->palette[6]); video->renderer->writePalette(video->renderer, 7, video->palette[7]); video->renderer->writePalette(video->renderer, 8, video->palette[8]); video->renderer->writePalette(video->renderer, 12, video->palette[12]); break; case SGB_PAL23: video->palette[9] = video->sgbPacketBuffer[3] | (video->sgbPacketBuffer[4] << 8); video->palette[10] = video->sgbPacketBuffer[5] | (video->sgbPacketBuffer[6] << 8); video->palette[11] = video->sgbPacketBuffer[7] | (video->sgbPacketBuffer[8] << 8); video->palette[13] = video->sgbPacketBuffer[9] | (video->sgbPacketBuffer[10] << 8); video->palette[14] = video->sgbPacketBuffer[11] | (video->sgbPacketBuffer[12] << 8); video->palette[15] = video->sgbPacketBuffer[13] | (video->sgbPacketBuffer[14] << 8); video->renderer->writePalette(video->renderer, 9, video->palette[9]); video->renderer->writePalette(video->renderer, 10, video->palette[10]); video->renderer->writePalette(video->renderer, 11, video->palette[11]); video->renderer->writePalette(video->renderer, 13, video->palette[13]); video->renderer->writePalette(video->renderer, 14, video->palette[14]); video->renderer->writePalette(video->renderer, 15, video->palette[15]); break; case SGB_PAL03: video->palette[0] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8); video->palette[1] = video->sgbPacketBuffer[3] | (video->sgbPacketBuffer[4] << 8); video->palette[2] = video->sgbPacketBuffer[5] | (video->sgbPacketBuffer[6] << 8); video->palette[3] = video->sgbPacketBuffer[7] | (video->sgbPacketBuffer[8] << 8); video->palette[4] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8); video->palette[8] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8); video->palette[12] = video->sgbPacketBuffer[1] | (video->sgbPacketBuffer[2] << 8); video->palette[13] = video->sgbPacketBuffer[9] | (video->sgbPacketBuffer[10] << 8); video->palette[14] = video->sgbPacketBuffer[11] | (video->sgbPacketBuffer[12] << 8); video->palette[15] = video->sgbPacketBuffer[13] | (video->sgbPacketBuffer[14] << 8); video->renderer->writePalette(video->renderer, 0, video->palette[0]); video->renderer->writePalette(video->renderer, 1, video->palette[1]); video->renderer->writePalette(video->renderer, 2, video->palette[2]); video->renderer->writePalette(video->renderer, 3, video->palette[3]); video->renderer->writePalette(video->renderer, 4, video->palette[4]); video->renderer->writePalette(video->renderer, 8, video->palette[8]); video->renderer->writePalette(video->renderer, 12, video->palette[12]); video->renderer->writePalette(video->renderer, 13, video->palette[13]); video->renderer->writePalette(video->renderer, 14, video->palette[14]); video->renderer->writePalette(video->renderer, 15, video->palette[15]); break; case SGB_PAL12: video->palette[5] = video->sgbPacketBuffer[3] | (video->sgbPacketBuffer[4] << 8); video->palette[6] = video->sgbPacketBuffer[5] | (video->sgbPacketBuffer[6] << 8); video->palette[7] = video->sgbPacketBuffer[7] | (video->sgbPacketBuffer[8] << 8); video->palette[9] = video->sgbPacketBuffer[9] | (video->sgbPacketBuffer[10] << 8); video->palette[10] = video->sgbPacketBuffer[11] | (video->sgbPacketBuffer[12] << 8); video->palette[11] = video->sgbPacketBuffer[13] | (video->sgbPacketBuffer[14] << 8); video->renderer->writePalette(video->renderer, 5, video->palette[5]); video->renderer->writePalette(video->renderer, 6, video->palette[6]); video->renderer->writePalette(video->renderer, 7, video->palette[7]); video->renderer->writePalette(video->renderer, 9, video->palette[9]); video->renderer->writePalette(video->renderer, 10, video->palette[10]); video->renderer->writePalette(video->renderer, 11, video->palette[11]); break; case SGB_PAL_SET: for (i = 0; i < 4; ++i) { uint16_t entry = (video->sgbPacketBuffer[2 + (i * 2)] << 8) | video->sgbPacketBuffer[1 + (i * 2)]; if (entry >= 0x200) { mLOG(GB, STUB, "Unimplemented SGB palette overflow: %03X", entry); continue; } LOAD_16LE(video->palette[i * 4 + 0], entry * 8 + 0, video->renderer->sgbPalRam); video->renderer->writePalette(video->renderer, i * 4 + 0, video->palette[i * 4 + 0]); LOAD_16LE(video->palette[i * 4 + 1], entry * 8 + 2, video->renderer->sgbPalRam); video->renderer->writePalette(video->renderer, i * 4 + 1, video->palette[i * 4 + 1]); LOAD_16LE(video->palette[i * 4 + 2], entry * 8 + 4, video->renderer->sgbPalRam); video->renderer->writePalette(video->renderer, i * 4 + 2, video->palette[i * 4 + 2]); LOAD_16LE(video->palette[i * 4 + 3], entry * 8 + 6, video->renderer->sgbPalRam); video->renderer->writePalette(video->renderer, i * 4 + 3, video->palette[i * 4 + 3]); } break; case SGB_ATTR_BLK: case SGB_ATTR_DIV: case SGB_ATTR_CHR: case SGB_ATTR_LIN: case SGB_PAL_TRN: case SGB_ATRC_EN: case SGB_CHR_TRN: case SGB_PCT_TRN: case SGB_ATTR_TRN: case SGB_ATTR_SET: break; case SGB_MLT_REQ: if ((video->sgbPacketBuffer[1] & 0x3) == 2) { // XXX: This unmasked increment appears to be an SGB hardware bug ++video->p->sgbCurrentController; } video->p->sgbControllers = video->sgbPacketBuffer[1] & 0x3; video->p->sgbCurrentController &= video->p->sgbControllers; return; case SGB_MASK_EN: video->renderer->sgbRenderMode = video->sgbPacketBuffer[1] & 0x3; break; default: mLOG(GB, STUB, "Unimplemented SGB command: %02X", video->sgbPacketBuffer[0] >> 3); return; } video->renderer->writeSGBPacket(video->renderer, video->sgbPacketBuffer); } static void GBVideoDummyRendererInit(struct GBVideoRenderer* renderer, enum GBModel model, bool borders) { UNUSED(renderer); UNUSED(model); UNUSED(borders); // Nothing to do } static void GBVideoDummyRendererDeinit(struct GBVideoRenderer* renderer) { UNUSED(renderer); // Nothing to do } static uint8_t GBVideoDummyRendererWriteVideoRegister(struct GBVideoRenderer* renderer, uint16_t address, uint8_t value) { if (renderer->cache) { GBVideoCacheWriteVideoRegister(renderer->cache, address, value); } return value; } static void GBVideoDummyRendererWriteSGBPacket(struct GBVideoRenderer* renderer, uint8_t* data) { UNUSED(renderer); UNUSED(data); } static void GBVideoDummyRendererWriteVRAM(struct GBVideoRenderer* renderer, uint16_t address) { if (renderer->cache) { mCacheSetWriteVRAM(renderer->cache, address); } } static void GBVideoDummyRendererWriteOAM(struct GBVideoRenderer* renderer, uint16_t oam) { UNUSED(renderer); UNUSED(oam); // Nothing to do } static void GBVideoDummyRendererWritePalette(struct GBVideoRenderer* renderer, int index, uint16_t value) { if (renderer->cache) { mCacheSetWritePalette(renderer->cache, index, mColorFrom555(value)); } } static void GBVideoDummyRendererDrawRange(struct GBVideoRenderer* renderer, int startX, int endX, int y) { UNUSED(renderer); UNUSED(endX); UNUSED(startX); UNUSED(y); // Nothing to do } static void GBVideoDummyRendererFinishScanline(struct GBVideoRenderer* renderer, int y) { UNUSED(renderer); UNUSED(y); // Nothing to do } static void GBVideoDummyRendererFinishFrame(struct GBVideoRenderer* renderer) { UNUSED(renderer); // Nothing to do } static void GBVideoDummyRendererEnableSGBBorder(struct GBVideoRenderer* renderer, bool enable) { UNUSED(renderer); UNUSED(enable); // Nothing to do } static void GBVideoDummyRendererGetPixels(struct GBVideoRenderer* renderer, size_t* stride, const void** pixels) { UNUSED(renderer); UNUSED(stride); UNUSED(pixels); // Nothing to do } static void GBVideoDummyRendererPutPixels(struct GBVideoRenderer* renderer, size_t stride, const void* pixels) { UNUSED(renderer); UNUSED(stride); UNUSED(pixels); // Nothing to do } void GBVideoSerialize(const struct GBVideo* video, struct GBSerializedState* state) { STORE_16LE(video->x, 0, &state->video.x); STORE_16LE(video->ly, 0, &state->video.ly); STORE_32LE(video->frameCounter, 0, &state->video.frameCounter); STORE_32LE(video->dotClock, 0, &state->video.dotCounter); state->video.vramCurrentBank = video->vramCurrentBank; GBSerializedVideoFlags flags = 0; flags = GBSerializedVideoFlagsSetBcpIncrement(flags, video->bcpIncrement); flags = GBSerializedVideoFlagsSetOcpIncrement(flags, video->ocpIncrement); flags = GBSerializedVideoFlagsSetMode(flags, video->mode); flags = GBSerializedVideoFlagsSetNotModeEventScheduled(flags, !mTimingIsScheduled(&video->p->timing, &video->modeEvent)); flags = GBSerializedVideoFlagsSetNotFrameEventScheduled(flags, !mTimingIsScheduled(&video->p->timing, &video->frameEvent)); state->video.flags = flags; STORE_16LE(video->bcpIndex, 0, &state->video.bcpIndex); STORE_16LE(video->ocpIndex, 0, &state->video.ocpIndex); size_t i; for (i = 0; i < 64; ++i) { STORE_16LE(video->palette[i], i * 2, state->video.palette); } STORE_32LE(video->modeEvent.when - mTimingCurrentTime(&video->p->timing), 0, &state->video.nextMode); STORE_32LE(video->frameEvent.when - mTimingCurrentTime(&video->p->timing), 0, &state->video.nextFrame); memcpy(state->vram, video->vram, GB_SIZE_VRAM); memcpy(state->oam, &video->oam.raw, GB_SIZE_OAM); } void GBVideoDeserialize(struct GBVideo* video, const struct GBSerializedState* state) { LOAD_16LE(video->x, 0, &state->video.x); LOAD_16LE(video->ly, 0, &state->video.ly); LOAD_32LE(video->frameCounter, 0, &state->video.frameCounter); LOAD_32LE(video->dotClock, 0, &state->video.dotCounter); video->x = (int16_t) video->x; // Ensure proper sign extension--the LOAD_16 is unsigned video->vramCurrentBank = state->video.vramCurrentBank; GBSerializedVideoFlags flags = state->video.flags; video->bcpIncrement = GBSerializedVideoFlagsGetBcpIncrement(flags); video->ocpIncrement = GBSerializedVideoFlagsGetOcpIncrement(flags); video->mode = GBSerializedVideoFlagsGetMode(flags); LOAD_16LE(video->bcpIndex, 0, &state->video.bcpIndex); video->bcpIndex &= 0x3F; LOAD_16LE(video->ocpIndex, 0, &state->video.ocpIndex); video->ocpIndex &= 0x3F; switch (video->mode) { case 0: video->modeEvent.callback = _endMode0; break; case 1: video->modeEvent.callback = _endMode1; break; case 2: video->modeEvent.callback = _endMode2; break; case 3: video->modeEvent.callback = _endMode3; break; } uint32_t when; LOAD_32LE(when, 0, &state->video.nextMode); if (!GBSerializedVideoFlagsIsNotModeEventScheduled(flags)) { mTimingSchedule(&video->p->timing, &video->modeEvent, when); } else { video->modeEvent.when = when + mTimingCurrentTime(&video->p->timing); } LOAD_32LE(when, 0, &state->video.nextFrame); if (!GBSerializedVideoFlagsIsNotFrameEventScheduled(flags)) { mTimingSchedule(&video->p->timing, &video->frameEvent, when); } else { video->frameEvent.when = when + mTimingCurrentTime(&video->p->timing); } video->renderer->deinit(video->renderer); video->renderer->init(video->renderer, video->p->model, video->sgbBorders); size_t i; for (i = 0; i < 64; ++i) { LOAD_16LE(video->palette[i], i * 2, state->video.palette); video->renderer->writePalette(video->renderer, i, video->palette[i]); } memcpy(video->vram, state->vram, GB_SIZE_VRAM); memcpy(&video->oam.raw, state->oam, GB_SIZE_OAM); _cleanOAM(video, video->ly); GBVideoSwitchBank(video, video->vramCurrentBank); }