flycast/core/rend/vulkan/shaders.cpp

791 lines
20 KiB
C++

/*
* Created on: Oct 3, 2019
Copyright 2019 flyinghead
This file is part of Flycast.
Flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
Flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#include "vulkan.h"
#include "shaders.h"
#include "compiler.h"
#include "utils.h"
static const char VertexShaderSource[] = R"(
layout (std140, set = 0, binding = 0) uniform VertexShaderUniforms
{
mat4 ndcMat;
} uniformBuffer;
layout (location = 0) in vec4 in_pos;
layout (location = 1) in uvec4 in_base;
layout (location = 2) in uvec4 in_offs;
layout (location = 3) in mediump vec2 in_uv;
layout (location = 0) INTERPOLATION out highp vec4 vtx_base;
layout (location = 1) INTERPOLATION out highp vec4 vtx_offs;
layout (location = 2) out highp vec3 vtx_uv;
void main()
{
vec4 vpos = uniformBuffer.ndcMat * in_pos;
#if DIV_POS_Z == 1
vpos /= vpos.z;
vpos.z = vpos.w;
#endif
vtx_base = vec4(in_base) / 255.0;
vtx_offs = vec4(in_offs) / 255.0;
vtx_uv = vec3(in_uv, vpos.z);
#if pp_Gouraud == 1 && DIV_POS_Z != 1
vtx_base *= vpos.z;
vtx_offs *= vpos.z;
#endif
#if DIV_POS_Z != 1
vtx_uv.xy *= vpos.z;
vpos.w = 1.0;
vpos.z = 0.0;
#endif
gl_Position = vpos;
}
)";
static const char FragmentShaderSource[] = R"(
#define PI 3.1415926
layout (location = 0) out vec4 FragColor;
#define gl_FragColor FragColor
layout (std140, set = 0, binding = 1) uniform FragmentShaderUniforms
{
vec4 colorClampMin;
vec4 colorClampMax;
vec4 sp_FOG_COL_RAM;
vec4 sp_FOG_COL_VERT;
vec4 ditherColorMax;
float cp_AlphaTestValue;
float sp_FOG_DENSITY;
} uniformBuffer;
layout (push_constant) uniform pushBlock
{
vec4 clipTest;
float trilinearAlpha;
float palette_index;
} pushConstants;
#if pp_Texture == 1
layout (set = 1, binding = 0) uniform sampler2D tex;
#endif
#if pp_Palette == 1
layout (set = 0, binding = 3) uniform sampler2D palette;
#endif
// Vertex input
layout (location = 0) INTERPOLATION in highp vec4 vtx_base;
layout (location = 1) INTERPOLATION in highp vec4 vtx_offs;
layout (location = 2) in highp vec3 vtx_uv;
#if pp_FogCtrl != 2
layout (set = 0, binding = 2) uniform sampler2D fog_table;
float fog_mode2(float w)
{
float z = clamp(
#if DIV_POS_Z == 1
uniformBuffer.sp_FOG_DENSITY / w
#else
uniformBuffer.sp_FOG_DENSITY * w
#endif
, 1.0, 255.9999);
float exp = floor(log2(z));
float m = z * 16.0 / pow(2.0, exp) - 16.0;
float idx = floor(m) + exp * 16.0 + 0.5;
vec4 fog_coef = texture(fog_table, vec2(idx / 128.0, 0.75 - (m - floor(m)) / 2.0));
return fog_coef.r;
}
#endif
vec4 colorClamp(vec4 col)
{
#if ColorClamping == 1
return clamp(col, uniformBuffer.colorClampMin, uniformBuffer.colorClampMax);
#else
return col;
#endif
}
#if pp_Palette == 1
vec4 palettePixel(sampler2D tex, vec3 coords)
{
#if DIV_POS_Z == 1
float texIdx = texture(tex, coords.xy).r;
#else
float texIdx = textureProj(tex, coords).r;
#endif
vec4 c = vec4(texIdx * 255.0 / 1023.0 + pushConstants.palette_index, 0.5, 0.0, 0.0);
return texture(palette, c.xy);
}
#endif
void main()
{
// Clip inside the box
#if pp_ClipInside == 1
if (gl_FragCoord.x >= pushConstants.clipTest.x && gl_FragCoord.x <= pushConstants.clipTest.z
&& gl_FragCoord.y >= pushConstants.clipTest.y && gl_FragCoord.y <= pushConstants.clipTest.w)
discard;
#endif
highp vec4 color = vtx_base;
highp vec4 offset = vtx_offs;
#if pp_Gouraud == 1 && DIV_POS_Z != 1
color /= vtx_uv.z;
offset /= vtx_uv.z;
#endif
#if pp_UseAlpha == 0
color.a = 1.0;
#endif
#if pp_FogCtrl == 3
color = vec4(uniformBuffer.sp_FOG_COL_RAM.rgb, fog_mode2(vtx_uv.z));
#endif
#if pp_Texture == 1
{
#if pp_Palette == 0
#if DIV_POS_Z == 1
vec4 texcol = texture(tex, vtx_uv.xy);
#else
vec4 texcol = textureProj(tex, vtx_uv);
#endif
#else
vec4 texcol = palettePixel(tex, vtx_uv);
#endif
#if pp_BumpMap == 1
float s = PI / 2.0 * (texcol.a * 15.0 * 16.0 + texcol.r * 15.0) / 255.0;
float r = 2.0 * PI * (texcol.g * 15.0 * 16.0 + texcol.b * 15.0) / 255.0;
texcol.a = clamp(offset.a + offset.r * sin(s) + offset.g * cos(s) * cos(r - 2.0 * PI * offset.b), 0.0, 1.0);
texcol.rgb = vec3(1.0, 1.0, 1.0);
#else
#if pp_IgnoreTexA == 1
texcol.a = 1.0;
#endif
#endif
#if pp_ShadInstr == 0
{
color = texcol;
}
#endif
#if pp_ShadInstr == 1
{
color.rgb *= texcol.rgb;
color.a = texcol.a;
}
#endif
#if pp_ShadInstr == 2
{
color.rgb = mix(color.rgb, texcol.rgb, texcol.a);
}
#endif
#if pp_ShadInstr == 3
{
color *= texcol;
}
#endif
#if pp_Offset == 1 && pp_BumpMap == 0
{
color.rgb += offset.rgb;
}
#endif
}
#endif
color = colorClamp(color);
#if pp_FogCtrl == 0
{
color.rgb = mix(color.rgb, uniformBuffer.sp_FOG_COL_RAM.rgb, fog_mode2(vtx_uv.z));
}
#endif
#if pp_FogCtrl == 1 && pp_Offset==1 && pp_BumpMap == 0
{
color.rgb = mix(color.rgb, uniformBuffer.sp_FOG_COL_VERT.rgb, offset.a);
}
#endif
#if pp_TriLinear == 1
color *= pushConstants.trilinearAlpha;
#endif
#if cp_AlphaTest == 1
color.a = round(color.a * 255.0) / 255.0;
if (uniformBuffer.cp_AlphaTestValue > color.a)
discard;
color.a = 1.0;
#endif
//color.rgb = vec3(gl_FragCoord.w * uniformBuffer.sp_FOG_DENSITY / 128.0);
#if DIV_POS_Z == 1
highp float w = 100000.0 / vtx_uv.z;
#else
highp float w = 100000.0 * vtx_uv.z;
#endif
gl_FragDepth = log2(1.0 + max(w, -0.999999)) / 34.0;
#if DITHERING == 1
float ditherTable[16] = float[](
0.9375, 0.1875, 0.75, 0.,
0.4375, 0.6875, 0.25, 0.5,
0.8125, 0.0625, 0.875, 0.125,
0.3125, 0.5625, 0.375, 0.625
);
float r = ditherTable[int(mod(gl_FragCoord.y, 4.)) * 4 + int(mod(gl_FragCoord.x, 4.))];
// 31 for 5-bit color, 63 for 6 bits, 15 for 4 bits
color += r / uniformBuffer.ditherColorMax;
// avoid rounding
color = floor(color * 255.) / 255.;
#endif
gl_FragColor = color;
}
)";
extern const char ModVolVertexShaderSource[] = R"(
layout (std140, set = 0, binding = 0) uniform VertexShaderUniforms
{
mat4 ndcMat;
} uniformBuffer;
layout (location = 0) in vec4 in_pos;
layout (location = 0) out highp float depth;
void main()
{
vec4 vpos = uniformBuffer.ndcMat * in_pos;
#if DIV_POS_Z == 1
vpos /= vpos.z;
vpos.z = vpos.w;
depth = vpos.w;
#else
depth = vpos.z;
vpos.w = 1.0;
vpos.z = 0.0;
#endif
gl_Position = vpos;
}
)";
static const char ModVolFragmentShaderSource[] = R"(
layout (location = 0) in highp float depth;
layout (location = 0) out vec4 FragColor;
layout (push_constant) uniform pushBlock
{
float sp_ShaderColor;
} pushConstants;
void main()
{
#if DIV_POS_Z == 1
highp float w = 100000.0 / depth;
#else
highp float w = 100000.0 * depth;
#endif
gl_FragDepth = log2(1.0 + max(w, -0.999999)) / 34.0;
FragColor = vec4(0.0, 0.0, 0.0, pushConstants.sp_ShaderColor);
}
)";
static const char QuadVertexShaderSource[] = R"(
layout (location = 0) in vec3 in_pos;
layout (location = 1) in vec2 in_uv;
layout (location = 0) out vec2 outUV;
void main()
{
#if ROTATE == 0
gl_Position = vec4(in_pos, 1.0);
#else
gl_Position = vec4(in_pos.y, -in_pos.x, in_pos.z, 1.0);
#endif
outUV = in_uv;
}
)";
static const char QuadFragmentShaderSource[] = R"(
layout (set = 0, binding = 0) uniform sampler2D tex;
layout (push_constant) uniform pushBlock
{
vec4 color;
} pushConstants;
layout (location = 0) in vec2 inUV;
layout (location = 0) out vec4 FragColor;
void main()
{
#if IGNORE_TEX_ALPHA == 1
FragColor.rgb = pushConstants.color.rgb * texture(tex, inUV).rgb;
FragColor.a = pushConstants.color.a;
#else
FragColor = pushConstants.color * texture(tex, inUV);
#endif
}
)";
static const char OSDVertexShaderSource[] = R"(
layout (location = 0) in vec4 inPos;
layout (location = 1) in uvec4 inColor;
layout (location = 2) in vec2 inUV;
layout (location = 0) out lowp vec4 outColor;
layout (location = 1) out mediump vec2 outUV;
void main()
{
outColor = inColor / 255.0;
outUV = inUV;
gl_Position = inPos;
}
)";
static const char OSDFragmentShaderSource[] = R"(
layout (binding = 0) uniform sampler2D tex;
layout (location = 0) in lowp vec4 inColor;
layout (location = 1) in mediump vec2 inUV;
layout (location = 0) out vec4 FragColor;
void main()
{
FragColor = inColor * texture(tex, inUV);
}
)";
extern const char N2LightShaderSource[] = R"(
layout (std140, set = 1, binding = 2) uniform N2VertexShaderUniforms
{
mat4 mvMat;
mat4 normalMat;
mat4 projMat;
ivec2 envMapping;
int bumpMapping;
int polyNumber;
vec2 glossCoef;
ivec2 constantColor;
} n2Uniform;
#define PI 3.1415926
#define LMODE_SINGLE_SIDED 0
#define LMODE_DOUBLE_SIDED 1
#define LMODE_DOUBLE_SIDED_WITH_TOLERANCE 2
#define LMODE_SPECIAL_EFFECT 3
#define LMODE_THIN_SURFACE 4
#define LMODE_BUMP_MAP 5
#define ROUTING_SPEC_TO_OFFSET 1
#define ROUTING_DIFF_TO_OFFSET 2
#define ROUTING_ATTENUATION 1 // not handled
#define ROUTING_FOG 2 // not handled
#define ROUTING_ALPHA 4
#define ROUTING_SUB 8
struct N2Light
{
vec4 color;
vec4 direction; // For parallel/spot
vec4 position; // For spot/point
int parallel;
int routing;
int dmode;
int smode;
ivec2 diffuse;
ivec2 specular;
float attnDistA;
float attnDistB;
float attnAngleA; // For spot
float attnAngleB;
int distAttnMode; // For spot/point
int _pad1;
int _pad2;
int _pad3;
};
layout (std140, set = 1, binding = 3) uniform N2Lights
{
N2Light lights[16];
vec4 ambientBase[2];
vec4 ambientOffset[2];
ivec2 ambientMaterialBase;
ivec2 ambientMaterialOffset;
int lightCount;
int useBaseOver;
int bumpId0;
int bumpId1;
} n2Lights;
void computeColors(inout vec4 baseCol, inout vec4 offsetCol, in int volIdx, in vec3 position, in vec3 normal)
{
if (n2Uniform.constantColor[volIdx] == 1)
return;
vec3 diffuse = vec3(0.0);
vec3 specular = vec3(0.0);
float diffuseAlpha = 0.0;
float specularAlpha = 0.0;
vec3 reflectDir = reflect(normalize(position), normal);
const float BASE_FACTOR = 2.0;
for (int i = 0; i < n2Lights.lightCount; i++)
{
vec3 lightDir; // direction to the light
vec3 lightColor = n2Lights.lights[i].color.rgb;
if (n2Lights.lights[i].parallel == 1)
{
lightDir = normalize(n2Lights.lights[i].direction.xyz);
}
else
{
lightDir = normalize(n2Lights.lights[i].position.xyz - position);
if (n2Lights.lights[i].attnDistA != 1.0 || n2Lights.lights[i].attnDistB != 0.0)
{
float distance = length(n2Lights.lights[i].position.xyz - position);
if (n2Lights.lights[i].distAttnMode == 0)
distance = 1.0 / distance;
lightColor *= clamp(n2Lights.lights[i].attnDistB * distance + n2Lights.lights[i].attnDistA, 0.0, 1.0);
}
if (n2Lights.lights[i].attnAngleA != 1.0 || n2Lights.lights[i].attnAngleB != 0.0)
{
vec3 spotDir = n2Lights.lights[i].direction.xyz;
float cosAngle = 1.0 - max(0.0, dot(lightDir, spotDir));
lightColor *= clamp(cosAngle * n2Lights.lights[i].attnAngleB + n2Lights.lights[i].attnAngleA, 0.0, 1.0);
}
}
if (n2Lights.lights[i].diffuse[volIdx] == 1)
{
float factor = (n2Lights.lights[i].routing & ROUTING_SUB) != 0 ? -BASE_FACTOR : BASE_FACTOR;
if (n2Lights.lights[i].dmode == LMODE_SINGLE_SIDED)
factor *= max(dot(normal, lightDir), 0.0);
else if (n2Lights.lights[i].dmode == LMODE_DOUBLE_SIDED)
factor *= abs(dot(normal, lightDir));
if ((n2Lights.lights[i].routing & ROUTING_ALPHA) != 0)
diffuseAlpha += lightColor.r * factor;
else
{
if ((n2Lights.lights[i].routing & ROUTING_DIFF_TO_OFFSET) == 0)
diffuse += lightColor * factor * baseCol.rgb;
else
specular += lightColor * factor * baseCol.rgb;
}
}
if (n2Lights.lights[i].specular[volIdx] == 1)
{
float factor = (n2Lights.lights[i].routing & ROUTING_SUB) != 0 ? -BASE_FACTOR : BASE_FACTOR;
if (n2Lights.lights[i].smode == LMODE_SINGLE_SIDED)
factor *= clamp(pow(max(dot(lightDir, reflectDir), 0.0), n2Uniform.glossCoef[volIdx]), 0.0, 1.0);
else if (n2Lights.lights[i].smode == LMODE_DOUBLE_SIDED)
factor *= clamp(pow(abs(dot(lightDir, reflectDir)), n2Uniform.glossCoef[volIdx]), 0.0, 1.0);
if ((n2Lights.lights[i].routing & ROUTING_ALPHA) != 0)
specularAlpha += lightColor.r * factor;
else
{
if ((n2Lights.lights[i].routing & ROUTING_SPEC_TO_OFFSET) == 0)
diffuse += lightColor * factor * offsetCol.rgb;
else
specular += lightColor * factor * offsetCol.rgb;
}
}
}
// ambient light
if (n2Lights.ambientMaterialBase[volIdx] == 1)
diffuse += n2Lights.ambientBase[volIdx].rgb * baseCol.rgb;
else
diffuse += n2Lights.ambientBase[volIdx].rgb;
if (n2Lights.ambientMaterialOffset[volIdx] == 1)
specular += n2Lights.ambientOffset[volIdx].rgb * offsetCol.rgb;
else
specular += n2Lights.ambientOffset[volIdx].rgb;
baseCol.rgb = diffuse;
offsetCol.rgb = specular;
baseCol.a += diffuseAlpha;
offsetCol.a += specularAlpha;
if (n2Lights.useBaseOver == 1)
{
vec4 overflow = max(baseCol - vec4(1.0), 0.0);
offsetCol += overflow;
}
baseCol = clamp(baseCol, 0.0, 1.0);
offsetCol = clamp(offsetCol, 0.0, 1.0);
}
void computeEnvMap(inout vec2 uv, in vec3 position, in vec3 normal)
{
// Spherical mapping
//vec3 r = reflect(normalize(position), normal);
//float m = 2.0 * sqrt(r.x * r.x + r.y * r.y + (r.z + 1.0) * (r.z + 1.0));
//uv += r.xy / m + 0.5;
// Cheap env mapping
uv += normal.xy / 2.0 + 0.5;
uv = clamp(uv, 0.0, 1.0);
}
void computeBumpMap(inout vec4 color0, in vec4 color1, in vec3 position, in vec3 normal, in mat4 normalMat)
{
// TODO
//if (n2Lights.bumpId0 == -1)
return;
normal = normalize(normal);
vec3 tangent = color0.xyz;
if (tangent.x > 0.5)
tangent.x -= 1.0;
if (tangent.y > 0.5)
tangent.y -= 1.0;
if (tangent.z > 0.5)
tangent.z -= 1.0;
tangent = normalize(tangent);
vec3 bitangent = color1.xyz;
if (bitangent.x > 0.5)
bitangent.x -= 1.0;
if (bitangent.y > 0.5)
bitangent.y -= 1.0;
if (bitangent.z > 0.5)
bitangent.z -= 1.0;
bitangent = normalize(bitangent);
float scaleDegree = color0.w;
float scaleOffset = color1.w;
vec3 lightDir; // direction to the light
if (n2Lights.lights[n2Lights.bumpId0].parallel == 1)
lightDir = n2Lights.lights[n2Lights.bumpId0].direction.xyz;
else
lightDir = n2Lights.lights[n2Lights.bumpId0].position.xyz - position;
lightDir = normalize(lightDir * mat3(normalMat));
float n = dot(lightDir, normal);
float cosQ = dot(lightDir, tangent);
float sinQ = dot(lightDir, bitangent);
float sinT = clamp(n, 0.0, 1.0);
float k1 = 1.0 - scaleDegree;
float k2 = scaleDegree * sinT;
float k3 = scaleDegree * sqrt(1.0 - sinT * sinT); // cos T
float q = acos(cosQ);
if (sinQ < 0.0)
q = 2.0 * PI - q;
color0.r = k2;
color0.g = k3;
color0.b = q / PI / 2.0;
color0.a = k1;
color0 = clamp(color0, 0.0, 1.0);
}
)";
static const char N2VertexShaderSource[] = R"(
layout (std140, set = 0, binding = 0) uniform VertexShaderUniforms
{
mat4 ndcMat;
} uniformBuffer;
layout (location = 0) in vec4 in_pos;
layout (location = 1) in uvec4 in_base;
layout (location = 2) in uvec4 in_offs;
layout (location = 3) in mediump vec2 in_uv;
layout (location = 4) in vec3 in_normal;
layout (location = 0) INTERPOLATION out highp vec4 vtx_base;
layout (location = 1) INTERPOLATION out highp vec4 vtx_offs;
layout (location = 2) out highp vec3 vtx_uv;
void wDivide(inout vec4 vpos)
{
vpos = vec4(vpos.xy / vpos.w, 1.0 / vpos.w, 1.0);
vpos = uniformBuffer.ndcMat * vpos;
#if pp_Gouraud == 1
vtx_base *= vpos.z;
vtx_offs *= vpos.z;
#endif
vtx_uv = vec3(vtx_uv.xy * vpos.z, vpos.z);
vpos.w = 1.0;
vpos.z = 0.0;
}
void main()
{
vec4 vpos = n2Uniform.mvMat * in_pos;
vtx_base = vec4(in_base) / 255.0;
vtx_offs = vec4(in_offs) / 255.0;
vec3 vnorm = normalize(mat3(n2Uniform.normalMat) * in_normal);
// TODO bump mapping
if (n2Uniform.bumpMapping == 0)
{
computeColors(vtx_base, vtx_offs, 0, vpos.xyz, vnorm);
#if pp_Texture == 0
vtx_base += vtx_offs;
#endif
}
vtx_uv.xy = in_uv;
if (n2Uniform.envMapping[0] == 1)
computeEnvMap(vtx_uv.xy, vpos.xyz, vnorm);
vpos = n2Uniform.projMat * vpos;
wDivide(vpos);
gl_Position = vpos;
}
)";
extern const char N2ModVolVertexShaderSource[] = R"(
layout (std140, set = 0, binding = 0) uniform VertexShaderUniforms
{
mat4 ndcMat;
} uniformBuffer;
layout (std140, set = 1, binding = 2) uniform N2VertexShaderUniforms
{
mat4 mvMat;
mat4 normalMat;
mat4 projMat;
ivec2 envMapping;
int bumpMapping;
int polyNumber;
vec2 glossCoef;
ivec2 constantColor;
} n2Uniform;
layout (location = 0) in vec4 in_pos;
layout (location = 0) out highp float depth;
void wDivide(inout vec4 vpos)
{
vpos = vec4(vpos.xy / vpos.w, 1.0 / vpos.w, 1.0);
vpos = uniformBuffer.ndcMat * vpos;
depth = vpos.z;
vpos.w = 1.0;
vpos.z = 0.0;
}
void main()
{
vec4 vpos = n2Uniform.mvMat * in_pos;
vpos = n2Uniform.projMat * vpos;
wDivide(vpos);
gl_Position = vpos;
}
)";
vk::UniqueShaderModule ShaderManager::compileShader(const VertexShaderParams& params)
{
VulkanSource src;
if (!params.naomi2)
{
src.addConstant("pp_Gouraud", (int)params.gouraud)
.addConstant("DIV_POS_Z", (int)params.divPosZ)
.addSource(GouraudSource)
.addSource(VertexShaderSource);
}
else
{
src.addConstant("pp_Gouraud", (int)params.gouraud)
.addSource(GouraudSource)
.addSource(N2LightShaderSource)
.addSource(N2VertexShaderSource);
}
return ShaderCompiler::Compile(vk::ShaderStageFlagBits::eVertex, src.generate());
}
vk::UniqueShaderModule ShaderManager::compileShader(const FragmentShaderParams& params)
{
VulkanSource src;
src.addConstant("cp_AlphaTest", (int)params.alphaTest)
.addConstant("pp_ClipInside", (int)params.insideClipTest)
.addConstant("pp_UseAlpha", (int)params.useAlpha)
.addConstant("pp_Texture", (int)params.texture)
.addConstant("pp_IgnoreTexA", (int)params.ignoreTexAlpha)
.addConstant("pp_ShadInstr", params.shaderInstr)
.addConstant("pp_Offset", (int)params.offset)
.addConstant("pp_FogCtrl", params.fog)
.addConstant("pp_Gouraud", (int)params.gouraud)
.addConstant("pp_BumpMap", (int)params.bumpmap)
.addConstant("ColorClamping", (int)params.clamping)
.addConstant("pp_TriLinear", (int)params.trilinear)
.addConstant("pp_Palette", (int)params.palette)
.addConstant("DIV_POS_Z", (int)params.divPosZ)
.addConstant("DITHERING", (int)params.dithering)
.addSource(GouraudSource)
.addSource(FragmentShaderSource);
return ShaderCompiler::Compile(vk::ShaderStageFlagBits::eFragment, src.generate());
}
vk::UniqueShaderModule ShaderManager::compileShader(const ModVolShaderParams& params)
{
return ShaderCompiler::Compile(vk::ShaderStageFlagBits::eVertex,
VulkanSource().addConstant("DIV_POS_Z", (int)params.divPosZ)
.addSource(params.naomi2 ? N2ModVolVertexShaderSource : ModVolVertexShaderSource).generate());
}
vk::UniqueShaderModule ShaderManager::compileModVolFragmentShader(bool divPosZ)
{
return ShaderCompiler::Compile(vk::ShaderStageFlagBits::eFragment,
VulkanSource().addConstant("DIV_POS_Z", (int)divPosZ)
.addSource(ModVolFragmentShaderSource).generate());
}
vk::UniqueShaderModule ShaderManager::compileQuadVertexShader(bool rotate)
{
VulkanSource src;
src.addConstant("ROTATE", (int)rotate)
.addSource(QuadVertexShaderSource);
return ShaderCompiler::Compile(vk::ShaderStageFlagBits::eVertex, src.generate());
}
vk::UniqueShaderModule ShaderManager::compileQuadFragmentShader(bool ignoreTexAlpha)
{
VulkanSource src;
src.addConstant("IGNORE_TEX_ALPHA", (int)ignoreTexAlpha)
.addSource(QuadFragmentShaderSource);
return ShaderCompiler::Compile(vk::ShaderStageFlagBits::eFragment,src.generate());
}
vk::UniqueShaderModule ShaderManager::compileOSDVertexShader()
{
return ShaderCompiler::Compile(vk::ShaderStageFlagBits::eVertex, VulkanSource().addSource(OSDVertexShaderSource).generate());
}
vk::UniqueShaderModule ShaderManager::compileOSDFragmentShader()
{
return ShaderCompiler::Compile(vk::ShaderStageFlagBits::eFragment, VulkanSource().addSource(OSDFragmentShaderSource).generate());
}