melonDS/src/ARMInterpreter_LoadStore.cpp

981 lines
27 KiB
C++

/*
Copyright 2016-2024 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include "ARM.h"
namespace melonDS::ARMInterpreter
{
// copypasta from ALU. bad
#define LSL_IMM(x, s) \
x <<= s;
#define LSR_IMM(x, s) \
if (s == 0) x = 0; \
else x >>= s;
#define ASR_IMM(x, s) \
if (s == 0) x = ((s32)x) >> 31; \
else x = ((s32)x) >> s;
#define ROR_IMM(x, s) \
if (s == 0) \
{ \
x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \
} \
else \
{ \
x = ROR(x, s); \
}
#define A_WB_CALC_OFFSET_IMM \
u32 offset = (cpu->CurInstr & 0xFFF); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_WB_CALC_OFFSET_REG(shiftop) \
u32 offset = cpu->R[cpu->CurInstr & 0xF]; \
u32 shift = ((cpu->CurInstr>>7)&0x1F); \
shiftop(offset, shift); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
enum class Writeback
{
None = 0,
Pre,
Post,
Trans,
};
template<bool signror, int size, Writeback writeback>
void LoadSingle(ARM* cpu, u8 rd, u8 rn, s32 offset)
{
static_assert((size == 8) || (size == 16) || (size == 32), "dummy this function only takes 8/16/32 for size!!!");
u32 addr;
if constexpr (writeback < Writeback::Post) addr = offset + cpu->R[rn];
else addr = cpu->R[rn];
if constexpr (writeback == Writeback::Trans)
{
if (cpu->Num == 0)
((ARMv5*)cpu)->PU_Map = ((ARMv5*)cpu)->PU_UserMap;
}
u32 val;
bool dabort;
if constexpr (size == 8) dabort = !cpu->DataRead8 (addr, &val);
if constexpr (size == 16) dabort = !cpu->DataRead16(addr, &val);
if constexpr (size == 32) dabort = !cpu->DataRead32(addr, &val);
if constexpr (writeback == Writeback::Trans)
{
if (cpu->Num == 0 && (cpu->CPSR & 0x1F) != 0x10)
((ARMv5*)cpu)->PU_Map = ((ARMv5*)cpu)->PU_PrivMap;
}
cpu->AddCycles_CDI();
if (dabort) [[unlikely]]
{
((ARMv5*)cpu)->DataAbort();
return;
}
if constexpr (size == 8 && signror) val = (s32)(s8)val;
if constexpr (size == 16 && signror) val = (s32)(s16)val;
if constexpr (size == 32 && signror) val = ROR(val, ((addr&0x3)<<3));
if constexpr (writeback != Writeback::None) cpu->R[rn] += offset;
if (rd == 15)
{
if (cpu->Num==1 || (((ARMv5*)cpu)->CP15Control & (1<<15))) val &= ~0x1;
cpu->JumpTo(val);
}
else cpu->R[rd] = val;
}
template<int size, Writeback writeback>
void StoreSingle(ARM* cpu, u8 rd, u8 rn, s32 offset)
{
static_assert((size == 8) || (size == 16) || (size == 32), "dummy this function only takes 8/16/32 for size!!!");
u32 addr;
if constexpr (writeback < Writeback::Post) addr = offset + cpu->R[rn];
else addr = cpu->R[rn];
u32 storeval = cpu->R[rd];
if (rd == 15) storeval += 4;
if constexpr (writeback == Writeback::Trans)
{
if (cpu->Num == 0)
((ARMv5*)cpu)->PU_Map = ((ARMv5*)cpu)->PU_UserMap;
}
bool dabort;
if constexpr (size == 8) dabort = !cpu->DataWrite8 (addr, storeval);
if constexpr (size == 16) dabort = !cpu->DataWrite16(addr, storeval);
if constexpr (size == 32) dabort = !cpu->DataWrite32(addr, storeval);
if constexpr (writeback == Writeback::Trans)
{
if (cpu->Num == 0 && (cpu->CPSR & 0x1F) != 0x10)
((ARMv5*)cpu)->PU_Map = ((ARMv5*)cpu)->PU_PrivMap;
}
cpu->AddCycles_CD();
if (dabort) [[unlikely]]
{
((ARMv5*)cpu)->DataAbort();
return;
}
if constexpr (writeback != Writeback::None) cpu->R[rn] += offset;
}
#define A_STR \
if (cpu->CurInstr & (1<<21)) StoreSingle<32, Writeback::Pre>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else StoreSingle<32, Writeback::None>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_STR_POST \
if (cpu->CurInstr & (1<<21)) StoreSingle<32, Writeback::Trans>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else StoreSingle<32, Writeback::Post>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_STRB \
if (cpu->CurInstr & (1<<21)) StoreSingle<8, Writeback::Pre>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else StoreSingle<8, Writeback::None>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_STRB_POST \
if (cpu->CurInstr & (1<<21)) StoreSingle<8, Writeback::Trans>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else StoreSingle<8, Writeback::Post>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDR \
if (cpu->CurInstr & (1<<21)) LoadSingle<true, 32, Writeback::Pre>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else LoadSingle<true, 32, Writeback::None>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDR_POST \
if (cpu->CurInstr & (1<<21)) LoadSingle<true, 32, Writeback::Trans>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else LoadSingle<true, 32, Writeback::Post>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDRB \
if (cpu->CurInstr & (1<<21)) LoadSingle<false, 8, Writeback::Pre>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else LoadSingle<false, 8, Writeback::None>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDRB_POST \
if (cpu->CurInstr & (1<<21)) LoadSingle<false, 8, Writeback::Trans>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else LoadSingle<false, 8, Writeback::Post>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_IMPLEMENT_WB_LDRSTR(x) \
\
void A_##x##_IMM(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_IMM \
A_##x \
} \
\
void A_##x##_REG_LSL(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSL_IMM) \
A_##x \
} \
\
void A_##x##_REG_LSR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSR_IMM) \
A_##x \
} \
\
void A_##x##_REG_ASR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ASR_IMM) \
A_##x \
} \
\
void A_##x##_REG_ROR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ROR_IMM) \
A_##x \
} \
\
void A_##x##_POST_IMM(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_IMM \
A_##x##_POST \
} \
\
void A_##x##_POST_REG_LSL(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSL_IMM) \
A_##x##_POST \
} \
\
void A_##x##_POST_REG_LSR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(LSR_IMM) \
A_##x##_POST \
} \
\
void A_##x##_POST_REG_ASR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ASR_IMM) \
A_##x##_POST \
} \
\
void A_##x##_POST_REG_ROR(ARM* cpu) \
{ \
A_WB_CALC_OFFSET_REG(ROR_IMM) \
A_##x##_POST \
}
A_IMPLEMENT_WB_LDRSTR(STR)
A_IMPLEMENT_WB_LDRSTR(STRB)
A_IMPLEMENT_WB_LDRSTR(LDR)
A_IMPLEMENT_WB_LDRSTR(LDRB)
#define A_HD_CALC_OFFSET_IMM \
u32 offset = (cpu->CurInstr & 0xF) | ((cpu->CurInstr >> 4) & 0xF0); \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_HD_CALC_OFFSET_REG \
u32 offset = cpu->R[cpu->CurInstr & 0xF]; \
if (!(cpu->CurInstr & (1<<23))) offset = -offset;
#define A_STRH \
if (cpu->CurInstr & (1<<21)) StoreSingle<16, Writeback::Pre>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else StoreSingle<16, Writeback::None>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_STRH_POST \
StoreSingle<16, Writeback::Post>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
// TODO: CHECK LDRD/STRD TIMINGS!!
#define A_LDRD \
if (cpu->Num != 0) return; \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) { A_UNK(cpu); return; } \
bool dabort = !cpu->DataRead32(offset, &cpu->R[r]); \
u32 val; dabort |= !cpu->DataRead32S(offset+4, &val); \
if (dabort) { \
cpu->AddCycles_CDI(); \
((ARMv5*)cpu)->DataAbort(); \
return; } \
if (r == 14) cpu->JumpTo(((((ARMv5*)cpu)->CP15Control & (1<<15)) ? (val & ~0x1) : val), cpu->CurInstr & (1<<22)); /* restores cpsr presumably due to shared dna with ldm */ \
else cpu->R[r+1] = val; \
cpu->AddCycles_CDI(); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset;
#define A_LDRD_POST \
if (cpu->Num != 0) return; \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) { A_UNK(cpu); return; } \
bool dabort = !cpu->DataRead32(addr, &cpu->R[r]); \
u32 val; dabort |= !cpu->DataRead32S(addr+4, &val); \
if (dabort) { \
cpu->AddCycles_CDI(); \
((ARMv5*)cpu)->DataAbort(); \
return; } \
if (r == 14) cpu->JumpTo(((((ARMv5*)cpu)->CP15Control & (1<<15)) ? (val & ~0x1) : val), cpu->CurInstr & (1<<22)); /* restores cpsr presumably due to shared dna with ldm */ \
else cpu->R[r+1] = val; \
cpu->AddCycles_CDI(); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset;
#define A_STRD \
if (cpu->Num != 0) return; \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) { A_UNK(cpu); return; } \
bool dabort = !cpu->DataWrite32(offset, cpu->R[r]); /* yes, this data abort behavior is on purpose */ \
u32 storeval = cpu->R[r+1]; if (r == 14) storeval+=4; \
dabort |= !cpu->DataWrite32S (offset+4, storeval); /* no, i dont understand it either */ \
cpu->AddCycles_CD(); \
if (dabort) [[unlikely]] { \
((ARMv5*)cpu)->DataAbort(); \
return; } \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset;
#define A_STRD_POST \
if (cpu->Num != 0) return; \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) { A_UNK(cpu); return; } \
bool dabort = !cpu->DataWrite32(addr, cpu->R[r]); \
u32 storeval = cpu->R[r+1]; if (r == 14) storeval+=4; \
dabort |= !cpu->DataWrite32S (addr+4, storeval); \
cpu->AddCycles_CD(); \
if (dabort) [[unlikely]] { \
((ARMv5*)cpu)->DataAbort(); \
return; } \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset;
#define A_LDRH \
if (cpu->CurInstr & (1<<21)) LoadSingle<false, 16, Writeback::Pre>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else LoadSingle<false, 16, Writeback::None>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDRH_POST \
LoadSingle<false, 16, Writeback::Post>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDRSB \
if (cpu->CurInstr & (1<<21)) LoadSingle<true, 8, Writeback::Pre>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else LoadSingle<true, 8, Writeback::None>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDRSB_POST \
LoadSingle<true, 8, Writeback::Post>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDRSH \
if (cpu->CurInstr & (1<<21)) LoadSingle<true, 16, Writeback::Pre>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset); \
else LoadSingle<true, 16, Writeback::None>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_LDRSH_POST \
LoadSingle<true, 16, Writeback::Post>(cpu, ((cpu->CurInstr>>12) & 0xF), ((cpu->CurInstr>>16) & 0xF), offset);
#define A_IMPLEMENT_HD_LDRSTR(x) \
\
void A_##x##_IMM(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_IMM \
A_##x \
} \
\
void A_##x##_REG(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_REG \
A_##x \
} \
void A_##x##_POST_IMM(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_IMM \
A_##x##_POST \
} \
\
void A_##x##_POST_REG(ARM* cpu) \
{ \
A_HD_CALC_OFFSET_REG \
A_##x##_POST \
}
A_IMPLEMENT_HD_LDRSTR(STRH)
A_IMPLEMENT_HD_LDRSTR(LDRD)
A_IMPLEMENT_HD_LDRSTR(STRD)
A_IMPLEMENT_HD_LDRSTR(LDRH)
A_IMPLEMENT_HD_LDRSTR(LDRSB)
A_IMPLEMENT_HD_LDRSTR(LDRSH)
template<bool byte>
inline void SWP(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 16) & 0xF];
u32 rm = cpu->R[cpu->CurInstr & 0xF];
if ((cpu->CurInstr & 0xF) == 15) rm += 4;
u32 val;
if ((byte ? cpu->DataRead8 (base, &val)
: cpu->DataRead32(base, &val))) [[likely]]
{
u32 numD = cpu->DataCycles;
if ((byte ? cpu->DataWrite8 (base, rm)
: cpu->DataWrite32(base, rm))) [[likely]]
{
// rd only gets updated if both read and write succeed
u32 rd = (cpu->CurInstr >> 12) & 0xF;
if constexpr (!byte) val = ROR(val, 8*(base&0x3));
if (rd != 15) cpu->R[rd] = val;
else if (cpu->Num==1) cpu->JumpTo(val & ~1); // for some reason these jumps don't seem to work on the arm 9?
}
else ((ARMv5*)cpu)->DataAbort();
cpu->DataCycles += numD;
}
else ((ARMv5*)cpu)->DataAbort();
cpu->AddCycles_CDI();
}
void A_SWP(ARM* cpu)
{
SWP<false>(cpu);
}
void A_SWPB(ARM* cpu)
{
SWP<true>(cpu);
}
void EmptyRListLDMSTM(ARM* cpu, const u8 baseid, const u8 flags)
{
enum // flags
{
load = (1<<0),
writeback = (1<<1),
decrement = (1<<2),
preinc = (1<<3),
restoreorthumb = (1<<4), // specifies restore cpsr for loads, thumb instr for stores
};
if (cpu->Num == 1)
{
u32 base = cpu->R[baseid];
bool flagpreinc = flags & preinc;
if (flags & decrement)
{
flagpreinc = !flagpreinc;
base -= 0x40;
}
if (flagpreinc) base+=4;
if (flags & load)
{
u32 pc;
cpu->DataRead32(base, &pc);
cpu->AddCycles_CDI();
cpu->JumpTo(pc, flags & restoreorthumb);
}
else
{
cpu->DataWrite32(base, cpu->R[15] + ((flags & restoreorthumb) ? 2 : 4));
cpu->AddCycles_CD();
}
}
else
{
cpu->AddCycles_C(); // checkme
}
if (flags & writeback)
{
if (flags & decrement) cpu->R[baseid] -= 0x40;
else cpu->R[baseid] += 0x40;
}
}
void A_LDM(ARM* cpu)
{
u32 baseid = (cpu->CurInstr >> 16) & 0xF;
u32 base = cpu->R[baseid];
u32 wbbase;
u32 oldbase = base;
u32 preinc = (cpu->CurInstr & (1<<24));
bool first = true;
bool dabort = false;
if (!(cpu->CurInstr & 0xFFFF)) [[unlikely]]
{
EmptyRListLDMSTM(cpu, baseid, ((1 << 0) | // load
(((cpu->CurInstr >> 21) & 1) << 1) | // writeback
((!(cpu->CurInstr & (1<<23))) << 2) | // decrement
((preinc >> 24) << 3) | // preinc
(((cpu->CurInstr >> 22) & 1) << 4))); // restore
return;
}
if (!(cpu->CurInstr & (1<<23))) // decrement
{
// decrement is actually an increment starting from the end address
for (int i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
base -= 4;
}
if (cpu->CurInstr & (1<<21))
{
// pre writeback
wbbase = base;
}
preinc = !preinc;
}
// switch to user mode regs
if ((cpu->CurInstr & (1<<22)) && !(cpu->CurInstr & (1<<15)))
cpu->UpdateMode(cpu->CPSR, (cpu->CPSR&~0x1F)|0x10, true);
for (int i = 0; i < 15; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (preinc) base += 4;
u32 val;
dabort |= !(first ? cpu->DataRead32 (base, &val)
: cpu->DataRead32S(base, &val));
// remaining loads still occur but are not written to a reg after a data abort is raised
if (!dabort) [[likely]] cpu->R[i] = val;
first = false;
if (!preinc) base += 4;
}
}
u32 pc = 0;
if (cpu->CurInstr & (1<<15))
{
if (preinc) base += 4;
dabort |= !(first ? cpu->DataRead32 (base, &pc)
: cpu->DataRead32S(base, &pc));
if (!preinc) base += 4;
if (cpu->Num == 1 || (((ARMv5*)cpu)->CP15Control & (1<<15)))
pc &= ~0x1;
}
// handle data aborts
if (dabort) [[unlikely]]
{
if ((cpu->CurInstr & (1<<22)) && !(cpu->CurInstr & (1<<15)))
cpu->UpdateMode((cpu->CPSR&~0x1F)|0x10, cpu->CPSR, true);
cpu->AddCycles_CDI();
((ARMv5*)cpu)->DataAbort();
return;
}
// writeback to base
if (cpu->CurInstr & (1<<21))
{
// post writeback
if (cpu->CurInstr & (1<<23))
wbbase = base;
if (cpu->CurInstr & (1 << baseid))
{
if (cpu->Num == 0)
{
u32 rlist = cpu->CurInstr & 0xFFFF;
if ((!(rlist & ~(1 << baseid))) || (rlist & ~((2 << baseid) - 1)))
cpu->R[baseid] = wbbase;
}
}
else
cpu->R[baseid] = wbbase;
}
if ((cpu->CurInstr & (1<<22)) && !(cpu->CurInstr & (1<<15)))
cpu->UpdateMode((cpu->CPSR&~0x1F)|0x10, cpu->CPSR, true);
// jump if pc got written
if (cpu->CurInstr & (1<<15))
cpu->JumpTo(pc, cpu->CurInstr & (1<<22));
cpu->AddCycles_CDI();
}
void A_STM(ARM* cpu)
{
u32 baseid = (cpu->CurInstr >> 16) & 0xF;
u32 base = cpu->R[baseid];
u32 oldbase = base;
u32 preinc = (cpu->CurInstr & (1<<24));
bool first = true;
bool dabort = false;
if (!(cpu->CurInstr & 0xFFFF)) [[unlikely]]
{
EmptyRListLDMSTM(cpu, baseid, ((0 << 0) | // load
(((cpu->CurInstr >> 21) & 1) << 1) | // writeback
((!(cpu->CurInstr & (1<<23))) << 2) | // decrement
((preinc >> 24) << 3) | // preinc
(0 << 4))); // thumb
return;
}
if (!(cpu->CurInstr & (1<<23)))
{
for (u32 i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
base -= 4;
}
if (cpu->CurInstr & (1<<21))
cpu->R[baseid] = base;
preinc = !preinc;
}
bool isbanked = false;
if (cpu->CurInstr & (1<<22))
{
u32 mode = (cpu->CPSR & 0x1F);
if (mode == 0x11)
isbanked = (baseid >= 8 && baseid < 15);
else if (mode != 0x10 && mode != 0x1F)
isbanked = (baseid >= 13 && baseid < 15);
cpu->UpdateMode(cpu->CPSR, (cpu->CPSR&~0x1F)|0x10, true);
}
for (u32 i = 0; i < 16; i++)
{
if (cpu->CurInstr & (1<<i))
{
if (preinc) base += 4;
u32 val;
if (i == baseid && !isbanked)
{
if ((cpu->Num == 0) || (!(cpu->CurInstr & ((1<<i)-1))))
val = oldbase;
else val = base;
}
else val = cpu->R[i];
if (i == 15) val+=4;
dabort |= !(first ? cpu->DataWrite32 (base, val)
: cpu->DataWrite32S(base, val));
first = false;
if (!preinc) base += 4;
}
}
if (cpu->CurInstr & (1<<22))
cpu->UpdateMode((cpu->CPSR&~0x1F)|0x10, cpu->CPSR, true);
// handle data aborts
if (dabort) [[unlikely]]
{
// restore original value of base
cpu->R[baseid] = oldbase;
cpu->AddCycles_CD();
((ARMv5*)cpu)->DataAbort();
return;
}
if ((cpu->CurInstr & (1<<23)) && (cpu->CurInstr & (1<<21)))
cpu->R[baseid] = base;
cpu->AddCycles_CD();
}
// ---- THUMB -----------------------
void T_LDR_PCREL(ARM* cpu)
{
u32 addr = (cpu->R[15] & ~0x2) + ((cpu->CurInstr & 0xFF) << 2);
bool dabort = !cpu->DataRead32(addr, &cpu->R[(cpu->CurInstr >> 8) & 0x7]);
cpu->AddCycles_CDI();
if (dabort) [[unlikely]]
{
((ARMv5*)cpu)->DataAbort();
}
}
void T_STR_REG(ARM* cpu)
{
StoreSingle<32, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), cpu->R[(cpu->CurInstr >> 6) & 0x7]);
}
void T_STRB_REG(ARM* cpu)
{
StoreSingle<8, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), cpu->R[(cpu->CurInstr >> 6) & 0x7]);
}
void T_LDR_REG(ARM* cpu)
{
LoadSingle<true, 32, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), cpu->R[(cpu->CurInstr >> 6) & 0x7]);
}
void T_LDRB_REG(ARM* cpu)
{
LoadSingle<false, 8, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), cpu->R[(cpu->CurInstr >> 6) & 0x7]);
}
void T_STRH_REG(ARM* cpu)
{
StoreSingle<16, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), cpu->R[(cpu->CurInstr >> 6) & 0x7]);
}
void T_LDRSB_REG(ARM* cpu)
{
LoadSingle<true, 8, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), cpu->R[(cpu->CurInstr >> 6) & 0x7]);
}
void T_LDRH_REG(ARM* cpu)
{
LoadSingle<false, 16, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), cpu->R[(cpu->CurInstr >> 6) & 0x7]);
}
void T_LDRSH_REG(ARM* cpu)
{
LoadSingle<true, 16, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), cpu->R[(cpu->CurInstr >> 6) & 0x7]);
}
void T_STR_IMM(ARM* cpu)
{
StoreSingle<32, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), ((cpu->CurInstr >> 4) & 0x7C));
}
void T_LDR_IMM(ARM* cpu)
{
LoadSingle<true, 32, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), ((cpu->CurInstr >> 4) & 0x7C));
}
void T_STRB_IMM(ARM* cpu)
{
StoreSingle<8, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), ((cpu->CurInstr >> 6) & 0x1F));
}
void T_LDRB_IMM(ARM* cpu)
{
LoadSingle<false, 8, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), ((cpu->CurInstr >> 6) & 0x1F));
}
void T_STRH_IMM(ARM* cpu)
{
StoreSingle<16, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), ((cpu->CurInstr >> 5) & 0x3E));
}
void T_LDRH_IMM(ARM* cpu)
{
LoadSingle<false, 16, Writeback::None>(cpu, (cpu->CurInstr & 0x7), ((cpu->CurInstr >> 3) & 0x7), ((cpu->CurInstr >> 5) & 0x3E));
}
void T_STR_SPREL(ARM* cpu)
{
StoreSingle<32, Writeback::None>(cpu, ((cpu->CurInstr >> 8) & 0x7), 13, ((cpu->CurInstr << 2) & 0x3FC));
}
void T_LDR_SPREL(ARM* cpu)
{
LoadSingle<false, 32, Writeback::None>(cpu, ((cpu->CurInstr >> 8) & 0x7), 13, ((cpu->CurInstr << 2) & 0x3FC));
}
void T_PUSH(ARM* cpu)
{
int nregs = 0;
bool first = true;
bool dabort = false;
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
nregs++;
}
if (cpu->CurInstr & (1<<8))
nregs++;
if (!nregs) [[unlikely]]
{
EmptyRListLDMSTM(cpu, 13, 0b11110);
return;
}
u32 base = cpu->R[13];
base -= (nregs<<2);
u32 wbbase = base;
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
dabort |= !(first ? cpu->DataWrite32 (base, cpu->R[i])
: cpu->DataWrite32S(base, cpu->R[i]));
first = false;
base += 4;
}
}
if (cpu->CurInstr & (1<<8))
{
dabort |= !(first ? cpu->DataWrite32 (base, cpu->R[14])
: cpu->DataWrite32S(base, cpu->R[14]));
}
if (dabort) [[unlikely]]
{
cpu->AddCycles_CD();
((ARMv5*)cpu)->DataAbort();
return;
}
cpu->R[13] = wbbase;
cpu->AddCycles_CD();
}
void T_POP(ARM* cpu)
{
u32 base = cpu->R[13];
bool first = true;
bool dabort = false;
if (!(cpu->CurInstr & 0x1FF)) [[unlikely]]
{
EmptyRListLDMSTM(cpu, 13, 0b00011);
return;
}
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
u32 val;
dabort |= !(first ? cpu->DataRead32 (base, &val)
: cpu->DataRead32S(base, &val));
if (!dabort) [[likely]] cpu->R[i] = val;
first = false;
base += 4;
}
}
if (cpu->CurInstr & (1<<8))
{
u32 pc;
dabort |= !(first ? cpu->DataRead32 (base, &pc)
: cpu->DataRead32S(base, &pc));
if (dabort) [[unlikely]] goto dataabort;
if (cpu->Num==1 || (((ARMv5*)cpu)->CP15Control & (1<<15))) pc |= 0x1;
cpu->JumpTo(pc);
base += 4;
}
if (dabort) [[unlikely]]
{
dataabort:
cpu->AddCycles_CDI();
((ARMv5*)cpu)->DataAbort();
return;
}
cpu->R[13] = base;
cpu->AddCycles_CDI();
}
void T_STMIA(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7];
bool first = true;
bool dabort = false;
if (!(cpu->CurInstr & 0xFF)) [[unlikely]]
{
EmptyRListLDMSTM(cpu, (cpu->CurInstr >> 8) & 0x7, 0b10010);
return;
}
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
dabort |= !(first ? cpu->DataWrite32 (base, cpu->R[i])
: cpu->DataWrite32S(base, cpu->R[i]));
first = false;
base += 4;
}
}
if (dabort) [[unlikely]]
{
cpu->AddCycles_CD();
((ARMv5*)cpu)->DataAbort();
return;
}
// TODO: check "Rb included in Rlist" case
cpu->R[(cpu->CurInstr >> 8) & 0x7] = base;
cpu->AddCycles_CD();
}
void T_LDMIA(ARM* cpu)
{
u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7];
bool first = true;
bool dabort = false;
if (!(cpu->CurInstr & 0xFF)) [[unlikely]]
{
EmptyRListLDMSTM(cpu, (cpu->CurInstr >> 8) & 0x7, 0b00011);
return;
}
for (int i = 0; i < 8; i++)
{
if (cpu->CurInstr & (1<<i))
{
u32 val;
dabort |= !(first ? cpu->DataRead32 (base, &val)
: cpu->DataRead32S(base, &val));
if (!dabort) [[likely]] cpu->R[i] = val;
first = false;
base += 4;
}
}
if (dabort) [[unlikely]]
{
cpu->AddCycles_CDI();
((ARMv5*)cpu)->DataAbort();
return;
}
if (!(cpu->CurInstr & (1<<((cpu->CurInstr >> 8) & 0x7))))
cpu->R[(cpu->CurInstr >> 8) & 0x7] = base;
cpu->AddCycles_CDI();
}
}