/* Copyright (c) 2013-2016 Jeffrey Pfau * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef MINIMAL_CORE #include #endif static const struct mCoreChannelInfo _GBVideoLayers[] = { { GB_LAYER_BACKGROUND, "bg", "Background", NULL }, { GB_LAYER_WINDOW, "bgwin", "Window", NULL }, { GB_LAYER_OBJ, "obj", "Objects", NULL }, }; static const struct mCoreChannelInfo _GBAudioChannels[] = { { 0, "ch1", "Channel 1", "Square/Sweep" }, { 1, "ch2", "Channel 2", "Square" }, { 2, "ch3", "Channel 3", "PCM" }, { 3, "ch4", "Channel 4", "Noise" }, }; static const struct mCoreMemoryBlock _GBMemoryBlocks[] = { { -1, "mem", "All", "All", 0, 0x10000, 0x10000, mCORE_MEMORY_VIRTUAL }, { GB_REGION_CART_BANK0, "cart0", "ROM Bank", "Game Pak (32kiB)", GB_BASE_CART_BANK0, GB_BASE_CART_BANK0 + GB_SIZE_CART_BANK0 * 2, 0x800000, mCORE_MEMORY_READ | mCORE_MEMORY_WORM | mCORE_MEMORY_MAPPED, 511, GB_BASE_CART_BANK0 + GB_SIZE_CART_BANK0 }, { GB_REGION_VRAM, "vram", "VRAM", "Video RAM (8kiB)", GB_BASE_VRAM, GB_BASE_VRAM + GB_SIZE_VRAM, GB_SIZE_VRAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED }, { GB_REGION_EXTERNAL_RAM, "sram", "SRAM", "External RAM (8kiB)", GB_BASE_EXTERNAL_RAM, GB_BASE_EXTERNAL_RAM + GB_SIZE_EXTERNAL_RAM, GB_SIZE_EXTERNAL_RAM * 4, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED, 3 }, { GB_REGION_WORKING_RAM_BANK0, "wram", "WRAM", "Working RAM (8kiB)", GB_BASE_WORKING_RAM_BANK0, GB_BASE_WORKING_RAM_BANK0 + GB_SIZE_WORKING_RAM_BANK0 * 2 , GB_SIZE_WORKING_RAM_BANK0 * 2, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED }, { GB_BASE_OAM, "oam", "OAM", "OBJ Attribute Memory", GB_BASE_OAM, GB_BASE_OAM + GB_SIZE_OAM, GB_SIZE_OAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED }, { GB_BASE_IO, "io", "MMIO", "Memory-Mapped I/O", GB_BASE_IO, GB_BASE_IO + GB_SIZE_IO, GB_SIZE_IO, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED }, { GB_BASE_HRAM, "hram", "HRAM", "High RAM", GB_BASE_HRAM, GB_BASE_HRAM + GB_SIZE_HRAM, GB_SIZE_HRAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED }, }; static const struct mCoreMemoryBlock _GBCMemoryBlocks[] = { { -1, "mem", "All", "All", 0, 0x10000, 0x10000, mCORE_MEMORY_VIRTUAL }, { GB_REGION_CART_BANK0, "cart0", "ROM Bank", "Game Pak (32kiB)", GB_BASE_CART_BANK0, GB_BASE_CART_BANK0 + GB_SIZE_CART_BANK0 * 2, 0x800000, mCORE_MEMORY_READ | mCORE_MEMORY_WORM | mCORE_MEMORY_MAPPED, 511, GB_BASE_CART_BANK0 + GB_SIZE_CART_BANK0 }, { GB_REGION_VRAM, "vram", "VRAM", "Video RAM (8kiB)", GB_BASE_VRAM, GB_BASE_VRAM + GB_SIZE_VRAM, GB_SIZE_VRAM * 2, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED, 1 }, { GB_REGION_EXTERNAL_RAM, "sram", "SRAM", "External RAM (8kiB)", GB_BASE_EXTERNAL_RAM, GB_BASE_EXTERNAL_RAM + GB_SIZE_EXTERNAL_RAM, GB_SIZE_EXTERNAL_RAM * 4, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED, 3 }, { GB_REGION_WORKING_RAM_BANK0, "wram", "WRAM", "Working RAM (8kiB)", GB_BASE_WORKING_RAM_BANK0, GB_BASE_WORKING_RAM_BANK0 + GB_SIZE_WORKING_RAM_BANK0 * 2, GB_SIZE_WORKING_RAM_BANK0 * 8, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED, 7, GB_BASE_WORKING_RAM_BANK0 + GB_SIZE_WORKING_RAM_BANK0 }, { GB_BASE_OAM, "oam", "OAM", "OBJ Attribute Memory", GB_BASE_OAM, GB_BASE_OAM + GB_SIZE_OAM, GB_SIZE_OAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED }, { GB_BASE_IO, "io", "MMIO", "Memory-Mapped I/O", GB_BASE_IO, GB_BASE_IO + GB_SIZE_IO, GB_SIZE_IO, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED }, { GB_BASE_HRAM, "hram", "HRAM", "High RAM", GB_BASE_HRAM, GB_BASE_HRAM + GB_SIZE_HRAM, GB_SIZE_HRAM, mCORE_MEMORY_RW | mCORE_MEMORY_MAPPED }, }; struct mVideoLogContext; struct GBCore { struct mCore d; struct GBVideoRenderer dummyRenderer; struct GBVideoSoftwareRenderer renderer; #ifndef MINIMAL_CORE struct GBVideoProxyRenderer proxyRenderer; struct mVideoLogContext* logContext; #endif struct mCoreCallbacks logCallbacks; uint8_t keys; struct mCPUComponent* components[CPU_COMPONENT_MAX]; const struct Configuration* overrides; struct mDebuggerPlatform* debuggerPlatform; struct mCheatDevice* cheatDevice; struct mCoreMemoryBlock memoryBlocks[8]; }; static bool _GBCoreInit(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; struct SM83Core* cpu = anonymousMemoryMap(sizeof(struct SM83Core)); struct GB* gb = anonymousMemoryMap(sizeof(struct GB)); if (!cpu || !gb) { free(cpu); free(gb); return false; } core->cpu = cpu; core->board = gb; core->timing = &gb->timing; gbcore->overrides = NULL; gbcore->debuggerPlatform = NULL; gbcore->cheatDevice = NULL; #ifndef MINIMAL_CORE gbcore->logContext = NULL; #endif memcpy(gbcore->memoryBlocks, _GBMemoryBlocks, sizeof(_GBMemoryBlocks)); GBCreate(gb); memset(gbcore->components, 0, sizeof(gbcore->components)); SM83SetComponents(cpu, &gb->d, CPU_COMPONENT_MAX, gbcore->components); SM83Init(cpu); mRTCGenericSourceInit(&core->rtc, core); gb->memory.rtc = &core->rtc.d; GBVideoDummyRendererCreate(&gbcore->dummyRenderer); GBVideoAssociateRenderer(&gb->video, &gbcore->dummyRenderer); GBVideoSoftwareRendererCreate(&gbcore->renderer); gbcore->renderer.outputBuffer = NULL; #ifndef MINIMAL_CORE gbcore->proxyRenderer.logger = NULL; #endif gbcore->keys = 0; gb->keySource = &gbcore->keys; #if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2 mDirectorySetInit(&core->dirs); #endif #ifndef MINIMAL_CORE core->inputInfo = &GBInputInfo; #endif return true; } static void _GBCoreDeinit(struct mCore* core) { SM83Deinit(core->cpu); GBDestroy(core->board); mappedMemoryFree(core->cpu, sizeof(struct SM83Core)); mappedMemoryFree(core->board, sizeof(struct GB)); #if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2 mDirectorySetDeinit(&core->dirs); #endif #ifdef USE_DEBUGGERS if (core->symbolTable) { mDebuggerSymbolTableDestroy(core->symbolTable); } #endif struct GBCore* gbcore = (struct GBCore*) core; free(gbcore->debuggerPlatform); if (gbcore->cheatDevice) { mCheatDeviceDestroy(gbcore->cheatDevice); } mCoreConfigFreeOpts(&core->opts); free(core); } static enum mPlatform _GBCorePlatform(const struct mCore* core) { UNUSED(core); return mPLATFORM_GB; } static bool _GBCoreSupportsFeature(const struct mCore* core, enum mCoreFeature feature) { UNUSED(core); switch (feature) { default: return false; } } static void _GBCoreSetSync(struct mCore* core, struct mCoreSync* sync) { struct GB* gb = core->board; gb->sync = sync; } static void _GBCoreLoadConfig(struct mCore* core, const struct mCoreConfig* config) { UNUSED(config); struct GB* gb = core->board; if (core->opts.mute) { gb->audio.masterVolume = 0; } else { gb->audio.masterVolume = core->opts.volume; } gb->video.frameskip = core->opts.frameskip; int color; if (mCoreConfigGetIntValue(config, "gb.pal[0]", &color)) { GBVideoSetPalette(&gb->video, 0, color); } if (mCoreConfigGetIntValue(config, "gb.pal[1]", &color)) { GBVideoSetPalette(&gb->video, 1, color); } if (mCoreConfigGetIntValue(config, "gb.pal[2]", &color)) { GBVideoSetPalette(&gb->video, 2, color); } if (mCoreConfigGetIntValue(config, "gb.pal[3]", &color)) { GBVideoSetPalette(&gb->video, 3, color); } if (mCoreConfigGetIntValue(config, "gb.pal[4]", &color)) { GBVideoSetPalette(&gb->video, 4, color); } if (mCoreConfigGetIntValue(config, "gb.pal[5]", &color)) { GBVideoSetPalette(&gb->video, 5, color); } if (mCoreConfigGetIntValue(config, "gb.pal[6]", &color)) { GBVideoSetPalette(&gb->video, 6, color); } if (mCoreConfigGetIntValue(config, "gb.pal[7]", &color)) { GBVideoSetPalette(&gb->video, 7, color); } if (mCoreConfigGetIntValue(config, "gb.pal[8]", &color)) { GBVideoSetPalette(&gb->video, 8, color); } if (mCoreConfigGetIntValue(config, "gb.pal[9]", &color)) { GBVideoSetPalette(&gb->video, 9, color); } if (mCoreConfigGetIntValue(config, "gb.pal[10]", &color)) { GBVideoSetPalette(&gb->video, 10, color); } if (mCoreConfigGetIntValue(config, "gb.pal[11]", &color)) { GBVideoSetPalette(&gb->video, 11, color); } mCoreConfigCopyValue(&core->config, config, "gb.bios"); mCoreConfigCopyValue(&core->config, config, "sgb.bios"); mCoreConfigCopyValue(&core->config, config, "gbc.bios"); mCoreConfigCopyValue(&core->config, config, "gb.model"); mCoreConfigCopyValue(&core->config, config, "sgb.model"); mCoreConfigCopyValue(&core->config, config, "cgb.model"); mCoreConfigCopyValue(&core->config, config, "cgb.hybridModel"); mCoreConfigCopyValue(&core->config, config, "cgb.sgbModel"); mCoreConfigCopyValue(&core->config, config, "gb.colors"); mCoreConfigCopyValue(&core->config, config, "useCgbColors"); mCoreConfigCopyValue(&core->config, config, "allowOpposingDirections"); int fakeBool = 0; mCoreConfigGetIntValue(config, "allowOpposingDirections", &fakeBool); gb->allowOpposingDirections = fakeBool; if (mCoreConfigGetIntValue(config, "sgb.borders", &fakeBool)) { gb->video.sgbBorders = fakeBool; gb->video.renderer->enableSGBBorder(gb->video.renderer, fakeBool); } #if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2 struct GBCore* gbcore = (struct GBCore*) core; gbcore->overrides = mCoreConfigGetOverridesConst(config); #endif } static void _GBCoreReloadConfigOption(struct mCore* core, const char* option, const struct mCoreConfig* config) { struct GB* gb = core->board; if (!config) { config = &core->config; } if (!option) { // Reload options from opts if (core->opts.mute) { gb->audio.masterVolume = 0; } else { gb->audio.masterVolume = core->opts.volume; } gb->video.frameskip = core->opts.frameskip; return; } int fakeBool; if (strcmp("mute", option) == 0) { if (mCoreConfigGetIntValue(config, "mute", &fakeBool)) { core->opts.mute = fakeBool; if (core->opts.mute) { gb->audio.masterVolume = 0; } else { gb->audio.masterVolume = core->opts.volume; } } return; } if (strcmp("volume", option) == 0) { if (mCoreConfigGetIntValue(config, "volume", &core->opts.volume) && !core->opts.mute) { gb->audio.masterVolume = core->opts.volume; } return; } if (strcmp("frameskip", option) == 0) { if (mCoreConfigGetIntValue(config, "frameskip", &core->opts.frameskip)) { gb->video.frameskip = core->opts.frameskip; } return; } if (strcmp("allowOpposingDirections", option) == 0) { if (config != &core->config) { mCoreConfigCopyValue(&core->config, config, "allowOpposingDirections"); } if (mCoreConfigGetIntValue(config, "allowOpposingDirections", &fakeBool)) { gb->allowOpposingDirections = fakeBool; } return; } if (strcmp("sgb.borders", option) == 0) { if (mCoreConfigGetIntValue(config, "sgb.borders", &fakeBool)) { gb->video.sgbBorders = fakeBool; gb->video.renderer->enableSGBBorder(gb->video.renderer, fakeBool); } } if (strcmp("gb.pal", option) == 0) { int color; if (mCoreConfigGetIntValue(config, "gb.pal[0]", &color)) { GBVideoSetPalette(&gb->video, 0, color); } if (mCoreConfigGetIntValue(config, "gb.pal[1]", &color)) { GBVideoSetPalette(&gb->video, 1, color); } if (mCoreConfigGetIntValue(config, "gb.pal[2]", &color)) { GBVideoSetPalette(&gb->video, 2, color); } if (mCoreConfigGetIntValue(config, "gb.pal[3]", &color)) { GBVideoSetPalette(&gb->video, 3, color); } if (mCoreConfigGetIntValue(config, "gb.pal[4]", &color)) { GBVideoSetPalette(&gb->video, 4, color); } if (mCoreConfigGetIntValue(config, "gb.pal[5]", &color)) { GBVideoSetPalette(&gb->video, 5, color); } if (mCoreConfigGetIntValue(config, "gb.pal[6]", &color)) { GBVideoSetPalette(&gb->video, 6, color); } if (mCoreConfigGetIntValue(config, "gb.pal[7]", &color)) { GBVideoSetPalette(&gb->video, 7, color); } if (mCoreConfigGetIntValue(config, "gb.pal[8]", &color)) { GBVideoSetPalette(&gb->video, 8, color); } if (mCoreConfigGetIntValue(config, "gb.pal[9]", &color)) { GBVideoSetPalette(&gb->video, 9, color); } if (mCoreConfigGetIntValue(config, "gb.pal[10]", &color)) { GBVideoSetPalette(&gb->video, 10, color); } if (mCoreConfigGetIntValue(config, "gb.pal[11]", &color)) { GBVideoSetPalette(&gb->video, 11, color); } if (gb->model < GB_MODEL_SGB) { GBVideoWritePalette(&gb->video, GB_REG_BGP, gb->memory.io[GB_REG_BGP]); GBVideoWritePalette(&gb->video, GB_REG_OBP0, gb->memory.io[GB_REG_OBP0]); GBVideoWritePalette(&gb->video, GB_REG_OBP1, gb->memory.io[GB_REG_OBP1]); } } } static void _GBCoreDesiredVideoDimensions(const struct mCore* core, unsigned* width, unsigned* height) { const struct GB* gb = core->board; if (gb && (!(gb->model & GB_MODEL_SGB) || !gb->video.sgbBorders)) { *width = GB_VIDEO_HORIZONTAL_PIXELS; *height = GB_VIDEO_VERTICAL_PIXELS; } else { *width = 256; *height = 224; } } static void _GBCoreSetVideoBuffer(struct mCore* core, color_t* buffer, size_t stride) { struct GBCore* gbcore = (struct GBCore*) core; gbcore->renderer.outputBuffer = buffer; gbcore->renderer.outputBufferStride = stride; } static void _GBCoreSetVideoGLTex(struct mCore* core, unsigned texid) { UNUSED(core); UNUSED(texid); } static void _GBCoreGetPixels(struct mCore* core, const void** buffer, size_t* stride) { struct GBCore* gbcore = (struct GBCore*) core; gbcore->renderer.d.getPixels(&gbcore->renderer.d, stride, buffer); } static void _GBCorePutPixels(struct mCore* core, const void* buffer, size_t stride) { struct GBCore* gbcore = (struct GBCore*) core; gbcore->renderer.d.putPixels(&gbcore->renderer.d, stride, buffer); } static struct blip_t* _GBCoreGetAudioChannel(struct mCore* core, int ch) { struct GB* gb = core->board; switch (ch) { case 0: return gb->audio.left; case 1: return gb->audio.right; default: return NULL; } } static void _GBCoreSetAudioBufferSize(struct mCore* core, size_t samples) { struct GB* gb = core->board; GBAudioResizeBuffer(&gb->audio, samples); } static size_t _GBCoreGetAudioBufferSize(struct mCore* core) { struct GB* gb = core->board; return gb->audio.samples; } static void _GBCoreAddCoreCallbacks(struct mCore* core, struct mCoreCallbacks* coreCallbacks) { struct GB* gb = core->board; *mCoreCallbacksListAppend(&gb->coreCallbacks) = *coreCallbacks; } static void _GBCoreClearCoreCallbacks(struct mCore* core) { struct GB* gb = core->board; mCoreCallbacksListClear(&gb->coreCallbacks); } static void _GBCoreSetAVStream(struct mCore* core, struct mAVStream* stream) { struct GB* gb = core->board; gb->stream = stream; if (stream && stream->videoDimensionsChanged) { unsigned width, height; core->desiredVideoDimensions(core, &width, &height); stream->videoDimensionsChanged(stream, width, height); } if (stream && stream->videoFrameRateChanged) { stream->videoFrameRateChanged(stream, core->frameCycles(core), core->frequency(core)); } } static bool _GBCoreLoadROM(struct mCore* core, struct VFile* vf) { return GBLoadROM(core->board, vf); } static bool _GBCoreLoadBIOS(struct mCore* core, struct VFile* vf, int type) { UNUSED(type); GBLoadBIOS(core->board, vf); return true; } static bool _GBCoreLoadSave(struct mCore* core, struct VFile* vf) { return GBLoadSave(core->board, vf); } static bool _GBCoreLoadTemporarySave(struct mCore* core, struct VFile* vf) { struct GB* gb = core->board; GBSavedataMask(gb, vf, false); return true; // TODO: Return a real value } static bool _GBCoreLoadPatch(struct mCore* core, struct VFile* vf) { if (!vf) { return false; } struct Patch patch; if (!loadPatch(vf, &patch)) { return false; } GBApplyPatch(core->board, &patch); return true; } static void _GBCoreUnloadROM(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; struct SM83Core* cpu = core->cpu; if (gbcore->cheatDevice) { SM83HotplugDetach(cpu, CPU_COMPONENT_CHEAT_DEVICE); cpu->components[CPU_COMPONENT_CHEAT_DEVICE] = NULL; mCheatDeviceDestroy(gbcore->cheatDevice); gbcore->cheatDevice = NULL; } return GBUnloadROM(core->board); } static void _GBCoreChecksum(const struct mCore* core, void* data, enum mCoreChecksumType type) { struct GB* gb = (struct GB*) core->board; switch (type) { case mCHECKSUM_CRC32: memcpy(data, &gb->romCrc32, sizeof(gb->romCrc32)); break; } return; } static void _GBCoreReset(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; struct GB* gb = (struct GB*) core->board; if (gbcore->renderer.outputBuffer) { GBVideoAssociateRenderer(&gb->video, &gbcore->renderer.d); } if (gb->memory.rom) { int doColorOverride = GB_COLORS_NONE; mCoreConfigGetIntValue(&core->config, "gb.colors", &doColorOverride); if (doColorOverride == GB_COLORS_NONE) { // Backwards compat for renamed setting mCoreConfigGetIntValue(&core->config, "useCgbColors", &doColorOverride); } struct GBCartridgeOverride override; const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100]; override.headerCrc32 = doCrc32(cart, sizeof(*cart)); bool modelOverride = GBOverrideFind(gbcore->overrides, &override) || (doColorOverride && GBOverrideColorFind(&override, doColorOverride)); if (modelOverride) { GBOverrideApply(gb, &override); } if (!modelOverride || override.model == GB_MODEL_AUTODETECT) { const char* modelGB = mCoreConfigGetValue(&core->config, "gb.model"); const char* modelSGB = mCoreConfigGetValue(&core->config, "sgb.model"); const char* modelCGB = mCoreConfigGetValue(&core->config, "cgb.model"); const char* modelCGBHybrid = mCoreConfigGetValue(&core->config, "cgb.hybridModel"); const char* modelCGBSGB = mCoreConfigGetValue(&core->config, "cgb.sgbModel"); if (modelGB || modelCGB || modelSGB || modelCGBHybrid || modelCGBSGB) { int models = GBValidModels(gb->memory.rom); switch (models) { case GB_MODEL_SGB | GB_MODEL_MGB: if (modelSGB) { gb->model = GBNameToModel(modelSGB); } break; case GB_MODEL_MGB: if (modelGB) { gb->model = GBNameToModel(modelGB); } break; case GB_MODEL_MGB | GB_MODEL_CGB: if (modelCGBHybrid) { gb->model = GBNameToModel(modelCGBHybrid); } break; case GB_MODEL_SGB | GB_MODEL_CGB: // TODO: Do these even exist? case GB_MODEL_MGB | GB_MODEL_SGB | GB_MODEL_CGB: if (modelCGBSGB) { gb->model = GBNameToModel(modelCGBSGB); } break; case GB_MODEL_CGB: if (modelCGB) { gb->model = GBNameToModel(modelCGB); } break; } } } } #if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2 if (!gb->biosVf && core->opts.useBios) { struct VFile* bios = NULL; bool found = false; if (core->opts.bios) { bios = VFileOpen(core->opts.bios, O_RDONLY); if (bios && GBIsBIOS(bios)) { found = true; } else if (bios) { bios->close(bios); bios = NULL; } } if (!found) { GBDetectModel(gb); const char* configPath = NULL; switch (gb->model) { case GB_MODEL_DMG: case GB_MODEL_MGB: // TODO configPath = mCoreConfigGetValue(&core->config, "gb.bios"); break; case GB_MODEL_SGB: case GB_MODEL_SGB2: // TODO configPath = mCoreConfigGetValue(&core->config, "sgb.bios"); break; case GB_MODEL_CGB: case GB_MODEL_AGB: case GB_MODEL_SCGB: configPath = mCoreConfigGetValue(&core->config, "gbc.bios"); break; default: break; }; if (configPath) { bios = VFileOpen(configPath, O_RDONLY); } if (bios && GBIsBIOS(bios)) { found = true; } else if (bios) { bios->close(bios); bios = NULL; } } if (!found) { char path[PATH_MAX]; mCoreConfigDirectory(path, PATH_MAX); switch (gb->model) { case GB_MODEL_DMG: case GB_MODEL_MGB: // TODO strncat(path, PATH_SEP "gb_bios.bin", PATH_MAX - strlen(path)); break; case GB_MODEL_SGB: case GB_MODEL_SGB2: // TODO strncat(path, PATH_SEP "sgb_bios.bin", PATH_MAX - strlen(path)); break; case GB_MODEL_CGB: case GB_MODEL_AGB: case GB_MODEL_SCGB: strncat(path, PATH_SEP "gbc_bios.bin", PATH_MAX - strlen(path)); break; default: break; }; bios = VFileOpen(path, O_RDONLY); if (bios && GBIsBIOS(bios)) { found = true; } else if (bios) { bios->close(bios); bios = NULL; } } if (found && bios) { GBLoadBIOS(gb, bios); } } #endif if (gb->model < GB_MODEL_CGB) { memcpy(gbcore->memoryBlocks, _GBMemoryBlocks, sizeof(_GBMemoryBlocks)); } else { memcpy(gbcore->memoryBlocks, _GBCMemoryBlocks, sizeof(_GBCMemoryBlocks)); } size_t i; for (i = 0; i < sizeof(gbcore->memoryBlocks) / sizeof(*gbcore->memoryBlocks); ++i) { if (gbcore->memoryBlocks[i].id == GB_REGION_CART_BANK0) { gbcore->memoryBlocks[i].maxSegment = gb->memory.romSize / GB_SIZE_CART_BANK0; } else if (gbcore->memoryBlocks[i].id == GB_REGION_EXTERNAL_RAM) { gbcore->memoryBlocks[i].maxSegment = gb->sramSize / GB_SIZE_EXTERNAL_RAM; } else { continue; } if (gbcore->memoryBlocks[i].maxSegment) { --gbcore->memoryBlocks[i].maxSegment; } } SM83Reset(core->cpu); if (core->opts.skipBios) { GBSkipBIOS(core->board); } } static void _GBCoreRunFrame(struct mCore* core) { struct GB* gb = core->board; int32_t frameCounter = gb->video.frameCounter; while (gb->video.frameCounter == frameCounter) { SM83Run(core->cpu); } } static void _GBCoreRunLoop(struct mCore* core) { SM83Run(core->cpu); } static void _GBCoreStep(struct mCore* core) { struct SM83Core* cpu = core->cpu; do { SM83Tick(cpu); } while (cpu->executionState != SM83_CORE_FETCH); } static size_t _GBCoreStateSize(struct mCore* core) { UNUSED(core); return sizeof(struct GBSerializedState); } static bool _GBCoreLoadState(struct mCore* core, const void* state) { return GBDeserialize(core->board, state); } static bool _GBCoreSaveState(struct mCore* core, void* state) { struct SM83Core* cpu = core->cpu; while (cpu->executionState != SM83_CORE_FETCH) { SM83Tick(cpu); } GBSerialize(core->board, state); return true; } static void _GBCoreSetKeys(struct mCore* core, uint32_t keys) { struct GBCore* gbcore = (struct GBCore*) core; gbcore->keys = keys; GBTestKeypadIRQ(core->board); } static void _GBCoreAddKeys(struct mCore* core, uint32_t keys) { struct GBCore* gbcore = (struct GBCore*) core; gbcore->keys |= keys; GBTestKeypadIRQ(core->board); } static void _GBCoreClearKeys(struct mCore* core, uint32_t keys) { struct GBCore* gbcore = (struct GBCore*) core; gbcore->keys &= ~keys; } static void _GBCoreSetCursorLocation(struct mCore* core, int x, int y) { UNUSED(core); UNUSED(x); UNUSED(y); } static void _GBCoreSetCursorDown(struct mCore* core, bool down) { UNUSED(core); UNUSED(down); } static int32_t _GBCoreFrameCounter(const struct mCore* core) { const struct GB* gb = core->board; return gb->video.frameCounter; } static int32_t _GBCoreFrameCycles(const struct mCore* core) { UNUSED(core); return GB_VIDEO_TOTAL_LENGTH; } static int32_t _GBCoreFrequency(const struct mCore* core) { UNUSED(core); // TODO: GB differences return DMG_SM83_FREQUENCY; } static void _GBCoreGetGameTitle(const struct mCore* core, char* title) { GBGetGameTitle(core->board, title); } static void _GBCoreGetGameCode(const struct mCore* core, char* title) { GBGetGameCode(core->board, title); } static void _GBCoreSetPeripheral(struct mCore* core, int type, void* periph) { struct GB* gb = core->board; switch (type) { case mPERIPH_ROTATION: gb->memory.rotation = periph; break; case mPERIPH_RUMBLE: gb->memory.rumble = periph; break; case mPERIPH_IMAGE_SOURCE: gb->memory.cam = periph; break; default: return; } } static uint32_t _GBCoreBusRead8(struct mCore* core, uint32_t address) { struct SM83Core* cpu = core->cpu; return cpu->memory.load8(cpu, address); } static uint32_t _GBCoreBusRead16(struct mCore* core, uint32_t address) { struct SM83Core* cpu = core->cpu; return cpu->memory.load8(cpu, address) | (cpu->memory.load8(cpu, address + 1) << 8); } static uint32_t _GBCoreBusRead32(struct mCore* core, uint32_t address) { struct SM83Core* cpu = core->cpu; return cpu->memory.load8(cpu, address) | (cpu->memory.load8(cpu, address + 1) << 8) | (cpu->memory.load8(cpu, address + 2) << 16) | (cpu->memory.load8(cpu, address + 3) << 24); } static void _GBCoreBusWrite8(struct mCore* core, uint32_t address, uint8_t value) { struct SM83Core* cpu = core->cpu; cpu->memory.store8(cpu, address, value); } static void _GBCoreBusWrite16(struct mCore* core, uint32_t address, uint16_t value) { struct SM83Core* cpu = core->cpu; cpu->memory.store8(cpu, address, value); cpu->memory.store8(cpu, address + 1, value >> 8); } static void _GBCoreBusWrite32(struct mCore* core, uint32_t address, uint32_t value) { struct SM83Core* cpu = core->cpu; cpu->memory.store8(cpu, address, value); cpu->memory.store8(cpu, address + 1, value >> 8); cpu->memory.store8(cpu, address + 2, value >> 16); cpu->memory.store8(cpu, address + 3, value >> 24); } static uint32_t _GBCoreRawRead8(struct mCore* core, uint32_t address, int segment) { struct SM83Core* cpu = core->cpu; return GBView8(cpu, address, segment); } static uint32_t _GBCoreRawRead16(struct mCore* core, uint32_t address, int segment) { struct SM83Core* cpu = core->cpu; return GBView8(cpu, address, segment) | (GBView8(cpu, address + 1, segment) << 8); } static uint32_t _GBCoreRawRead32(struct mCore* core, uint32_t address, int segment) { struct SM83Core* cpu = core->cpu; return GBView8(cpu, address, segment) | (GBView8(cpu, address + 1, segment) << 8) | (GBView8(cpu, address + 2, segment) << 16) | (GBView8(cpu, address + 3, segment) << 24); } static void _GBCoreRawWrite8(struct mCore* core, uint32_t address, int segment, uint8_t value) { struct SM83Core* cpu = core->cpu; GBPatch8(cpu, address, value, NULL, segment); } static void _GBCoreRawWrite16(struct mCore* core, uint32_t address, int segment, uint16_t value) { struct SM83Core* cpu = core->cpu; GBPatch8(cpu, address, value, NULL, segment); GBPatch8(cpu, address + 1, value >> 8, NULL, segment); } static void _GBCoreRawWrite32(struct mCore* core, uint32_t address, int segment, uint32_t value) { struct SM83Core* cpu = core->cpu; GBPatch8(cpu, address, value, NULL, segment); GBPatch8(cpu, address + 1, value >> 8, NULL, segment); GBPatch8(cpu, address + 2, value >> 16, NULL, segment); GBPatch8(cpu, address + 3, value >> 24, NULL, segment); } size_t _GBListMemoryBlocks(const struct mCore* core, const struct mCoreMemoryBlock** blocks) { struct GBCore* gbcore = (struct GBCore*) core; *blocks = gbcore->memoryBlocks; return sizeof(gbcore->memoryBlocks) / sizeof(*gbcore->memoryBlocks); } void* _GBGetMemoryBlock(struct mCore* core, size_t id, size_t* sizeOut) { struct GB* gb = core->board; bool isCgb = gb->model >= GB_MODEL_CGB; switch (id) { default: return NULL; case GB_REGION_CART_BANK0: *sizeOut = gb->memory.romSize; return gb->memory.rom; case GB_REGION_VRAM: *sizeOut = GB_SIZE_VRAM_BANK0 * (isCgb ? 1 : 2); return gb->video.vram; case GB_REGION_EXTERNAL_RAM: *sizeOut = gb->sramSize; return gb->memory.sram; case GB_REGION_WORKING_RAM_BANK0: *sizeOut = GB_SIZE_WORKING_RAM_BANK0 * (isCgb ? 8 : 2); return gb->memory.wram; case GB_BASE_OAM: *sizeOut = GB_SIZE_OAM; return gb->video.oam.raw; case GB_BASE_HRAM: *sizeOut = GB_SIZE_HRAM; return gb->memory.hram; } } #ifdef USE_DEBUGGERS static bool _GBCoreSupportsDebuggerType(struct mCore* core, enum mDebuggerType type) { UNUSED(core); switch (type) { case DEBUGGER_CUSTOM: case DEBUGGER_CLI: return true; default: return false; } } static struct mDebuggerPlatform* _GBCoreDebuggerPlatform(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; struct GB* gb = core->board; if (!gbcore->debuggerPlatform) { struct SM83Debugger* platform = (struct SM83Debugger*) GBDebuggerCreate(gb); gbcore->debuggerPlatform = &platform->d; } return gbcore->debuggerPlatform; } static struct CLIDebuggerSystem* _GBCoreCliDebuggerSystem(struct mCore* core) { return GBCLIDebuggerCreate(core); } static void _GBCoreAttachDebugger(struct mCore* core, struct mDebugger* debugger) { struct SM83Core* cpu = core->cpu; if (core->debugger) { SM83HotplugDetach(cpu, CPU_COMPONENT_DEBUGGER); } cpu->components[CPU_COMPONENT_DEBUGGER] = &debugger->d; SM83HotplugAttach(cpu, CPU_COMPONENT_DEBUGGER); core->debugger = debugger; } static void _GBCoreDetachDebugger(struct mCore* core) { struct SM83Core* cpu = core->cpu; if (core->debugger) { SM83HotplugDetach(cpu, CPU_COMPONENT_DEBUGGER); } cpu->components[CPU_COMPONENT_DEBUGGER] = NULL; core->debugger = NULL; } static void _GBCoreLoadSymbols(struct mCore* core, struct VFile* vf) { core->symbolTable = mDebuggerSymbolTableCreate(); #if !defined(MINIMAL_CORE) || MINIMAL_CORE < 2 if (!vf) { vf = mDirectorySetOpenSuffix(&core->dirs, core->dirs.base, ".sym", O_RDONLY); } #endif if (!vf) { return; } GBLoadSymbols(core->symbolTable, vf); } static bool _GBCoreLookupIdentifier(struct mCore* core, const char* name, int32_t* value, int* segment) { UNUSED(core); *segment = -1; int i; for (i = 0; i < GB_REG_MAX; ++i) { const char* reg = GBIORegisterNames[i]; if (reg && strcasecmp(reg, name) == 0) { *value = GB_BASE_IO | i; return true; } } return false; } #endif static struct mCheatDevice* _GBCoreCheatDevice(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; if (!gbcore->cheatDevice) { gbcore->cheatDevice = GBCheatDeviceCreate(); ((struct SM83Core*) core->cpu)->components[CPU_COMPONENT_CHEAT_DEVICE] = &gbcore->cheatDevice->d; SM83HotplugAttach(core->cpu, CPU_COMPONENT_CHEAT_DEVICE); gbcore->cheatDevice->p = core; } return gbcore->cheatDevice; } static size_t _GBCoreSavedataClone(struct mCore* core, void** sram) { struct GB* gb = core->board; struct VFile* vf = gb->sramVf; if (vf) { *sram = malloc(vf->size(vf)); vf->seek(vf, 0, SEEK_SET); return vf->read(vf, *sram, vf->size(vf)); } if (gb->sramSize) { *sram = malloc(gb->sramSize); memcpy(*sram, gb->memory.sram, gb->sramSize); return gb->sramSize; } *sram = NULL; return 0; } static bool _GBCoreSavedataRestore(struct mCore* core, const void* sram, size_t size, bool writeback) { struct GB* gb = core->board; if (!writeback) { struct VFile* vf = VFileMemChunk(sram, size); GBSavedataMask(gb, vf, true); return true; } struct VFile* vf = gb->sramVf; if (vf) { vf->seek(vf, 0, SEEK_SET); return vf->write(vf, sram, size) > 0; } if (size > 0x20000) { size = 0x20000; } GBResizeSram(gb, size); memcpy(gb->memory.sram, sram, size); return true; } static size_t _GBCoreListVideoLayers(const struct mCore* core, const struct mCoreChannelInfo** info) { UNUSED(core); if (info) { *info = _GBVideoLayers; } return sizeof(_GBVideoLayers) / sizeof(*_GBVideoLayers); } static size_t _GBCoreListAudioChannels(const struct mCore* core, const struct mCoreChannelInfo** info) { UNUSED(core); if (info) { *info = _GBAudioChannels; } return sizeof(_GBAudioChannels) / sizeof(*_GBAudioChannels); } static void _GBCoreEnableVideoLayer(struct mCore* core, size_t id, bool enable) { struct GB* gb = core->board; switch (id) { case GB_LAYER_BACKGROUND: gb->video.renderer->disableBG = !enable; break; case GB_LAYER_WINDOW: gb->video.renderer->disableWIN = !enable; break; case GB_LAYER_OBJ: gb->video.renderer->disableOBJ = !enable; break; default: break; } } static void _GBCoreEnableAudioChannel(struct mCore* core, size_t id, bool enable) { struct GB* gb = core->board; switch (id) { case 0: case 1: case 2: case 3: gb->audio.forceDisableCh[id] = !enable; break; default: break; } } static void _GBCoreAdjustVideoLayer(struct mCore* core, size_t id, int32_t x, int32_t y) { struct GBCore* gbcore = (struct GBCore*) core; switch (id) { case GB_LAYER_BACKGROUND: gbcore->renderer.offsetScx = x; gbcore->renderer.offsetScy = y; break; case GB_LAYER_WINDOW: gbcore->renderer.offsetWx = x; gbcore->renderer.offsetWy = y; break; case GB_LAYER_OBJ: gbcore->renderer.objOffsetX = x; gbcore->renderer.objOffsetY = y; break; default: return; } } #ifndef MINIMAL_CORE static void _GBCoreStartVideoLog(struct mCore* core, struct mVideoLogContext* context) { struct GBCore* gbcore = (struct GBCore*) core; struct GB* gb = core->board; gbcore->logContext = context; int channelId = mVideoLoggerAddChannel(context); gbcore->proxyRenderer.logger = malloc(sizeof(struct mVideoLogger)); mVideoLoggerRendererCreate(gbcore->proxyRenderer.logger, false); mVideoLoggerAttachChannel(gbcore->proxyRenderer.logger, context, channelId); gbcore->proxyRenderer.logger->block = false; GBVideoProxyRendererCreate(&gbcore->proxyRenderer, &gbcore->renderer.d); GBVideoProxyRendererShim(&gb->video, &gbcore->proxyRenderer); } static void _GBCoreEndVideoLog(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; struct GB* gb = core->board; if (gbcore->proxyRenderer.logger) { GBVideoProxyRendererUnshim(&gb->video, &gbcore->proxyRenderer); free(gbcore->proxyRenderer.logger); gbcore->proxyRenderer.logger = NULL; } } #endif struct mCore* GBCoreCreate(void) { struct GBCore* gbcore = malloc(sizeof(*gbcore)); struct mCore* core = &gbcore->d; memset(&core->opts, 0, sizeof(core->opts)); core->cpu = NULL; core->board = NULL; core->debugger = NULL; core->symbolTable = NULL; core->init = _GBCoreInit; core->deinit = _GBCoreDeinit; core->platform = _GBCorePlatform; core->supportsFeature = _GBCoreSupportsFeature; core->setSync = _GBCoreSetSync; core->loadConfig = _GBCoreLoadConfig; core->reloadConfigOption = _GBCoreReloadConfigOption; core->desiredVideoDimensions = _GBCoreDesiredVideoDimensions; core->setVideoBuffer = _GBCoreSetVideoBuffer; core->setVideoGLTex = _GBCoreSetVideoGLTex; core->getPixels = _GBCoreGetPixels; core->putPixels = _GBCorePutPixels; core->getAudioChannel = _GBCoreGetAudioChannel; core->setAudioBufferSize = _GBCoreSetAudioBufferSize; core->getAudioBufferSize = _GBCoreGetAudioBufferSize; core->setAVStream = _GBCoreSetAVStream; core->addCoreCallbacks = _GBCoreAddCoreCallbacks; core->clearCoreCallbacks = _GBCoreClearCoreCallbacks; core->isROM = GBIsROM; core->loadROM = _GBCoreLoadROM; core->loadBIOS = _GBCoreLoadBIOS; core->loadSave = _GBCoreLoadSave; core->loadTemporarySave = _GBCoreLoadTemporarySave; core->loadPatch = _GBCoreLoadPatch; core->unloadROM = _GBCoreUnloadROM; core->checksum = _GBCoreChecksum; core->reset = _GBCoreReset; core->runFrame = _GBCoreRunFrame; core->runLoop = _GBCoreRunLoop; core->step = _GBCoreStep; core->stateSize = _GBCoreStateSize; core->loadState = _GBCoreLoadState; core->saveState = _GBCoreSaveState; core->setKeys = _GBCoreSetKeys; core->addKeys = _GBCoreAddKeys; core->clearKeys = _GBCoreClearKeys; core->setCursorLocation = _GBCoreSetCursorLocation; core->setCursorDown = _GBCoreSetCursorDown; core->frameCounter = _GBCoreFrameCounter; core->frameCycles = _GBCoreFrameCycles; core->frequency = _GBCoreFrequency; core->getGameTitle = _GBCoreGetGameTitle; core->getGameCode = _GBCoreGetGameCode; core->setPeripheral = _GBCoreSetPeripheral; core->busRead8 = _GBCoreBusRead8; core->busRead16 = _GBCoreBusRead16; core->busRead32 = _GBCoreBusRead32; core->busWrite8 = _GBCoreBusWrite8; core->busWrite16 = _GBCoreBusWrite16; core->busWrite32 = _GBCoreBusWrite32; core->rawRead8 = _GBCoreRawRead8; core->rawRead16 = _GBCoreRawRead16; core->rawRead32 = _GBCoreRawRead32; core->rawWrite8 = _GBCoreRawWrite8; core->rawWrite16 = _GBCoreRawWrite16; core->rawWrite32 = _GBCoreRawWrite32; core->listMemoryBlocks = _GBListMemoryBlocks; core->getMemoryBlock = _GBGetMemoryBlock; #ifdef USE_DEBUGGERS core->supportsDebuggerType = _GBCoreSupportsDebuggerType; core->debuggerPlatform = _GBCoreDebuggerPlatform; core->cliDebuggerSystem = _GBCoreCliDebuggerSystem; core->attachDebugger = _GBCoreAttachDebugger; core->detachDebugger = _GBCoreDetachDebugger; core->loadSymbols = _GBCoreLoadSymbols; core->lookupIdentifier = _GBCoreLookupIdentifier; #endif core->cheatDevice = _GBCoreCheatDevice; core->savedataClone = _GBCoreSavedataClone; core->savedataRestore = _GBCoreSavedataRestore; core->listVideoLayers = _GBCoreListVideoLayers; core->listAudioChannels = _GBCoreListAudioChannels; core->enableVideoLayer = _GBCoreEnableVideoLayer; core->enableAudioChannel = _GBCoreEnableAudioChannel; core->adjustVideoLayer = _GBCoreAdjustVideoLayer; #ifndef MINIMAL_CORE core->startVideoLog = _GBCoreStartVideoLog; core->endVideoLog = _GBCoreEndVideoLog; #endif return core; } #ifndef MINIMAL_CORE static void _GBVLPStartFrameCallback(void *context) { struct mCore* core = context; struct GBCore* gbcore = (struct GBCore*) core; struct GB* gb = core->board; if (!mVideoLoggerRendererRun(gbcore->proxyRenderer.logger, true)) { GBVideoProxyRendererUnshim(&gb->video, &gbcore->proxyRenderer); mVideoLogContextRewind(gbcore->logContext, core); GBVideoProxyRendererShim(&gb->video, &gbcore->proxyRenderer); gb->earlyExit = true; } } static bool _GBVLPInit(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; if (!_GBCoreInit(core)) { return false; } gbcore->proxyRenderer.logger = malloc(sizeof(struct mVideoLogger)); mVideoLoggerRendererCreate(gbcore->proxyRenderer.logger, true); GBVideoProxyRendererCreate(&gbcore->proxyRenderer, NULL); memset(&gbcore->logCallbacks, 0, sizeof(gbcore->logCallbacks)); gbcore->logCallbacks.videoFrameStarted = _GBVLPStartFrameCallback; gbcore->logCallbacks.context = core; core->addCoreCallbacks(core, &gbcore->logCallbacks); core->videoLogger = gbcore->proxyRenderer.logger; return true; } static void _GBVLPDeinit(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; if (gbcore->logContext) { mVideoLogContextDestroy(core, gbcore->logContext, true); } _GBCoreDeinit(core); } static void _GBVLPReset(struct mCore* core) { struct GBCore* gbcore = (struct GBCore*) core; struct GB* gb = (struct GB*) core->board; if (gb->video.renderer == &gbcore->proxyRenderer.d) { GBVideoProxyRendererUnshim(&gb->video, &gbcore->proxyRenderer); } else if (gbcore->renderer.outputBuffer) { struct GBVideoRenderer* renderer = &gbcore->renderer.d; GBVideoAssociateRenderer(&gb->video, renderer); } SM83Reset(core->cpu); mVideoLogContextRewind(gbcore->logContext, core); GBVideoProxyRendererShim(&gb->video, &gbcore->proxyRenderer); // Make sure CPU loop never spins gb->memory.ie = 0; gb->memory.ime = false; GBHalt(gb->cpu); } static bool _GBVLPLoadROM(struct mCore* core, struct VFile* vf) { struct GBCore* gbcore = (struct GBCore*) core; gbcore->logContext = mVideoLogContextCreate(NULL); if (!mVideoLogContextLoad(gbcore->logContext, vf)) { mVideoLogContextDestroy(core, gbcore->logContext, false); gbcore->logContext = NULL; return false; } mVideoLoggerAttachChannel(gbcore->proxyRenderer.logger, gbcore->logContext, 0); return true; } static bool _GBVLPLoadState(struct mCore* core, const void* buffer) { struct GB* gb = (struct GB*) core->board; const struct GBSerializedState* state = buffer; gb->timing.root = NULL; gb->model = state->model; gb->cpu->pc = GB_BASE_HRAM; gb->cpu->memory.setActiveRegion(gb->cpu, gb->cpu->pc); GBVideoReset(&gb->video); GBVideoDeserialize(&gb->video, state); GBIODeserialize(gb, state); GBAudioReset(&gb->audio); if (gb->model & GB_MODEL_SGB) { GBSGBDeserialize(gb, state); } // Make sure CPU loop never spins gb->memory.ie = 0; gb->memory.ime = false; GBHalt(gb->cpu); return true; } static bool _returnTrue(struct VFile* vf) { UNUSED(vf); return true; } struct mCore* GBVideoLogPlayerCreate(void) { struct mCore* core = GBCoreCreate(); core->init = _GBVLPInit; core->deinit = _GBVLPDeinit; core->reset = _GBVLPReset; core->loadROM = _GBVLPLoadROM; core->loadState = _GBVLPLoadState; core->isROM = _returnTrue; return core; } #else struct mCore* GBVideoLogPlayerCreate(void) { return false; } #endif