flycast/core/hw/aica/dsp_x64.cpp

436 lines
10 KiB
C++
Raw Normal View History

/*
Copyright 2020 flyinghead
This file is part of flycast.
flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#include "build.h"
#if HOST_CPU == CPU_X64 && FEAT_DSPREC != DYNAREC_NONE
2020-03-22 09:08:05 +00:00
#include <xbyak/xbyak.h>
#include "dsp.h"
2020-03-28 16:58:01 +00:00
#include "aica.h"
#include "aica_if.h"
2020-02-26 18:46:46 +00:00
#include "hw/mem/_vmem.h"
namespace dsp
{
2021-09-02 10:34:38 +00:00
constexpr size_t CodeBufferSize = 32 * 1024;
#if defined(_WIN32)
2021-09-02 10:34:38 +00:00
static u8 *CodeBuffer;
#else
2021-09-02 10:34:38 +00:00
alignas(4096) static u8 CodeBuffer[CodeBufferSize]
#if defined(__unix__)
__attribute__((section(".text")));
#elif defined(__APPLE__)
__attribute__((section("__TEXT,.text")));
#else
#error CodeBuffer code section unknown
#endif
#endif
static u8 *pCodeBuffer;
static ptrdiff_t rx_offset;
2021-01-26 17:48:17 +00:00
class X64DSPAssembler : public Xbyak::CodeGenerator
{
public:
2021-01-26 17:48:17 +00:00
X64DSPAssembler(u8 *code_buffer, size_t size) : Xbyak::CodeGenerator(size, code_buffer) {}
void Compile(DSPState *DSP)
{
this->DSP = DSP;
DEBUG_LOG(AICA_ARM, "DSPAssembler::DSPCompile recompiling for x86/64 at %p", this->getCode());
push(rbx);
push(rbp);
push(r12);
push(r13);
push(r14);
push(r15);
#ifdef _WIN32
sub(rsp, 40); // 32-byte shadow space + 8 bytes for 16-byte stack alignment
#else
sub(rsp, 8); // 16-byte stack alignment
#endif
mov(rbx, (uintptr_t)&DSP->TEMP[0]); // rbx points to TEMP, right after the code
mov(rbp, (uintptr_t)DSPData); // rbp points to DSPData
const Xbyak::Reg32 INPUTS = r8d; // 24 bits
const Xbyak::Reg32 ACC = r12d; // 26 bits - saved
const Xbyak::Reg32 B = r9d; // 26 bits
const Xbyak::Reg32 X = r10d; // 24 bits
const Xbyak::Reg32 Y = r11d; // 13 bits
const Xbyak::Reg32 Y_REG = r13d; // 24 bits - saved
const Xbyak::Reg32 ADRS_REG = r14d; // 13 bits unsigned - saved
const Xbyak::Reg32 MDEC_CT = r15d; // saved
#ifdef _WIN32
const Xbyak::Reg32 call_arg0 = ecx;
#else
const Xbyak::Reg32 call_arg0 = edi;
#endif
xor_(ACC, ACC);
mov(dword[rbx + dsp_operand(&DSP->FRC_REG)], 0);
xor_(Y_REG, Y_REG);
xor_(ADRS_REG, ADRS_REG);
mov(MDEC_CT, dword[rbx + dsp_operand(&DSP->MDEC_CT)]);
for (int step = 0; step < 128; ++step)
{
u32 *mpro = &DSPData->MPRO[step * 4];
Instruction op;
DecodeInst(mpro, &op);
const u32 COEF = step;
if (op.XSEL || op.YRL || (op.ADRL && op.SHIFT != 3))
{
if (op.IRA <= 0x1f)
//INPUTS = DSP->MEMS[op.IRA];
mov(INPUTS, dword[rbx + dsp_operand(DSP->MEMS, op.IRA)]);
else if (op.IRA <= 0x2F)
{
//INPUTS = DSP->MIXS[op.IRA - 0x20] << 4; // MIXS is 20 bit
mov(INPUTS, dword[rbx + dsp_operand(DSP->MIXS, op.IRA - 0x20)]);
shl(INPUTS, 4);
}
else if (op.IRA <= 0x31)
{
//INPUTS = DSPData->EXTS[op.IRA - 0x30] << 8; // EXTS is 16 bits
mov(INPUTS, dword[rbx + dsp_operand(DSPData->EXTS, op.IRA - 0x30)]);
shl(INPUTS, 8);
}
else
{
xor_(INPUTS, INPUTS);
}
}
if (op.IWT)
{
//DSP->MEMS[op.IWA] = MEMVAL[step & 3]; // MEMVAL was selected in previous MRD
mov(eax, dword[rbx + dsp_operand(DSP->MEMVAL, step & 3)]);
mov(dword[rbx + dsp_operand(DSP->MEMS, op.IWA)], eax);
}
// Operand sel
// B
if (!op.ZERO)
{
if (op.BSEL)
//B = ACC;
mov(B, ACC);
else
{
//B = DSP->TEMP[(TRA + DSP->MDEC_CT) & 0x7F];
mov(eax, MDEC_CT);
if (op.TRA)
add(eax, op.TRA);
and_(eax, 0x7f);
mov(B, dword[rbx + rax * 4]);
}
if (op.NEGB)
//B = 0 - B;
neg(B);
}
// X
Xbyak::Reg32 X_alias = X;
if (op.XSEL)
//X = INPUTS;
X_alias = INPUTS;
else
{
//X = DSP->TEMP[(TRA + DSP->MDEC_CT) & 0x7F];
2021-01-26 17:48:17 +00:00
if (!op.ZERO && !op.BSEL && !op.NEGB)
X_alias = B;
else
{
mov(eax, MDEC_CT);
if (op.TRA)
add(eax, op.TRA);
and_(eax, 0x7f);
mov(X, dword[rbx + rax * 4]);
}
}
// Y
if (op.YSEL == 0)
{
//Y = FRC_REG;
mov(Y, dword[rbx + dsp_operand(&DSP->FRC_REG)]);
}
else if (op.YSEL == 1)
{
//Y = DSPData->COEF[COEF] >> 3; //COEF is 16 bits
movsx(Y, word[rbp + dspdata_operand(DSPData->COEF, COEF)]);
sar(Y, 3);
}
else if (op.YSEL == 2)
{
//Y = Y_REG >> 11;
mov(Y, Y_REG);
sar(Y, 11);
}
else if (op.YSEL == 3)
{
//Y = (Y_REG >> 4) & 0x0FFF;
mov(Y, Y_REG);
sar(Y, 4);
and_(Y, 0x0fff);
}
if (op.YRL)
//Y_REG = INPUTS;
mov(Y_REG, INPUTS);
if (op.TWT || op.FRCL || op.MWT || (op.ADRL && op.SHIFT == 3) || op.EWT)
{
// Shifter
// There's a 1-step delay at the output of the X*Y + B adder. So we use the ACC value from the previous step.
if (op.SHIFT == 0)
{
// SHIFTED = clamp(ACC, -0x80000, 0x7FFFF)
cmp(ACC, 0xFF800000);
mov(edx, 0xFF800000);
mov(eax, 0x007FFFFF);
cmovge(edx, ACC);
cmp(edx, 0x007FFFFF);
cmovg(edx, eax);
}
else if (op.SHIFT == 1)
{
//SHIFTED = ACC << 1; // x2 scale
mov(ecx, ACC);
shl(ecx, 1);
// SHIFTED = clamp(SHIFTED, -0x80000, 0x7FFFF)
cmp(ecx, 0xFF800000);
mov(edx, 0xFF800000);
mov(eax, 0x007FFFFF);
cmovge(edx, ecx);
cmp(edx, 0x007FFFFF);
cmovg(edx, eax);
}
else if (op.SHIFT == 2)
{
//SHIFTED = ACC << 1; // x2 scale
mov(edx, ACC);
shl(edx, 1);
}
else if (op.SHIFT == 3)
{
//SHIFTED = ACC;
mov(edx, ACC);
}
// edx contains SHIFTED
}
// ACCUM
//ACC = (((s64)X * (s64)Y) >> 12) + B;
const Xbyak::Reg64 Xlong = X_alias.cvt64();
movsxd(Xlong, X_alias);
movsxd(rax, Y);
imul(rax, Xlong);
sar(rax, 12);
mov(ACC, eax);
if (!op.ZERO)
add(ACC, B);
if (op.TWT)
{
//DSP->TEMP[(op.TWA + DSP->MDEC_CT) & 0x7F] = SHIFTED;
mov(ecx, MDEC_CT);
if (op.TWA)
add(ecx, op.TWA);
and_(ecx, 0x7f);
mov(dword[rbx + rcx * 4], edx);
}
if (op.FRCL)
{
mov(ecx, edx);
if (op.SHIFT == 3)
//FRC_REG = SHIFTED & 0x0FFF;
and_(ecx, 0xFFF);
else
//FRC_REG = SHIFTED >> 11;
sar(ecx, 11);
mov(dword[rbx + dsp_operand(&DSP->FRC_REG)], ecx);
}
if (step & 1)
{
if (op.MRD || op.MWT)
{
if ((op.ADRL && op.SHIFT == 3) || op.EWT)
push(rdx);
if (op.ADRL && op.SHIFT != 3)
push(INPUTS.cvt64());
}
const Xbyak::Reg32 ADDR = Y;
if (op.MRD) // memory only allowed on odd. DoA inserts NOPs on even
{
//MEMVAL[(step + 2) & 3] = UNPACK(*(u16 *)&aica_ram[ADDR & ARAM_MASK]);
CalculateADDR(ADDR, op, ADRS_REG, MDEC_CT);
mov(rcx, (uintptr_t)&aica_ram[0]);
movzx(call_arg0, word[rcx + ADDR.cvt64()]);
GenCall(UNPACK);
mov(dword[rbx + dsp_operand(&DSP->MEMVAL[(step + 2) & 3])], eax);
}
if (op.MWT)
{
// *(u16 *)&aica_ram[ADDR & ARAM_MASK] = PACK(SHIFTED);
mov(call_arg0, edx); // SHIFTED
GenCall(PACK);
CalculateADDR(ADDR, op, ADRS_REG, MDEC_CT);
mov(rcx, (uintptr_t)&aica_ram[0]);
mov(word[rcx + ADDR.cvt64()], ax);
}
if (op.MRD || op.MWT)
{
if (op.ADRL && op.SHIFT != 3)
pop(INPUTS.cvt64());
if ((op.ADRL && op.SHIFT == 3) || op.EWT)
pop(rdx);
}
}
if (op.ADRL)
{
if (op.SHIFT == 3)
{
//ADRS_REG = SHIFTED >> 12;
mov(ADRS_REG, edx); // SHIFTED
sar(ADRS_REG, 12);
}
else
{
//ADRS_REG = INPUTS >> 16;
mov(ADRS_REG, INPUTS);
sar(ADRS_REG, 16);
}
}
if (op.EWT)
{
//DSPData->EFREG[op.EWA] = SHIFTED >> 8;
sar(edx, 8); // SHIFTED
mov(dword[rbp + dspdata_operand(DSPData->EFREG, op.EWA)], edx);
}
}
// DSP->MDEC_CT--
mov(eax, DSP->RBL + 1);
sub(MDEC_CT, 1);
//if (dsp.MDEC_CT == 0)
// dsp.MDEC_CT = dsp.RBL + 1; // RBL is ring buffer length - 1
cmove(MDEC_CT, eax);
mov(dword[rbx + dsp_operand(&DSP->MDEC_CT)], MDEC_CT);
#ifdef _WIN32
add(rsp, 40);
#else
add(rsp, 8);
#endif
pop(r15);
pop(r14);
pop(r13);
pop(r12);
pop(rbp);
pop(rbx);
ret();
ready();
}
private:
ptrdiff_t dsp_operand(void *data, int index = 0, u32 element_size = 4)
{
return ((u8*)data - (u8*)DSP) - offsetof(DSPState, TEMP) + index * element_size;
}
ptrdiff_t dspdata_operand(void *data, int index = 0, u32 element_size = 4)
{
return ((u8*)data - (u8*)DSPData) + index * element_size;
}
void CalculateADDR(const Xbyak::Reg32 ADDR, const Instruction& op, const Xbyak::Reg32 ADRS_REG, const Xbyak::Reg32 MDEC_CT)
{
//u32 ADDR = DSPData->MADRS[op.MASA];
mov(ADDR, dword[rbp + dspdata_operand(DSPData->MADRS, op.MASA)]);
if (op.ADREB)
{
//ADDR += ADRS_REG & 0x0FFF;
mov(ecx, ADRS_REG);
and_(ecx, 0x0FFF);
add(ADDR, ecx);
}
if (op.NXADR)
//ADDR++;
add(ADDR, 1);
if (!op.TABLE)
{
//ADDR += DSP->MDEC_CT;
add(ADDR, MDEC_CT);
//ADDR &= DSP->RBL;
// RBL is constant for this program
and_(ADDR, DSP->RBL);
}
else
//ADDR &= 0xFFFF;
and_(ADDR, 0xFFFF);
//ADDR <<= 1; // Word -> byte address
shl(ADDR, 1);
//ADDR += DSP->RBP; // RBP is already a byte address
// RBP is constant for this program
add(ADDR, DSP->RBP);
// ADDR & ARAM_MASK
and_(ADDR, ARAM_MASK);
}
template<class Ret, class... Params>
void GenCall(Ret(*function)(Params...))
{
call(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(function) - rx_offset));
}
DSPState *DSP = nullptr;
};
void recompile()
{
2021-09-02 10:34:38 +00:00
X64DSPAssembler assembler(pCodeBuffer, CodeBufferSize);
assembler.Compile(&state);
}
void recInit()
{
#ifdef FEAT_NO_RWX_PAGES
2021-09-02 10:34:38 +00:00
if (!vmem_platform_prepare_jit_block(CodeBuffer, CodeBufferSize, (void**)&pCodeBuffer, &rx_offset))
#else
2021-09-02 10:34:38 +00:00
if (!vmem_platform_prepare_jit_block(CodeBuffer, CodeBufferSize, (void**)&pCodeBuffer))
#endif
die("vmem_platform_prepare_jit_block failed in x64 dsp");
}
void runStep()
{
2021-09-02 10:34:38 +00:00
((void (*)())&pCodeBuffer[0])();
}
}
#endif