mgba/src/gb/core.c

1288 lines
40 KiB
C

/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <mgba/gb/core.h>
#include <mgba/core/core.h>
#include <mgba/internal/debugger/symbols.h>
#include <mgba/internal/gb/cheats.h>
#include <mgba/internal/gb/debugger/debugger.h>
#include <mgba/internal/gb/debugger/symbols.h>
#include <mgba/internal/gb/extra/cli.h>
#include <mgba/internal/gb/io.h>
#include <mgba/internal/gb/gb.h>
#include <mgba/internal/gb/input.h>
#include <mgba/internal/gb/mbc.h>
#include <mgba/internal/gb/overrides.h>
#include <mgba/internal/gb/renderers/software.h>
#include <mgba/internal/gb/renderers/proxy.h>
#include <mgba/internal/gb/serialize.h>
#include <mgba/internal/sm83/sm83.h>
#include <mgba/internal/sm83/debugger/debugger.h>
#include <mgba-util/crc32.h>
#include <mgba-util/memory.h>
#include <mgba-util/patch.h>
#include <mgba-util/vfs.h>
#ifndef MINIMAL_CORE
#include <mgba/internal/gba/input.h>
#endif
static const struct mCoreChannelInfo _GBVideoLayers[] = {
{ GB_LAYER_BACKGROUND, "bg", "Background", NULL },
{ GB_LAYER_WINDOW, "bgwin", "Window", NULL },
{ GB_LAYER_OBJ, "obj", "Objects", NULL },
};
static const struct mCoreChannelInfo _GBAudioChannels[] = {
{ 0, "ch1", "Channel 1", "Square/Sweep" },
{ 1, "ch2", "Channel 2", "Square" },
{ 2, "ch3", "Channel 3", "PCM" },
{ 3, "ch4", "Channel 4", "Noise" },
};
static const struct mCoreMemoryBlock _GBMemoryBlocks[] = {
{ -1, "mem", "All", "All", 0, 0x10000, 0x10000, mCORE_MEMORY_VIRTUAL },
{ GB_REGION_CART_BANK0, "cart0", "ROM Bank", "Game Pak (32kiB)", GB_BASE_CART_BANK0, GB_BASE_CART_BANK0 + GB_SIZE_CART_BANK0 * 2, 0x800000, mCORE_MEMORY_READ | mCORE_MEMORY_WORM | mCORE_MEMORY_MAPPED, 511, GB_BASE_CART_BANK0 + GB_SIZE_CART_BANK0 },
{ GB_REGION_VRAM, "vram", "VRAM", "Video RAM (8kiB)", GB_BASE_VRAM, GB_BASE_VRAM + GB_SIZE_VRAM, GB_SIZE_VRAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED },
{ GB_REGION_EXTERNAL_RAM, "sram", "SRAM", "External RAM (8kiB)", GB_BASE_EXTERNAL_RAM, GB_BASE_EXTERNAL_RAM + GB_SIZE_EXTERNAL_RAM, GB_SIZE_EXTERNAL_RAM * 4, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED, 3 },
{ GB_REGION_WORKING_RAM_BANK0, "wram", "WRAM", "Working RAM (8kiB)", GB_BASE_WORKING_RAM_BANK0, GB_BASE_WORKING_RAM_BANK0 + GB_SIZE_WORKING_RAM_BANK0 * 2 , GB_SIZE_WORKING_RAM_BANK0 * 2, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED },
{ GB_BASE_OAM, "oam", "OAM", "OBJ Attribute Memory", GB_BASE_OAM, GB_BASE_OAM + GB_SIZE_OAM, GB_SIZE_OAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED },
{ GB_BASE_IO, "io", "MMIO", "Memory-Mapped I/O", GB_BASE_IO, GB_BASE_IO + GB_SIZE_IO, GB_SIZE_IO, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED },
{ GB_BASE_HRAM, "hram", "HRAM", "High RAM", GB_BASE_HRAM, GB_BASE_HRAM + GB_SIZE_HRAM, GB_SIZE_HRAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED },
};
static const struct mCoreMemoryBlock _GBCMemoryBlocks[] = {
{ -1, "mem", "All", "All", 0, 0x10000, 0x10000, mCORE_MEMORY_VIRTUAL },
{ GB_REGION_CART_BANK0, "cart0", "ROM Bank", "Game Pak (32kiB)", GB_BASE_CART_BANK0, GB_BASE_CART_BANK0 + GB_SIZE_CART_BANK0 * 2, 0x800000, mCORE_MEMORY_READ | mCORE_MEMORY_WORM | mCORE_MEMORY_MAPPED, 511, GB_BASE_CART_BANK0 + GB_SIZE_CART_BANK0 },
{ GB_REGION_VRAM, "vram", "VRAM", "Video RAM (8kiB)", GB_BASE_VRAM, GB_BASE_VRAM + GB_SIZE_VRAM, GB_SIZE_VRAM * 2, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED, 1 },
{ GB_REGION_EXTERNAL_RAM, "sram", "SRAM", "External RAM (8kiB)", GB_BASE_EXTERNAL_RAM, GB_BASE_EXTERNAL_RAM + GB_SIZE_EXTERNAL_RAM, GB_SIZE_EXTERNAL_RAM * 4, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED, 3 },
{ GB_REGION_WORKING_RAM_BANK0, "wram", "WRAM", "Working RAM (8kiB)", GB_BASE_WORKING_RAM_BANK0, GB_BASE_WORKING_RAM_BANK0 + GB_SIZE_WORKING_RAM_BANK0 * 2, GB_SIZE_WORKING_RAM_BANK0 * 8, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED, 7, GB_BASE_WORKING_RAM_BANK0 + GB_SIZE_WORKING_RAM_BANK0 },
{ GB_BASE_OAM, "oam", "OAM", "OBJ Attribute Memory", GB_BASE_OAM, GB_BASE_OAM + GB_SIZE_OAM, GB_SIZE_OAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED },
{ GB_BASE_IO, "io", "MMIO", "Memory-Mapped I/O", GB_BASE_IO, GB_BASE_IO + GB_SIZE_IO, GB_SIZE_IO, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED },
{ GB_BASE_HRAM, "hram", "HRAM", "High RAM", GB_BASE_HRAM, GB_BASE_HRAM + GB_SIZE_HRAM, GB_SIZE_HRAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED },
};
struct mVideoLogContext;
struct GBCore {
struct mCore d;
struct GBVideoRenderer dummyRenderer;
struct GBVideoSoftwareRenderer renderer;
#ifndef MINIMAL_CORE
struct GBVideoProxyRenderer proxyRenderer;
struct mVideoLogContext* logContext;
#endif
struct mCoreCallbacks logCallbacks;
uint8_t keys;
struct mCPUComponent* components[CPU_COMPONENT_MAX];
const struct Configuration* overrides;
struct mDebuggerPlatform* debuggerPlatform;
struct mCheatDevice* cheatDevice;
struct mCoreMemoryBlock memoryBlocks[8];
};
static bool _GBCoreInit(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
struct SM83Core* cpu = anonymousMemoryMap(sizeof(struct SM83Core));
struct GB* gb = anonymousMemoryMap(sizeof(struct GB));
if (!cpu || !gb) {
free(cpu);
free(gb);
return false;
}
core->cpu = cpu;
core->board = gb;
core->timing = &gb->timing;
gbcore->overrides = NULL;
gbcore->debuggerPlatform = NULL;
gbcore->cheatDevice = NULL;
#ifndef MINIMAL_CORE
gbcore->logContext = NULL;
#endif
memcpy(gbcore->memoryBlocks, _GBMemoryBlocks, sizeof(_GBMemoryBlocks));
GBCreate(gb);
memset(gbcore->components, 0, sizeof(gbcore->components));
SM83SetComponents(cpu, &gb->d, CPU_COMPONENT_MAX, gbcore->components);
SM83Init(cpu);
mRTCGenericSourceInit(&core->rtc, core);
gb->memory.rtc = &core->rtc.d;
GBVideoDummyRendererCreate(&gbcore->dummyRenderer);
GBVideoAssociateRenderer(&gb->video, &gbcore->dummyRenderer);
GBVideoSoftwareRendererCreate(&gbcore->renderer);
gbcore->renderer.outputBuffer = NULL;
#ifndef MINIMAL_CORE
gbcore->proxyRenderer.logger = NULL;
#endif
gbcore->keys = 0;
gb->keySource = &gbcore->keys;
#if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2
mDirectorySetInit(&core->dirs);
#endif
#ifndef MINIMAL_CORE
core->inputInfo = &GBInputInfo;
#endif
return true;
}
static void _GBCoreDeinit(struct mCore* core) {
SM83Deinit(core->cpu);
GBDestroy(core->board);
mappedMemoryFree(core->cpu, sizeof(struct SM83Core));
mappedMemoryFree(core->board, sizeof(struct GB));
#if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2
mDirectorySetDeinit(&core->dirs);
#endif
#ifdef USE_DEBUGGERS
if (core->symbolTable) {
mDebuggerSymbolTableDestroy(core->symbolTable);
}
#endif
struct GBCore* gbcore = (struct GBCore*) core;
free(gbcore->debuggerPlatform);
if (gbcore->cheatDevice) {
mCheatDeviceDestroy(gbcore->cheatDevice);
}
mCoreConfigFreeOpts(&core->opts);
free(core);
}
static enum mPlatform _GBCorePlatform(const struct mCore* core) {
UNUSED(core);
return mPLATFORM_GB;
}
static bool _GBCoreSupportsFeature(const struct mCore* core, enum mCoreFeature feature) {
UNUSED(core);
switch (feature) {
default:
return false;
}
}
static void _GBCoreSetSync(struct mCore* core, struct mCoreSync* sync) {
struct GB* gb = core->board;
gb->sync = sync;
}
static void _GBCoreLoadConfig(struct mCore* core, const struct mCoreConfig* config) {
UNUSED(config);
struct GB* gb = core->board;
if (core->opts.mute) {
gb->audio.masterVolume = 0;
} else {
gb->audio.masterVolume = core->opts.volume;
}
gb->video.frameskip = core->opts.frameskip;
int color;
if (mCoreConfigGetIntValue(config, "gb.pal[0]", &color)) {
GBVideoSetPalette(&gb->video, 0, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[1]", &color)) {
GBVideoSetPalette(&gb->video, 1, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[2]", &color)) {
GBVideoSetPalette(&gb->video, 2, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[3]", &color)) {
GBVideoSetPalette(&gb->video, 3, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[4]", &color)) {
GBVideoSetPalette(&gb->video, 4, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[5]", &color)) {
GBVideoSetPalette(&gb->video, 5, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[6]", &color)) {
GBVideoSetPalette(&gb->video, 6, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[7]", &color)) {
GBVideoSetPalette(&gb->video, 7, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[8]", &color)) {
GBVideoSetPalette(&gb->video, 8, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[9]", &color)) {
GBVideoSetPalette(&gb->video, 9, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[10]", &color)) {
GBVideoSetPalette(&gb->video, 10, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[11]", &color)) {
GBVideoSetPalette(&gb->video, 11, color);
}
mCoreConfigCopyValue(&core->config, config, "gb.bios");
mCoreConfigCopyValue(&core->config, config, "sgb.bios");
mCoreConfigCopyValue(&core->config, config, "gbc.bios");
mCoreConfigCopyValue(&core->config, config, "gb.model");
mCoreConfigCopyValue(&core->config, config, "sgb.model");
mCoreConfigCopyValue(&core->config, config, "cgb.model");
mCoreConfigCopyValue(&core->config, config, "cgb.hybridModel");
mCoreConfigCopyValue(&core->config, config, "cgb.sgbModel");
mCoreConfigCopyValue(&core->config, config, "gb.colors");
mCoreConfigCopyValue(&core->config, config, "useCgbColors");
mCoreConfigCopyValue(&core->config, config, "allowOpposingDirections");
int fakeBool = 0;
mCoreConfigGetIntValue(config, "allowOpposingDirections", &fakeBool);
gb->allowOpposingDirections = fakeBool;
if (mCoreConfigGetIntValue(config, "sgb.borders", &fakeBool)) {
gb->video.sgbBorders = fakeBool;
gb->video.renderer->enableSGBBorder(gb->video.renderer, fakeBool);
}
#if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2
struct GBCore* gbcore = (struct GBCore*) core;
gbcore->overrides = mCoreConfigGetOverridesConst(config);
#endif
}
static void _GBCoreReloadConfigOption(struct mCore* core, const char* option, const struct mCoreConfig* config) {
struct GB* gb = core->board;
if (!config) {
config = &core->config;
}
if (!option) {
// Reload options from opts
if (core->opts.mute) {
gb->audio.masterVolume = 0;
} else {
gb->audio.masterVolume = core->opts.volume;
}
gb->video.frameskip = core->opts.frameskip;
return;
}
int fakeBool;
if (strcmp("mute", option) == 0) {
if (mCoreConfigGetIntValue(config, "mute", &fakeBool)) {
core->opts.mute = fakeBool;
if (core->opts.mute) {
gb->audio.masterVolume = 0;
} else {
gb->audio.masterVolume = core->opts.volume;
}
}
return;
}
if (strcmp("volume", option) == 0) {
if (mCoreConfigGetIntValue(config, "volume", &core->opts.volume) && !core->opts.mute) {
gb->audio.masterVolume = core->opts.volume;
}
return;
}
if (strcmp("frameskip", option) == 0) {
if (mCoreConfigGetIntValue(config, "frameskip", &core->opts.frameskip)) {
gb->video.frameskip = core->opts.frameskip;
}
return;
}
if (strcmp("allowOpposingDirections", option) == 0) {
if (config != &core->config) {
mCoreConfigCopyValue(&core->config, config, "allowOpposingDirections");
}
if (mCoreConfigGetIntValue(config, "allowOpposingDirections", &fakeBool)) {
gb->allowOpposingDirections = fakeBool;
}
return;
}
if (strcmp("sgb.borders", option) == 0) {
if (mCoreConfigGetIntValue(config, "sgb.borders", &fakeBool)) {
gb->video.sgbBorders = fakeBool;
gb->video.renderer->enableSGBBorder(gb->video.renderer, fakeBool);
}
}
if (strcmp("gb.pal", option) == 0) {
int color;
if (mCoreConfigGetIntValue(config, "gb.pal[0]", &color)) {
GBVideoSetPalette(&gb->video, 0, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[1]", &color)) {
GBVideoSetPalette(&gb->video, 1, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[2]", &color)) {
GBVideoSetPalette(&gb->video, 2, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[3]", &color)) {
GBVideoSetPalette(&gb->video, 3, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[4]", &color)) {
GBVideoSetPalette(&gb->video, 4, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[5]", &color)) {
GBVideoSetPalette(&gb->video, 5, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[6]", &color)) {
GBVideoSetPalette(&gb->video, 6, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[7]", &color)) {
GBVideoSetPalette(&gb->video, 7, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[8]", &color)) {
GBVideoSetPalette(&gb->video, 8, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[9]", &color)) {
GBVideoSetPalette(&gb->video, 9, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[10]", &color)) {
GBVideoSetPalette(&gb->video, 10, color);
}
if (mCoreConfigGetIntValue(config, "gb.pal[11]", &color)) {
GBVideoSetPalette(&gb->video, 11, color);
}
if (gb->model < GB_MODEL_SGB) {
GBVideoWritePalette(&gb->video, GB_REG_BGP, gb->memory.io[GB_REG_BGP]);
GBVideoWritePalette(&gb->video, GB_REG_OBP0, gb->memory.io[GB_REG_OBP0]);
GBVideoWritePalette(&gb->video, GB_REG_OBP1, gb->memory.io[GB_REG_OBP1]);
}
}
}
static void _GBCoreDesiredVideoDimensions(const struct mCore* core, unsigned* width, unsigned* height) {
const struct GB* gb = core->board;
if (gb && (!(gb->model & GB_MODEL_SGB) || !gb->video.sgbBorders)) {
*width = GB_VIDEO_HORIZONTAL_PIXELS;
*height = GB_VIDEO_VERTICAL_PIXELS;
} else {
*width = 256;
*height = 224;
}
}
static void _GBCoreSetVideoBuffer(struct mCore* core, color_t* buffer, size_t stride) {
struct GBCore* gbcore = (struct GBCore*) core;
gbcore->renderer.outputBuffer = buffer;
gbcore->renderer.outputBufferStride = stride;
}
static void _GBCoreSetVideoGLTex(struct mCore* core, unsigned texid) {
UNUSED(core);
UNUSED(texid);
}
static void _GBCoreGetPixels(struct mCore* core, const void** buffer, size_t* stride) {
struct GBCore* gbcore = (struct GBCore*) core;
gbcore->renderer.d.getPixels(&gbcore->renderer.d, stride, buffer);
}
static void _GBCorePutPixels(struct mCore* core, const void* buffer, size_t stride) {
struct GBCore* gbcore = (struct GBCore*) core;
gbcore->renderer.d.putPixels(&gbcore->renderer.d, stride, buffer);
}
static struct blip_t* _GBCoreGetAudioChannel(struct mCore* core, int ch) {
struct GB* gb = core->board;
switch (ch) {
case 0:
return gb->audio.left;
case 1:
return gb->audio.right;
default:
return NULL;
}
}
static void _GBCoreSetAudioBufferSize(struct mCore* core, size_t samples) {
struct GB* gb = core->board;
GBAudioResizeBuffer(&gb->audio, samples);
}
static size_t _GBCoreGetAudioBufferSize(struct mCore* core) {
struct GB* gb = core->board;
return gb->audio.samples;
}
static void _GBCoreAddCoreCallbacks(struct mCore* core, struct mCoreCallbacks* coreCallbacks) {
struct GB* gb = core->board;
*mCoreCallbacksListAppend(&gb->coreCallbacks) = *coreCallbacks;
}
static void _GBCoreClearCoreCallbacks(struct mCore* core) {
struct GB* gb = core->board;
mCoreCallbacksListClear(&gb->coreCallbacks);
}
static void _GBCoreSetAVStream(struct mCore* core, struct mAVStream* stream) {
struct GB* gb = core->board;
gb->stream = stream;
if (stream && stream->videoDimensionsChanged) {
unsigned width, height;
core->desiredVideoDimensions(core, &width, &height);
stream->videoDimensionsChanged(stream, width, height);
}
if (stream && stream->videoFrameRateChanged) {
stream->videoFrameRateChanged(stream, core->frameCycles(core), core->frequency(core));
}
}
static bool _GBCoreLoadROM(struct mCore* core, struct VFile* vf) {
return GBLoadROM(core->board, vf);
}
static bool _GBCoreLoadBIOS(struct mCore* core, struct VFile* vf, int type) {
UNUSED(type);
GBLoadBIOS(core->board, vf);
return true;
}
static bool _GBCoreLoadSave(struct mCore* core, struct VFile* vf) {
return GBLoadSave(core->board, vf);
}
static bool _GBCoreLoadTemporarySave(struct mCore* core, struct VFile* vf) {
struct GB* gb = core->board;
GBSavedataMask(gb, vf, false);
return true; // TODO: Return a real value
}
static bool _GBCoreLoadPatch(struct mCore* core, struct VFile* vf) {
if (!vf) {
return false;
}
struct Patch patch;
if (!loadPatch(vf, &patch)) {
return false;
}
GBApplyPatch(core->board, &patch);
return true;
}
static void _GBCoreUnloadROM(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
struct SM83Core* cpu = core->cpu;
if (gbcore->cheatDevice) {
SM83HotplugDetach(cpu, CPU_COMPONENT_CHEAT_DEVICE);
cpu->components[CPU_COMPONENT_CHEAT_DEVICE] = NULL;
mCheatDeviceDestroy(gbcore->cheatDevice);
gbcore->cheatDevice = NULL;
}
return GBUnloadROM(core->board);
}
static void _GBCoreChecksum(const struct mCore* core, void* data, enum mCoreChecksumType type) {
struct GB* gb = (struct GB*) core->board;
switch (type) {
case mCHECKSUM_CRC32:
memcpy(data, &gb->romCrc32, sizeof(gb->romCrc32));
break;
}
return;
}
static void _GBCoreReset(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
struct GB* gb = (struct GB*) core->board;
if (gbcore->renderer.outputBuffer) {
GBVideoAssociateRenderer(&gb->video, &gbcore->renderer.d);
}
if (gb->memory.rom) {
int doColorOverride = GB_COLORS_NONE;
mCoreConfigGetIntValue(&core->config, "gb.colors", &doColorOverride);
if (doColorOverride == GB_COLORS_NONE) {
// Backwards compat for renamed setting
mCoreConfigGetIntValue(&core->config, "useCgbColors", &doColorOverride);
}
struct GBCartridgeOverride override;
const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
override.headerCrc32 = doCrc32(cart, sizeof(*cart));
bool modelOverride = GBOverrideFind(gbcore->overrides, &override) || (doColorOverride && GBOverrideColorFind(&override, doColorOverride));
if (modelOverride) {
GBOverrideApply(gb, &override);
}
if (!modelOverride || override.model == GB_MODEL_AUTODETECT) {
const char* modelGB = mCoreConfigGetValue(&core->config, "gb.model");
const char* modelSGB = mCoreConfigGetValue(&core->config, "sgb.model");
const char* modelCGB = mCoreConfigGetValue(&core->config, "cgb.model");
const char* modelCGBHybrid = mCoreConfigGetValue(&core->config, "cgb.hybridModel");
const char* modelCGBSGB = mCoreConfigGetValue(&core->config, "cgb.sgbModel");
if (modelGB || modelCGB || modelSGB || modelCGBHybrid || modelCGBSGB) {
int models = GBValidModels(gb->memory.rom);
switch (models) {
case GB_MODEL_SGB | GB_MODEL_MGB:
if (modelSGB) {
gb->model = GBNameToModel(modelSGB);
}
break;
case GB_MODEL_MGB:
if (modelGB) {
gb->model = GBNameToModel(modelGB);
}
break;
case GB_MODEL_MGB | GB_MODEL_CGB:
if (modelCGBHybrid) {
gb->model = GBNameToModel(modelCGBHybrid);
}
break;
case GB_MODEL_SGB | GB_MODEL_CGB: // TODO: Do these even exist?
case GB_MODEL_MGB | GB_MODEL_SGB | GB_MODEL_CGB:
if (modelCGBSGB) {
gb->model = GBNameToModel(modelCGBSGB);
}
break;
case GB_MODEL_CGB:
if (modelCGB) {
gb->model = GBNameToModel(modelCGB);
}
break;
}
}
}
}
#if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2
if (!gb->biosVf && core->opts.useBios) {
struct VFile* bios = NULL;
bool found = false;
if (core->opts.bios) {
bios = VFileOpen(core->opts.bios, O_RDONLY);
if (bios && GBIsBIOS(bios)) {
found = true;
} else if (bios) {
bios->close(bios);
bios = NULL;
}
}
if (!found) {
GBDetectModel(gb);
const char* configPath = NULL;
switch (gb->model) {
case GB_MODEL_DMG:
case GB_MODEL_MGB: // TODO
configPath = mCoreConfigGetValue(&core->config, "gb.bios");
break;
case GB_MODEL_SGB:
case GB_MODEL_SGB2: // TODO
configPath = mCoreConfigGetValue(&core->config, "sgb.bios");
break;
case GB_MODEL_CGB:
case GB_MODEL_AGB:
case GB_MODEL_SCGB:
configPath = mCoreConfigGetValue(&core->config, "gbc.bios");
break;
default:
break;
};
if (configPath) {
bios = VFileOpen(configPath, O_RDONLY);
}
if (bios && GBIsBIOS(bios)) {
found = true;
} else if (bios) {
bios->close(bios);
bios = NULL;
}
}
if (!found) {
char path[PATH_MAX];
mCoreConfigDirectory(path, PATH_MAX);
switch (gb->model) {
case GB_MODEL_DMG:
case GB_MODEL_MGB: // TODO
strncat(path, PATH_SEP "gb_bios.bin", PATH_MAX - strlen(path));
break;
case GB_MODEL_SGB:
case GB_MODEL_SGB2: // TODO
strncat(path, PATH_SEP "sgb_bios.bin", PATH_MAX - strlen(path));
break;
case GB_MODEL_CGB:
case GB_MODEL_AGB:
case GB_MODEL_SCGB:
strncat(path, PATH_SEP "gbc_bios.bin", PATH_MAX - strlen(path));
break;
default:
break;
};
bios = VFileOpen(path, O_RDONLY);
if (bios && GBIsBIOS(bios)) {
found = true;
} else if (bios) {
bios->close(bios);
bios = NULL;
}
}
if (found && bios) {
GBLoadBIOS(gb, bios);
}
}
#endif
if (gb->model < GB_MODEL_CGB) {
memcpy(gbcore->memoryBlocks, _GBMemoryBlocks, sizeof(_GBMemoryBlocks));
} else {
memcpy(gbcore->memoryBlocks, _GBCMemoryBlocks, sizeof(_GBCMemoryBlocks));
}
size_t i;
for (i = 0; i < sizeof(gbcore->memoryBlocks) / sizeof(*gbcore->memoryBlocks); ++i) {
if (gbcore->memoryBlocks[i].id == GB_REGION_CART_BANK0) {
gbcore->memoryBlocks[i].maxSegment = gb->memory.romSize / GB_SIZE_CART_BANK0;
} else if (gbcore->memoryBlocks[i].id == GB_REGION_EXTERNAL_RAM) {
gbcore->memoryBlocks[i].maxSegment = gb->sramSize / GB_SIZE_EXTERNAL_RAM;
} else {
continue;
}
if (gbcore->memoryBlocks[i].maxSegment) {
--gbcore->memoryBlocks[i].maxSegment;
}
}
SM83Reset(core->cpu);
if (core->opts.skipBios) {
GBSkipBIOS(core->board);
}
}
static void _GBCoreRunFrame(struct mCore* core) {
struct GB* gb = core->board;
int32_t frameCounter = gb->video.frameCounter;
while (gb->video.frameCounter == frameCounter) {
SM83Run(core->cpu);
}
}
static void _GBCoreRunLoop(struct mCore* core) {
SM83Run(core->cpu);
}
static void _GBCoreStep(struct mCore* core) {
struct SM83Core* cpu = core->cpu;
do {
SM83Tick(cpu);
} while (cpu->executionState != SM83_CORE_FETCH);
}
static size_t _GBCoreStateSize(struct mCore* core) {
UNUSED(core);
return sizeof(struct GBSerializedState);
}
static bool _GBCoreLoadState(struct mCore* core, const void* state) {
return GBDeserialize(core->board, state);
}
static bool _GBCoreSaveState(struct mCore* core, void* state) {
struct SM83Core* cpu = core->cpu;
while (cpu->executionState != SM83_CORE_FETCH) {
SM83Tick(cpu);
}
GBSerialize(core->board, state);
return true;
}
static void _GBCoreSetKeys(struct mCore* core, uint32_t keys) {
struct GBCore* gbcore = (struct GBCore*) core;
gbcore->keys = keys;
GBTestKeypadIRQ(core->board);
}
static void _GBCoreAddKeys(struct mCore* core, uint32_t keys) {
struct GBCore* gbcore = (struct GBCore*) core;
gbcore->keys |= keys;
GBTestKeypadIRQ(core->board);
}
static void _GBCoreClearKeys(struct mCore* core, uint32_t keys) {
struct GBCore* gbcore = (struct GBCore*) core;
gbcore->keys &= ~keys;
}
static void _GBCoreSetCursorLocation(struct mCore* core, int x, int y) {
UNUSED(core);
UNUSED(x);
UNUSED(y);
}
static void _GBCoreSetCursorDown(struct mCore* core, bool down) {
UNUSED(core);
UNUSED(down);
}
static int32_t _GBCoreFrameCounter(const struct mCore* core) {
const struct GB* gb = core->board;
return gb->video.frameCounter;
}
static int32_t _GBCoreFrameCycles(const struct mCore* core) {
UNUSED(core);
return GB_VIDEO_TOTAL_LENGTH;
}
static int32_t _GBCoreFrequency(const struct mCore* core) {
UNUSED(core);
// TODO: GB differences
return DMG_SM83_FREQUENCY;
}
static void _GBCoreGetGameTitle(const struct mCore* core, char* title) {
GBGetGameTitle(core->board, title);
}
static void _GBCoreGetGameCode(const struct mCore* core, char* title) {
GBGetGameCode(core->board, title);
}
static void _GBCoreSetPeripheral(struct mCore* core, int type, void* periph) {
struct GB* gb = core->board;
switch (type) {
case mPERIPH_ROTATION:
gb->memory.rotation = periph;
break;
case mPERIPH_RUMBLE:
gb->memory.rumble = periph;
break;
case mPERIPH_IMAGE_SOURCE:
gb->memory.cam = periph;
break;
default:
return;
}
}
static uint32_t _GBCoreBusRead8(struct mCore* core, uint32_t address) {
struct SM83Core* cpu = core->cpu;
return cpu->memory.load8(cpu, address);
}
static uint32_t _GBCoreBusRead16(struct mCore* core, uint32_t address) {
struct SM83Core* cpu = core->cpu;
return cpu->memory.load8(cpu, address) | (cpu->memory.load8(cpu, address + 1) << 8);
}
static uint32_t _GBCoreBusRead32(struct mCore* core, uint32_t address) {
struct SM83Core* cpu = core->cpu;
return cpu->memory.load8(cpu, address) | (cpu->memory.load8(cpu, address + 1) << 8) |
(cpu->memory.load8(cpu, address + 2) << 16) | (cpu->memory.load8(cpu, address + 3) << 24);
}
static void _GBCoreBusWrite8(struct mCore* core, uint32_t address, uint8_t value) {
struct SM83Core* cpu = core->cpu;
cpu->memory.store8(cpu, address, value);
}
static void _GBCoreBusWrite16(struct mCore* core, uint32_t address, uint16_t value) {
struct SM83Core* cpu = core->cpu;
cpu->memory.store8(cpu, address, value);
cpu->memory.store8(cpu, address + 1, value >> 8);
}
static void _GBCoreBusWrite32(struct mCore* core, uint32_t address, uint32_t value) {
struct SM83Core* cpu = core->cpu;
cpu->memory.store8(cpu, address, value);
cpu->memory.store8(cpu, address + 1, value >> 8);
cpu->memory.store8(cpu, address + 2, value >> 16);
cpu->memory.store8(cpu, address + 3, value >> 24);
}
static uint32_t _GBCoreRawRead8(struct mCore* core, uint32_t address, int segment) {
struct SM83Core* cpu = core->cpu;
return GBView8(cpu, address, segment);
}
static uint32_t _GBCoreRawRead16(struct mCore* core, uint32_t address, int segment) {
struct SM83Core* cpu = core->cpu;
return GBView8(cpu, address, segment) | (GBView8(cpu, address + 1, segment) << 8);
}
static uint32_t _GBCoreRawRead32(struct mCore* core, uint32_t address, int segment) {
struct SM83Core* cpu = core->cpu;
return GBView8(cpu, address, segment) | (GBView8(cpu, address + 1, segment) << 8) |
(GBView8(cpu, address + 2, segment) << 16) | (GBView8(cpu, address + 3, segment) << 24);
}
static void _GBCoreRawWrite8(struct mCore* core, uint32_t address, int segment, uint8_t value) {
struct SM83Core* cpu = core->cpu;
GBPatch8(cpu, address, value, NULL, segment);
}
static void _GBCoreRawWrite16(struct mCore* core, uint32_t address, int segment, uint16_t value) {
struct SM83Core* cpu = core->cpu;
GBPatch8(cpu, address, value, NULL, segment);
GBPatch8(cpu, address + 1, value >> 8, NULL, segment);
}
static void _GBCoreRawWrite32(struct mCore* core, uint32_t address, int segment, uint32_t value) {
struct SM83Core* cpu = core->cpu;
GBPatch8(cpu, address, value, NULL, segment);
GBPatch8(cpu, address + 1, value >> 8, NULL, segment);
GBPatch8(cpu, address + 2, value >> 16, NULL, segment);
GBPatch8(cpu, address + 3, value >> 24, NULL, segment);
}
size_t _GBListMemoryBlocks(const struct mCore* core, const struct mCoreMemoryBlock** blocks) {
struct GBCore* gbcore = (struct GBCore*) core;
*blocks = gbcore->memoryBlocks;
return sizeof(gbcore->memoryBlocks) / sizeof(*gbcore->memoryBlocks);
}
void* _GBGetMemoryBlock(struct mCore* core, size_t id, size_t* sizeOut) {
struct GB* gb = core->board;
bool isCgb = gb->model >= GB_MODEL_CGB;
switch (id) {
default:
return NULL;
case GB_REGION_CART_BANK0:
*sizeOut = gb->memory.romSize;
return gb->memory.rom;
case GB_REGION_VRAM:
*sizeOut = GB_SIZE_VRAM_BANK0 * (isCgb ? 1 : 2);
return gb->video.vram;
case GB_REGION_EXTERNAL_RAM:
*sizeOut = gb->sramSize;
return gb->memory.sram;
case GB_REGION_WORKING_RAM_BANK0:
*sizeOut = GB_SIZE_WORKING_RAM_BANK0 * (isCgb ? 8 : 2);
return gb->memory.wram;
case GB_BASE_OAM:
*sizeOut = GB_SIZE_OAM;
return gb->video.oam.raw;
case GB_BASE_HRAM:
*sizeOut = GB_SIZE_HRAM;
return gb->memory.hram;
}
}
#ifdef USE_DEBUGGERS
static bool _GBCoreSupportsDebuggerType(struct mCore* core, enum mDebuggerType type) {
UNUSED(core);
switch (type) {
case DEBUGGER_CUSTOM:
case DEBUGGER_CLI:
return true;
default:
return false;
}
}
static struct mDebuggerPlatform* _GBCoreDebuggerPlatform(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
struct GB* gb = core->board;
if (!gbcore->debuggerPlatform) {
struct SM83Debugger* platform = (struct SM83Debugger*) GBDebuggerCreate(gb);
gbcore->debuggerPlatform = &platform->d;
}
return gbcore->debuggerPlatform;
}
static struct CLIDebuggerSystem* _GBCoreCliDebuggerSystem(struct mCore* core) {
return GBCLIDebuggerCreate(core);
}
static void _GBCoreAttachDebugger(struct mCore* core, struct mDebugger* debugger) {
struct SM83Core* cpu = core->cpu;
if (core->debugger) {
SM83HotplugDetach(cpu, CPU_COMPONENT_DEBUGGER);
}
cpu->components[CPU_COMPONENT_DEBUGGER] = &debugger->d;
SM83HotplugAttach(cpu, CPU_COMPONENT_DEBUGGER);
core->debugger = debugger;
}
static void _GBCoreDetachDebugger(struct mCore* core) {
struct SM83Core* cpu = core->cpu;
if (core->debugger) {
SM83HotplugDetach(cpu, CPU_COMPONENT_DEBUGGER);
}
cpu->components[CPU_COMPONENT_DEBUGGER] = NULL;
core->debugger = NULL;
}
static void _GBCoreLoadSymbols(struct mCore* core, struct VFile* vf) {
core->symbolTable = mDebuggerSymbolTableCreate();
#if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2
if (!vf) {
vf = mDirectorySetOpenSuffix(&core->dirs, core->dirs.base, ".sym", O_RDONLY);
}
#endif
if (!vf) {
return;
}
GBLoadSymbols(core->symbolTable, vf);
}
static bool _GBCoreLookupIdentifier(struct mCore* core, const char* name, int32_t* value, int* segment) {
UNUSED(core);
*segment = -1;
int i;
for (i = 0; i < GB_REG_MAX; ++i) {
const char* reg = GBIORegisterNames[i];
if (reg && strcasecmp(reg, name) == 0) {
*value = GB_BASE_IO | i;
return true;
}
}
return false;
}
#endif
static struct mCheatDevice* _GBCoreCheatDevice(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
if (!gbcore->cheatDevice) {
gbcore->cheatDevice = GBCheatDeviceCreate();
((struct SM83Core*) core->cpu)->components[CPU_COMPONENT_CHEAT_DEVICE] = &gbcore->cheatDevice->d;
SM83HotplugAttach(core->cpu, CPU_COMPONENT_CHEAT_DEVICE);
gbcore->cheatDevice->p = core;
}
return gbcore->cheatDevice;
}
static size_t _GBCoreSavedataClone(struct mCore* core, void** sram) {
struct GB* gb = core->board;
struct VFile* vf = gb->sramVf;
if (vf) {
*sram = malloc(vf->size(vf));
vf->seek(vf, 0, SEEK_SET);
return vf->read(vf, *sram, vf->size(vf));
}
if (gb->sramSize) {
*sram = malloc(gb->sramSize);
memcpy(*sram, gb->memory.sram, gb->sramSize);
return gb->sramSize;
}
*sram = NULL;
return 0;
}
static bool _GBCoreSavedataRestore(struct mCore* core, const void* sram, size_t size, bool writeback) {
struct GB* gb = core->board;
if (!writeback) {
struct VFile* vf = VFileMemChunk(sram, size);
GBSavedataMask(gb, vf, true);
return true;
}
struct VFile* vf = gb->sramVf;
if (vf) {
vf->seek(vf, 0, SEEK_SET);
return vf->write(vf, sram, size) > 0;
}
if (size > 0x20000) {
size = 0x20000;
}
GBResizeSram(gb, size);
memcpy(gb->memory.sram, sram, size);
return true;
}
static size_t _GBCoreListVideoLayers(const struct mCore* core, const struct mCoreChannelInfo** info) {
UNUSED(core);
if (info) {
*info = _GBVideoLayers;
}
return sizeof(_GBVideoLayers) / sizeof(*_GBVideoLayers);
}
static size_t _GBCoreListAudioChannels(const struct mCore* core, const struct mCoreChannelInfo** info) {
UNUSED(core);
if (info) {
*info = _GBAudioChannels;
}
return sizeof(_GBAudioChannels) / sizeof(*_GBAudioChannels);
}
static void _GBCoreEnableVideoLayer(struct mCore* core, size_t id, bool enable) {
struct GB* gb = core->board;
switch (id) {
case GB_LAYER_BACKGROUND:
gb->video.renderer->disableBG = !enable;
break;
case GB_LAYER_WINDOW:
gb->video.renderer->disableWIN = !enable;
break;
case GB_LAYER_OBJ:
gb->video.renderer->disableOBJ = !enable;
break;
default:
break;
}
}
static void _GBCoreEnableAudioChannel(struct mCore* core, size_t id, bool enable) {
struct GB* gb = core->board;
switch (id) {
case 0:
case 1:
case 2:
case 3:
gb->audio.forceDisableCh[id] = !enable;
break;
default:
break;
}
}
static void _GBCoreAdjustVideoLayer(struct mCore* core, size_t id, int32_t x, int32_t y) {
struct GBCore* gbcore = (struct GBCore*) core;
switch (id) {
case GB_LAYER_BACKGROUND:
gbcore->renderer.offsetScx = x;
gbcore->renderer.offsetScy = y;
break;
case GB_LAYER_WINDOW:
gbcore->renderer.offsetWx = x;
gbcore->renderer.offsetWy = y;
break;
case GB_LAYER_OBJ:
gbcore->renderer.objOffsetX = x;
gbcore->renderer.objOffsetY = y;
break;
default:
return;
}
}
#ifndef MINIMAL_CORE
static void _GBCoreStartVideoLog(struct mCore* core, struct mVideoLogContext* context) {
struct GBCore* gbcore = (struct GBCore*) core;
struct GB* gb = core->board;
gbcore->logContext = context;
int channelId = mVideoLoggerAddChannel(context);
gbcore->proxyRenderer.logger = malloc(sizeof(struct mVideoLogger));
mVideoLoggerRendererCreate(gbcore->proxyRenderer.logger, false);
mVideoLoggerAttachChannel(gbcore->proxyRenderer.logger, context, channelId);
gbcore->proxyRenderer.logger->block = false;
GBVideoProxyRendererCreate(&gbcore->proxyRenderer, &gbcore->renderer.d);
GBVideoProxyRendererShim(&gb->video, &gbcore->proxyRenderer);
}
static void _GBCoreEndVideoLog(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
struct GB* gb = core->board;
if (gbcore->proxyRenderer.logger) {
GBVideoProxyRendererUnshim(&gb->video, &gbcore->proxyRenderer);
free(gbcore->proxyRenderer.logger);
gbcore->proxyRenderer.logger = NULL;
}
}
#endif
struct mCore* GBCoreCreate(void) {
struct GBCore* gbcore = malloc(sizeof(*gbcore));
struct mCore* core = &gbcore->d;
memset(&core->opts, 0, sizeof(core->opts));
core->cpu = NULL;
core->board = NULL;
core->debugger = NULL;
core->symbolTable = NULL;
core->init = _GBCoreInit;
core->deinit = _GBCoreDeinit;
core->platform = _GBCorePlatform;
core->supportsFeature = _GBCoreSupportsFeature;
core->setSync = _GBCoreSetSync;
core->loadConfig = _GBCoreLoadConfig;
core->reloadConfigOption = _GBCoreReloadConfigOption;
core->desiredVideoDimensions = _GBCoreDesiredVideoDimensions;
core->setVideoBuffer = _GBCoreSetVideoBuffer;
core->setVideoGLTex = _GBCoreSetVideoGLTex;
core->getPixels = _GBCoreGetPixels;
core->putPixels = _GBCorePutPixels;
core->getAudioChannel = _GBCoreGetAudioChannel;
core->setAudioBufferSize = _GBCoreSetAudioBufferSize;
core->getAudioBufferSize = _GBCoreGetAudioBufferSize;
core->setAVStream = _GBCoreSetAVStream;
core->addCoreCallbacks = _GBCoreAddCoreCallbacks;
core->clearCoreCallbacks = _GBCoreClearCoreCallbacks;
core->isROM = GBIsROM;
core->loadROM = _GBCoreLoadROM;
core->loadBIOS = _GBCoreLoadBIOS;
core->loadSave = _GBCoreLoadSave;
core->loadTemporarySave = _GBCoreLoadTemporarySave;
core->loadPatch = _GBCoreLoadPatch;
core->unloadROM = _GBCoreUnloadROM;
core->checksum = _GBCoreChecksum;
core->reset = _GBCoreReset;
core->runFrame = _GBCoreRunFrame;
core->runLoop = _GBCoreRunLoop;
core->step = _GBCoreStep;
core->stateSize = _GBCoreStateSize;
core->loadState = _GBCoreLoadState;
core->saveState = _GBCoreSaveState;
core->setKeys = _GBCoreSetKeys;
core->addKeys = _GBCoreAddKeys;
core->clearKeys = _GBCoreClearKeys;
core->setCursorLocation = _GBCoreSetCursorLocation;
core->setCursorDown = _GBCoreSetCursorDown;
core->frameCounter = _GBCoreFrameCounter;
core->frameCycles = _GBCoreFrameCycles;
core->frequency = _GBCoreFrequency;
core->getGameTitle = _GBCoreGetGameTitle;
core->getGameCode = _GBCoreGetGameCode;
core->setPeripheral = _GBCoreSetPeripheral;
core->busRead8 = _GBCoreBusRead8;
core->busRead16 = _GBCoreBusRead16;
core->busRead32 = _GBCoreBusRead32;
core->busWrite8 = _GBCoreBusWrite8;
core->busWrite16 = _GBCoreBusWrite16;
core->busWrite32 = _GBCoreBusWrite32;
core->rawRead8 = _GBCoreRawRead8;
core->rawRead16 = _GBCoreRawRead16;
core->rawRead32 = _GBCoreRawRead32;
core->rawWrite8 = _GBCoreRawWrite8;
core->rawWrite16 = _GBCoreRawWrite16;
core->rawWrite32 = _GBCoreRawWrite32;
core->listMemoryBlocks = _GBListMemoryBlocks;
core->getMemoryBlock = _GBGetMemoryBlock;
#ifdef USE_DEBUGGERS
core->supportsDebuggerType = _GBCoreSupportsDebuggerType;
core->debuggerPlatform = _GBCoreDebuggerPlatform;
core->cliDebuggerSystem = _GBCoreCliDebuggerSystem;
core->attachDebugger = _GBCoreAttachDebugger;
core->detachDebugger = _GBCoreDetachDebugger;
core->loadSymbols = _GBCoreLoadSymbols;
core->lookupIdentifier = _GBCoreLookupIdentifier;
#endif
core->cheatDevice = _GBCoreCheatDevice;
core->savedataClone = _GBCoreSavedataClone;
core->savedataRestore = _GBCoreSavedataRestore;
core->listVideoLayers = _GBCoreListVideoLayers;
core->listAudioChannels = _GBCoreListAudioChannels;
core->enableVideoLayer = _GBCoreEnableVideoLayer;
core->enableAudioChannel = _GBCoreEnableAudioChannel;
core->adjustVideoLayer = _GBCoreAdjustVideoLayer;
#ifndef MINIMAL_CORE
core->startVideoLog = _GBCoreStartVideoLog;
core->endVideoLog = _GBCoreEndVideoLog;
#endif
return core;
}
#ifndef MINIMAL_CORE
static void _GBVLPStartFrameCallback(void *context) {
struct mCore* core = context;
struct GBCore* gbcore = (struct GBCore*) core;
struct GB* gb = core->board;
if (!mVideoLoggerRendererRun(gbcore->proxyRenderer.logger, true)) {
GBVideoProxyRendererUnshim(&gb->video, &gbcore->proxyRenderer);
mVideoLogContextRewind(gbcore->logContext, core);
GBVideoProxyRendererShim(&gb->video, &gbcore->proxyRenderer);
gb->earlyExit = true;
}
}
static bool _GBVLPInit(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
if (!_GBCoreInit(core)) {
return false;
}
gbcore->proxyRenderer.logger = malloc(sizeof(struct mVideoLogger));
mVideoLoggerRendererCreate(gbcore->proxyRenderer.logger, true);
GBVideoProxyRendererCreate(&gbcore->proxyRenderer, NULL);
memset(&gbcore->logCallbacks, 0, sizeof(gbcore->logCallbacks));
gbcore->logCallbacks.videoFrameStarted = _GBVLPStartFrameCallback;
gbcore->logCallbacks.context = core;
core->addCoreCallbacks(core, &gbcore->logCallbacks);
core->videoLogger = gbcore->proxyRenderer.logger;
return true;
}
static void _GBVLPDeinit(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
if (gbcore->logContext) {
mVideoLogContextDestroy(core, gbcore->logContext, true);
}
_GBCoreDeinit(core);
}
static void _GBVLPReset(struct mCore* core) {
struct GBCore* gbcore = (struct GBCore*) core;
struct GB* gb = (struct GB*) core->board;
if (gb->video.renderer == &gbcore->proxyRenderer.d) {
GBVideoProxyRendererUnshim(&gb->video, &gbcore->proxyRenderer);
} else if (gbcore->renderer.outputBuffer) {
struct GBVideoRenderer* renderer = &gbcore->renderer.d;
GBVideoAssociateRenderer(&gb->video, renderer);
}
SM83Reset(core->cpu);
mVideoLogContextRewind(gbcore->logContext, core);
GBVideoProxyRendererShim(&gb->video, &gbcore->proxyRenderer);
// Make sure CPU loop never spins
gb->memory.ie = 0;
gb->memory.ime = false;
GBHalt(gb->cpu);
}
static bool _GBVLPLoadROM(struct mCore* core, struct VFile* vf) {
struct GBCore* gbcore = (struct GBCore*) core;
gbcore->logContext = mVideoLogContextCreate(NULL);
if (!mVideoLogContextLoad(gbcore->logContext, vf)) {
mVideoLogContextDestroy(core, gbcore->logContext, false);
gbcore->logContext = NULL;
return false;
}
mVideoLoggerAttachChannel(gbcore->proxyRenderer.logger, gbcore->logContext, 0);
return true;
}
static bool _GBVLPLoadState(struct mCore* core, const void* buffer) {
struct GB* gb = (struct GB*) core->board;
const struct GBSerializedState* state = buffer;
gb->timing.root = NULL;
gb->model = state->model;
gb->cpu->pc = GB_BASE_HRAM;
gb->cpu->memory.setActiveRegion(gb->cpu, gb->cpu->pc);
GBVideoReset(&gb->video);
GBVideoDeserialize(&gb->video, state);
GBIODeserialize(gb, state);
GBAudioReset(&gb->audio);
if (gb->model & GB_MODEL_SGB) {
GBSGBDeserialize(gb, state);
}
// Make sure CPU loop never spins
gb->memory.ie = 0;
gb->memory.ime = false;
GBHalt(gb->cpu);
return true;
}
static bool _returnTrue(struct VFile* vf) {
UNUSED(vf);
return true;
}
struct mCore* GBVideoLogPlayerCreate(void) {
struct mCore* core = GBCoreCreate();
core->init = _GBVLPInit;
core->deinit = _GBVLPDeinit;
core->reset = _GBVLPReset;
core->loadROM = _GBVLPLoadROM;
core->loadState = _GBVLPLoadState;
core->isROM = _returnTrue;
return core;
}
#else
struct mCore* GBVideoLogPlayerCreate(void) {
return false;
}
#endif