fceux/src/boards/emu2413.c

1079 lines
26 KiB
C

/***********************************************************************************
emu2413.c -- YM2413 emulator written by Mitsutaka Okazaki 2001
2001 01-08 : Version 0.10 -- 1st version.
2001 01-15 : Version 0.20 -- semi-public version.
2001 01-16 : Version 0.30 -- 1st public version.
2001 01-17 : Version 0.31 -- Fixed bassdrum problem.
: Version 0.32 -- LPF implemented.
2001 01-18 : Version 0.33 -- Fixed the drum problem, refine the mix-down method.
-- Fixed the LFO bug.
2001 01-24 : Version 0.35 -- Fixed the drum problem,
support undocumented EG behavior.
2001 02-02 : Version 0.38 -- Improved the performance.
Fixed the hi-hat and cymbal model.
Fixed the default percussive datas.
Noise reduction.
Fixed the feedback problem.
2001 03-03 : Version 0.39 -- Fixed some drum bugs.
Improved the performance.
2001 03-04 : Version 0.40 -- Improved the feedback.
Change the default table size.
Clock and Rate can be changed during play.
2001 06-24 : Version 0.50 -- Improved the hi-hat and the cymbal tone.
Added VRC7 patch (OPLL_reset_patch is changed).
Fixed OPLL_reset() bug.
Added OPLL_setMask, OPLL_getMask and OPLL_toggleMask.
Added OPLL_writeIO.
2001 09-28 : Version 0.51 -- Removed the noise table.
2002 01-28 : Version 0.52 -- Added Stereo mode.
2002 02-07 : Version 0.53 -- Fixed some drum bugs.
2002 02-20 : Version 0.54 -- Added the best quality mode.
2002 03-02 : Version 0.55 -- Removed OPLL_init & OPLL_close.
2002 05-30 : Version 0.60 -- Fixed HH&CYM generator and all voice datas.
2004 01-24 : Modified by xodnizel to remove code not needed for the VRC7, among other things.
References:
fmopl.c -- 1999,2000 written by Tatsuyuki Satoh (MAME development).
fmopl.c(fixed) -- (C) 2002 Jarek Burczynski.
s_opl.c -- 2001 written by Mamiya (NEZplug development).
fmgen.cpp -- 1999,2000 written by cisc.
fmpac.ill -- 2000 created by NARUTO.
MSX-Datapack
YMU757 data sheet
YM2143 data sheet
**************************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "emu2413.h"
static const unsigned char default_inst[15][8] = {
/* VRC7 instruments, January 17, 2004 update -Xodnizel */
{ 0x03, 0x21, 0x04, 0x06, 0x8D, 0xF2, 0x42, 0x17 },
{ 0x13, 0x41, 0x05, 0x0E, 0x99, 0x96, 0x63, 0x12 },
{ 0x31, 0x11, 0x10, 0x0A, 0xF0, 0x9C, 0x32, 0x02 },
{ 0x21, 0x61, 0x1D, 0x07, 0x9F, 0x64, 0x20, 0x27 },
{ 0x22, 0x21, 0x1E, 0x06, 0xF0, 0x76, 0x08, 0x28 },
{ 0x02, 0x01, 0x06, 0x00, 0xF0, 0xF2, 0x03, 0x95 },
{ 0x21, 0x61, 0x1C, 0x07, 0x82, 0x81, 0x16, 0x07 },
{ 0x23, 0x21, 0x1A, 0x17, 0xEF, 0x82, 0x25, 0x15 },
{ 0x25, 0x11, 0x1F, 0x00, 0x86, 0x41, 0x20, 0x11 },
{ 0x85, 0x01, 0x1F, 0x0F, 0xE4, 0xA2, 0x11, 0x12 },
{ 0x07, 0xC1, 0x2B, 0x45, 0xB4, 0xF1, 0x24, 0xF4 },
{ 0x61, 0x23, 0x11, 0x06, 0x96, 0x96, 0x13, 0x16 },
{ 0x01, 0x02, 0xD3, 0x05, 0x82, 0xA2, 0x31, 0x51 },
{ 0x61, 0x22, 0x0D, 0x02, 0xC3, 0x7F, 0x24, 0x05 },
{ 0x21, 0x62, 0x0E, 0x00, 0xA1, 0xA0, 0x44, 0x17 },
};
/* Size of Sintable ( 8 -- 18 can be used. 9 recommended.)*/
#define PG_BITS 9
#define PG_WIDTH (1 << PG_BITS)
/* Phase increment counter */
#define DP_BITS 18
#define DP_WIDTH (1 << DP_BITS)
#define DP_BASE_BITS (DP_BITS - PG_BITS)
/* Dynamic range (Accuracy of sin table) */
#define DB_BITS 8
#define DB_STEP (48.0 / (1 << DB_BITS))
#define DB_MUTE (1 << DB_BITS)
/* Dynamic range of envelope */
#define EG_STEP 0.375
#define EG_BITS 7
#define EG_MUTE (1 << EG_BITS)
/* Dynamic range of total level */
#define TL_STEP 0.75
#define TL_BITS 6
#define TL_MUTE (1 << TL_BITS)
/* Dynamic range of sustine level */
#define SL_STEP 3.0
#define SL_BITS 4
#define SL_MUTE (1 << SL_BITS)
#define EG2DB(d) ((d) * (int32)(EG_STEP / DB_STEP))
#define TL2EG(d) ((d) * (int32)(TL_STEP / EG_STEP))
#define SL2EG(d) ((d) * (int32)(SL_STEP / EG_STEP))
#define DB_POS(x) (uint32)((x) / DB_STEP)
#define DB_NEG(x) (uint32)(DB_MUTE + DB_MUTE + (x) / DB_STEP)
/* Bits for liner value */
#define DB2LIN_AMP_BITS 11
#define SLOT_AMP_BITS (DB2LIN_AMP_BITS)
/* Bits for envelope phase incremental counter */
#define EG_DP_BITS 22
#define EG_DP_WIDTH (1 << EG_DP_BITS)
/* Bits for Pitch and Amp modulator */
#define PM_PG_BITS 8
#define PM_PG_WIDTH (1 << PM_PG_BITS)
#define PM_DP_BITS 16
#define PM_DP_WIDTH (1 << PM_DP_BITS)
#define AM_PG_BITS 8
#define AM_PG_WIDTH (1 << AM_PG_BITS)
#define AM_DP_BITS 16
#define AM_DP_WIDTH (1 << AM_DP_BITS)
/* PM table is calcurated by PM_AMP * pow(2,PM_DEPTH*sin(x)/1200) */
#define PM_AMP_BITS 8
#define PM_AMP (1 << PM_AMP_BITS)
/* PM speed(Hz) and depth(cent) */
#define PM_SPEED 6.4
#define PM_DEPTH 13.75
/* AM speed(Hz) and depth(dB) */
#define AM_SPEED 3.7
//#define AM_DEPTH 4.8
#define AM_DEPTH 2.4
/* Cut the lower b bit(s) off. */
#define HIGHBITS(c, b) ((c) >> (b))
/* Leave the lower b bit(s). */
#define LOWBITS(c, b) ((c) & ((1 << (b)) - 1))
/* Expand x which is s bits to d bits. */
#define EXPAND_BITS(x, s, d) ((x) << ((d) - (s)))
/* Expand x which is s bits to d bits and fill expanded bits '1' */
#define EXPAND_BITS_X(x, s, d) (((x) << ((d) - (s))) | ((1 << ((d) - (s))) - 1))
/* Adjust envelope speed which depends on sampling rate. */
#define rate_adjust(x) (rate == 49716 ? x : (uint32)((double)(x) * clk / 72 / rate + 0.5)) /* added 0.5 to round the value*/
#define MOD(o, x) (&(o)->slot[(x) << 1])
#define CAR(o, x) (&(o)->slot[((x) << 1) | 1])
#define BIT(s, b) (((s) >> (b)) & 1)
/* Input clock */
static uint32 clk = 844451141;
/* Sampling rate */
static uint32 rate = 3354932;
/* WaveTable for each envelope amp */
static uint16 fullsintable[PG_WIDTH];
static uint16 halfsintable[PG_WIDTH];
static uint16 *waveform[2] = { fullsintable, halfsintable };
/* LFO Table */
static int32 pmtable[PM_PG_WIDTH];
static int32 amtable[AM_PG_WIDTH];
/* Phase delta for LFO */
static uint32 pm_dphase;
static uint32 am_dphase;
/* dB to Liner table */
static int16 DB2LIN_TABLE[(DB_MUTE + DB_MUTE) * 2];
/* Liner to Log curve conversion table (for Attack rate). */
static uint16 AR_ADJUST_TABLE[1 << EG_BITS];
/* Definition of envelope mode */
enum
{ SETTLE, ATTACK, DECAY, SUSHOLD, SUSTINE, RELEASE, FINISH };
/* Phase incr table for Attack */
static uint32 dphaseARTable[16][16];
/* Phase incr table for Decay and Release */
static uint32 dphaseDRTable[16][16];
/* KSL + TL Table */
static uint32 tllTable[16][8][1 << TL_BITS][4];
static int32 rksTable[2][8][2];
/* Phase incr table for PG */
static uint32 dphaseTable[512][8][16];
/***************************************************
Create tables
****************************************************/
INLINE static int32 Min(int32 i, int32 j) {
if (i < j)
return i;
else
return j;
}
/* Table for AR to LogCurve. */
static void makeAdjustTable(void) {
int32 i;
AR_ADJUST_TABLE[0] = (1 << EG_BITS);
for (i = 1; i < 128; i++)
AR_ADJUST_TABLE[i] = (uint16)((double)(1 << EG_BITS) - 1 - (1 << EG_BITS) * log(i) / log(128));
}
/* Table for dB(0 -- (1<<DB_BITS)-1) to Liner(0 -- DB2LIN_AMP_WIDTH) */
static void makeDB2LinTable(void) {
int32 i;
for (i = 0; i < DB_MUTE + DB_MUTE; i++) {
DB2LIN_TABLE[i] = (int16)((double)((1 << DB2LIN_AMP_BITS) - 1) * pow(10, -(double)i * DB_STEP / 20));
if (i >= DB_MUTE) DB2LIN_TABLE[i] = 0;
DB2LIN_TABLE[i + DB_MUTE + DB_MUTE] = (int16)(-DB2LIN_TABLE[i]);
}
}
/* Liner(+0.0 - +1.0) to dB((1<<DB_BITS) - 1 -- 0) */
static int32 lin2db(double d) {
if (d == 0)
return(DB_MUTE - 1);
else
return Min(-(int32)(20.0 * log10(d) / DB_STEP), DB_MUTE - 1); /* 0 -- 127 */
}
/* Sin Table */
static void makeSinTable(void) {
int32 i;
for (i = 0; i < PG_WIDTH / 4; i++) {
fullsintable[i] = (uint32)lin2db(sin(2.0 * PI * i / PG_WIDTH));
}
for (i = 0; i < PG_WIDTH / 4; i++) {
fullsintable[PG_WIDTH / 2 - 1 - i] = fullsintable[i];
}
for (i = 0; i < PG_WIDTH / 2; i++) {
fullsintable[PG_WIDTH / 2 + i] = (uint32)(DB_MUTE + DB_MUTE + fullsintable[i]);
}
for (i = 0; i < PG_WIDTH / 2; i++)
halfsintable[i] = fullsintable[i];
for (i = PG_WIDTH / 2; i < PG_WIDTH; i++)
halfsintable[i] = fullsintable[0];
}
/* Table for Pitch Modulator */
static void makePmTable(void) {
int32 i;
for (i = 0; i < PM_PG_WIDTH; i++)
pmtable[i] = (int32)((double)PM_AMP * pow(2, (double)PM_DEPTH * sin(2.0 * PI * i / PM_PG_WIDTH) / 1200));
}
/* Table for Amp Modulator */
static void makeAmTable(void) {
int32 i;
for (i = 0; i < AM_PG_WIDTH; i++)
amtable[i] = (int32)((double)AM_DEPTH / 2 / DB_STEP * (1.0 + sin(2.0 * PI * i / PM_PG_WIDTH)));
}
/* Phase increment counter table */
static void makeDphaseTable(void) {
uint32 fnum, block, ML;
uint32 mltable[16] =
{ 1, 1 * 2, 2 * 2, 3 * 2, 4 * 2, 5 * 2, 6 * 2, 7 * 2, 8 * 2, 9 * 2, 10 * 2, 10 * 2, 12 * 2, 12 * 2, 15 * 2, 15 * 2 };
for (fnum = 0; fnum < 512; fnum++)
for (block = 0; block < 8; block++)
for (ML = 0; ML < 16; ML++)
dphaseTable[fnum][block][ML] = rate_adjust(((fnum * mltable[ML]) << block) >> (20 - DP_BITS));
}
static void makeTllTable(void) {
#define dB2(x) ((x) * 2)
static double kltable[16] = {
dB2(0.000), dB2(9.000), dB2(12.000), dB2(13.875), dB2(15.000), dB2(16.125), dB2(16.875), dB2(17.625),
dB2(18.000), dB2(18.750), dB2(19.125), dB2(19.500), dB2(19.875), dB2(20.250), dB2(20.625), dB2(21.000)
};
int32 tmp;
int32 fnum, block, TL, KL;
for (fnum = 0; fnum < 16; fnum++)
for (block = 0; block < 8; block++)
for (TL = 0; TL < 64; TL++)
for (KL = 0; KL < 4; KL++) {
if (KL == 0) {
tllTable[fnum][block][TL][KL] = TL2EG(TL);
} else {
tmp = (int32)(kltable[fnum] - dB2(3.000) * (7 - block));
if (tmp <= 0)
tllTable[fnum][block][TL][KL] = TL2EG(TL);
else
tllTable[fnum][block][TL][KL] = (uint32)((tmp >> (3 - KL)) / EG_STEP) + TL2EG(TL);
}
}
}
/* Rate Table for Attack */
static void makeDphaseARTable(void) {
int32 AR, Rks, RM, RL;
for (AR = 0; AR < 16; AR++)
for (Rks = 0; Rks < 16; Rks++) {
RM = AR + (Rks >> 2);
RL = Rks & 3;
if (RM > 15)
RM = 15;
switch (AR) {
case 0:
dphaseARTable[AR][Rks] = 0;
break;
case 15:
dphaseARTable[AR][Rks] = 0; /*EG_DP_WIDTH;*/
break;
default:
dphaseARTable[AR][Rks] = rate_adjust((3 * (RL + 4) << (RM + 1)));
break;
}
}
}
/* Rate Table for Decay and Release */
static void makeDphaseDRTable(void) {
int32 DR, Rks, RM, RL;
for (DR = 0; DR < 16; DR++)
for (Rks = 0; Rks < 16; Rks++) {
RM = DR + (Rks >> 2);
RL = Rks & 3;
if (RM > 15)
RM = 15;
switch (DR) {
case 0:
dphaseDRTable[DR][Rks] = 0;
break;
default:
dphaseDRTable[DR][Rks] = rate_adjust((RL + 4) << (RM - 1));
break;
}
}
}
static void makeRksTable(void) {
int32 fnum8, block, KR;
for (fnum8 = 0; fnum8 < 2; fnum8++)
for (block = 0; block < 8; block++)
for (KR = 0; KR < 2; KR++) {
if (KR != 0)
rksTable[fnum8][block][KR] = (block << 1) + fnum8;
else
rksTable[fnum8][block][KR] = block >> 1;
}
}
/************************************************************
Calc Parameters
************************************************************/
INLINE static uint32 calc_eg_dphase(OPLL_SLOT * slot) {
switch (slot->eg_mode) {
case ATTACK:
return dphaseARTable[slot->patch.AR][slot->rks];
case DECAY:
return dphaseDRTable[slot->patch.DR][slot->rks];
case SUSHOLD:
return 0;
case SUSTINE:
return dphaseDRTable[slot->patch.RR][slot->rks];
case RELEASE:
if (slot->sustine)
return dphaseDRTable[5][slot->rks];
else if (slot->patch.EG)
return dphaseDRTable[slot->patch.RR][slot->rks];
else
return dphaseDRTable[7][slot->rks];
case FINISH:
return 0;
default:
return 0;
}
}
/*************************************************************
OPLL internal interfaces
*************************************************************/
#define UPDATE_PG(S) (S)->dphase = dphaseTable[(S)->fnum][(S)->block][(S)->patch.ML]
#define UPDATE_TLL(S) \
(((S)->type == 0) ? \
((S)->tll = tllTable[((S)->fnum) >> 5][(S)->block][(S)->patch.TL][(S)->patch.KL]) : \
((S)->tll = tllTable[((S)->fnum) >> 5][(S)->block][(S)->volume][(S)->patch.KL]))
#define UPDATE_RKS(S) (S)->rks = rksTable[((S)->fnum) >> 8][(S)->block][(S)->patch.KR]
#define UPDATE_WF(S) (S)->sintbl = waveform[(S)->patch.WF]
#define UPDATE_EG(S) (S)->eg_dphase = calc_eg_dphase(S)
#define UPDATE_ALL(S) \
UPDATE_PG(S); \
UPDATE_TLL(S); \
UPDATE_RKS(S); \
UPDATE_WF(S); \
UPDATE_EG(S) /* EG should be updated last. */
/* Slot key on */
INLINE static void slotOn(OPLL_SLOT * slot) {
slot->eg_mode = ATTACK;
slot->eg_phase = 0;
slot->phase = 0;
}
/* Slot key on without reseting the phase */
INLINE static void slotOn2(OPLL_SLOT * slot) {
slot->eg_mode = ATTACK;
slot->eg_phase = 0;
}
/* Slot key off */
INLINE static void slotOff(OPLL_SLOT * slot) {
if (slot->eg_mode == ATTACK)
slot->eg_phase = EXPAND_BITS(AR_ADJUST_TABLE[HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS)], EG_BITS, EG_DP_BITS);
slot->eg_mode = RELEASE;
}
/* Channel key on */
INLINE static void keyOn(OPLL * opll, int32 i) {
if (!opll->slot_on_flag[i * 2])
slotOn(MOD(opll, i));
if (!opll->slot_on_flag[i * 2 + 1])
slotOn(CAR(opll, i));
opll->key_status[i] = 1;
}
/* Channel key off */
INLINE static void keyOff(OPLL * opll, int32 i) {
if (opll->slot_on_flag[i * 2 + 1])
slotOff(CAR(opll, i));
opll->key_status[i] = 0;
}
/* Set sustine parameter */
INLINE static void setSustine(OPLL * opll, int32 c, int32 sustine) {
CAR(opll, c)->sustine = sustine;
if (MOD(opll, c)->type)
MOD(opll, c)->sustine = sustine;
}
/* Volume : 6bit ( Volume register << 2 ) */
INLINE static void setVolume(OPLL * opll, int32 c, int32 volume) {
CAR(opll, c)->volume = volume;
}
INLINE static void setSlotVolume(OPLL_SLOT * slot, int32 volume) {
slot->volume = volume;
}
/* Set F-Number ( fnum : 9bit ) */
INLINE static void setFnumber(OPLL * opll, int32 c, int32 fnum) {
CAR(opll, c)->fnum = fnum;
MOD(opll, c)->fnum = fnum;
}
/* Set Block data (block : 3bit ) */
INLINE static void setBlock(OPLL * opll, int32 c, int32 block) {
CAR(opll, c)->block = block;
MOD(opll, c)->block = block;
}
INLINE static void update_key_status(OPLL * opll) { int ch;
for (ch = 0; ch < 6; ch++)
opll->slot_on_flag[ch * 2] = opll->slot_on_flag[ch * 2 + 1] = (opll->HiFreq[ch]) & 0x10;
}
/***********************************************************
Initializing
***********************************************************/
static void OPLL_SLOT_reset(OPLL_SLOT * slot, int type) {
slot->type = type;
slot->sintbl = waveform[0];
slot->phase = 0;
slot->dphase = 0;
slot->output[0] = 0;
slot->output[1] = 0;
slot->feedback = 0;
slot->eg_mode = SETTLE;
slot->eg_phase = EG_DP_WIDTH;
slot->eg_dphase = 0;
slot->rks = 0;
slot->tll = 0;
slot->sustine = 0;
slot->fnum = 0;
slot->block = 0;
slot->volume = 0;
slot->pgout = 0;
slot->egout = 0;
}
static void internal_refresh(void) {
makeDphaseTable();
makeDphaseARTable();
makeDphaseDRTable();
pm_dphase = (uint32)rate_adjust(PM_SPEED * PM_DP_WIDTH / (clk / 72));
am_dphase = (uint32)rate_adjust(AM_SPEED * AM_DP_WIDTH / (clk / 72));
}
static void maketables(uint32 c, uint32 r) {
if (c != clk) {
clk = c;
makePmTable();
makeAmTable();
makeDB2LinTable();
makeAdjustTable();
makeTllTable();
makeRksTable();
makeSinTable();
//makeDefaultPatch ();
}
if (r != rate) {
rate = r;
internal_refresh();
}
}
OPLL *OPLL_new(uint32 clk, uint32 rate) {
OPLL *opll;
maketables(clk, rate);
opll = (OPLL*)calloc(sizeof(OPLL), 1);
if (opll == NULL)
return NULL;
opll->mask = 0;
OPLL_reset(opll);
return opll;
}
void OPLL_delete(OPLL * opll) {
free(opll);
}
/* Reset whole of OPLL except patch datas. */
void OPLL_reset(OPLL * opll) {
int32 i;
if (!opll)
return;
opll->adr = 0;
opll->out = 0;
opll->pm_phase = 0;
opll->am_phase = 0;
opll->mask = 0;
for (i = 0; i < 12; i++)
OPLL_SLOT_reset(&opll->slot[i], i % 2);
for (i = 0; i < 6; i++) {
opll->key_status[i] = 0;
//setPatch (opll, i, 0);
}
for (i = 0; i < 0x40; i++)
OPLL_writeReg(opll, i, 0);
opll->realstep = (uint32)((1 << 31) / rate);
opll->opllstep = (uint32)((1 << 31) / (clk / 72));
opll->oplltime = 0;
}
/* Force Refresh (When external program changes some parameters). */
void OPLL_forceRefresh(OPLL * opll) {
int32 i;
if (opll == NULL)
return;
for (i = 0; i < 12; i++) {
UPDATE_PG(&opll->slot[i]);
UPDATE_RKS(&opll->slot[i]);
UPDATE_TLL(&opll->slot[i]);
UPDATE_WF(&opll->slot[i]);
UPDATE_EG(&opll->slot[i]);
}
}
void OPLL_set_rate(OPLL * opll, uint32 r) {
if (opll->quality)
rate = 49716;
else
rate = r;
internal_refresh();
rate = r;
}
void OPLL_set_quality(OPLL * opll, uint32 q) {
opll->quality = q;
OPLL_set_rate(opll, rate);
}
/*********************************************************
Generate wave data
*********************************************************/
/* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 2PI). */
#if (SLOT_AMP_BITS - PG_BITS) > 0
#define wave2_2pi(e) ((e) >> (SLOT_AMP_BITS - PG_BITS))
#else
#define wave2_2pi(e) ((e) << (PG_BITS - SLOT_AMP_BITS))
#endif
/* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 4PI). */
#if (SLOT_AMP_BITS - PG_BITS - 1) == 0
#define wave2_4pi(e) (e)
#elif (SLOT_AMP_BITS - PG_BITS - 1) > 0
#define wave2_4pi(e) ((e) >> (SLOT_AMP_BITS - PG_BITS - 1))
#else
#define wave2_4pi(e) ((e) << (1 + PG_BITS - SLOT_AMP_BITS))
#endif
/* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 8PI). */
#if (SLOT_AMP_BITS - PG_BITS - 2) == 0
#define wave2_8pi(e) (e)
#elif (SLOT_AMP_BITS - PG_BITS - 2) > 0
#define wave2_8pi(e) ((e) >> (SLOT_AMP_BITS - PG_BITS - 2))
#else
#define wave2_8pi(e) ((e) << (2 + PG_BITS - SLOT_AMP_BITS))
#endif
/* Update AM, PM unit */
static void update_ampm(OPLL * opll) {
opll->pm_phase = (opll->pm_phase + pm_dphase) & (PM_DP_WIDTH - 1);
opll->am_phase = (opll->am_phase + am_dphase) & (AM_DP_WIDTH - 1);
opll->lfo_am = amtable[HIGHBITS(opll->am_phase, AM_DP_BITS - AM_PG_BITS)];
opll->lfo_pm = pmtable[HIGHBITS(opll->pm_phase, PM_DP_BITS - PM_PG_BITS)];
}
/* PG */
INLINE static void calc_phase(OPLL_SLOT * slot, int32 lfo) {
if (slot->patch.PM)
slot->phase += (slot->dphase * lfo) >> PM_AMP_BITS;
else
slot->phase += slot->dphase;
slot->phase &= (DP_WIDTH - 1);
slot->pgout = HIGHBITS(slot->phase, DP_BASE_BITS);
}
/* EG */
static void calc_envelope(OPLL_SLOT * slot, int32 lfo) {
#define S2E(x) (SL2EG((int32)(x / SL_STEP)) << (EG_DP_BITS - EG_BITS))
static uint32 SL[16] = {
S2E(0.0), S2E(3.0), S2E(6.0), S2E(9.0), S2E(12.0), S2E(15.0), S2E(18.0), S2E(21.0),
S2E(24.0), S2E(27.0), S2E(30.0), S2E(33.0), S2E(36.0), S2E(39.0), S2E(42.0), S2E(48.0)
};
uint32 egout;
switch (slot->eg_mode) {
case ATTACK:
egout = AR_ADJUST_TABLE[HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS)];
slot->eg_phase += slot->eg_dphase;
if ((EG_DP_WIDTH & slot->eg_phase) || (slot->patch.AR == 15)) {
egout = 0;
slot->eg_phase = 0;
slot->eg_mode = DECAY;
UPDATE_EG(slot);
}
break;
case DECAY:
egout = HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS);
slot->eg_phase += slot->eg_dphase;
if (slot->eg_phase >= SL[slot->patch.SL]) {
if (slot->patch.EG) {
slot->eg_phase = SL[slot->patch.SL];
slot->eg_mode = SUSHOLD;
UPDATE_EG(slot);
} else {
slot->eg_phase = SL[slot->patch.SL];
slot->eg_mode = SUSTINE;
UPDATE_EG(slot);
}
}
break;
case SUSHOLD:
egout = HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS);
if (slot->patch.EG == 0) {
slot->eg_mode = SUSTINE;
UPDATE_EG(slot);
}
break;
case SUSTINE:
case RELEASE:
egout = HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS);
slot->eg_phase += slot->eg_dphase;
if (egout >= (1 << EG_BITS)) {
slot->eg_mode = FINISH;
egout = (1 << EG_BITS) - 1;
}
break;
case FINISH:
egout = (1 << EG_BITS) - 1;
break;
default:
egout = (1 << EG_BITS) - 1;
break;
}
if (slot->patch.AM)
egout = EG2DB(egout + slot->tll) + lfo;
else
egout = EG2DB(egout + slot->tll);
if (egout >= DB_MUTE)
egout = DB_MUTE - 1;
slot->egout = egout;
}
/* CARRIOR */
INLINE static int32 calc_slot_car(OPLL_SLOT * slot, int32 fm) {
slot->output[1] = slot->output[0];
if (slot->egout >= (DB_MUTE - 1)) {
slot->output[0] = 0;
} else {
slot->output[0] = DB2LIN_TABLE[slot->sintbl[(slot->pgout + wave2_8pi(fm)) & (PG_WIDTH - 1)] + slot->egout];
}
return (slot->output[1] + slot->output[0]) >> 1;
}
/* MODULATOR */
INLINE static int32 calc_slot_mod(OPLL_SLOT * slot) {
int32 fm;
slot->output[1] = slot->output[0];
if (slot->egout >= (DB_MUTE - 1)) {
slot->output[0] = 0;
} else if (slot->patch.FB != 0) {
fm = wave2_4pi(slot->feedback) >> (7 - slot->patch.FB);
slot->output[0] = DB2LIN_TABLE[slot->sintbl[(slot->pgout + fm) & (PG_WIDTH - 1)] + slot->egout];
} else {
slot->output[0] = DB2LIN_TABLE[slot->sintbl[slot->pgout] + slot->egout];
}
slot->feedback = (slot->output[1] + slot->output[0]) >> 1;
return slot->feedback;
}
static INLINE int16 calc(OPLL * opll) {
int32 inst = 0, out = 0;
int32 i;
update_ampm(opll);
for (i = 0; i < 12; i++) {
calc_phase(&opll->slot[i], opll->lfo_pm);
calc_envelope(&opll->slot[i], opll->lfo_am);
}
for (i = 0; i < 6; i++)
if (!(opll->mask & OPLL_MASK_CH(i)) && (CAR(opll, i)->eg_mode != FINISH))
inst += calc_slot_car(CAR(opll, i), calc_slot_mod(MOD(opll, i)));
out = inst;
return (int16)out;
}
void OPLL_fillbuf(OPLL* opll, int32 *buf, int32 len, int shift) {
while (len > 0) {
*buf += (calc(opll) + 32768) << shift;
buf++;
len--;
}
}
int16 OPLL_calc(OPLL * opll) {
if (!opll->quality)
return calc(opll);
while (opll->realstep > opll->oplltime) {
opll->oplltime += opll->opllstep;
opll->prev = opll->next;
opll->next = calc(opll);
}
opll->oplltime -= opll->realstep;
opll->out = (int16)(((double)opll->next * (opll->opllstep - opll->oplltime)
+ (double)opll->prev * opll->oplltime) / opll->opllstep);
return (int16)opll->out;
}
uint32 OPLL_setMask(OPLL * opll, uint32 mask) {
uint32 ret;
if (opll) {
ret = opll->mask;
opll->mask = mask;
return ret;
} else
return 0;
}
uint32 OPLL_toggleMask(OPLL * opll, uint32 mask) {
uint32 ret;
if (opll) {
ret = opll->mask;
opll->mask ^= mask;
return ret;
} else
return 0;
}
/****************************************************
I/O Ctrl
*****************************************************/
static void setInstrument(OPLL * opll, uint32 i, uint32 inst) {
const uint8 *src;
OPLL_PATCH *modp, *carp;
opll->patch_number[i] = inst;
if (inst)
src = default_inst[inst - 1];
else
src = opll->CustInst;
modp = &MOD(opll, i)->patch;
carp = &CAR(opll, i)->patch;
modp->AM = (src[0] >> 7) & 1;
modp->PM = (src[0] >> 6) & 1;
modp->EG = (src[0] >> 5) & 1;
modp->KR = (src[0] >> 4) & 1;
modp->ML = (src[0] & 0xF);
carp->AM = (src[1] >> 7) & 1;
carp->PM = (src[1] >> 6) & 1;
carp->EG = (src[1] >> 5) & 1;
carp->KR = (src[1] >> 4) & 1;
carp->ML = (src[1] & 0xF);
modp->KL = (src[2] >> 6) & 3;
modp->TL = (src[2] & 0x3F);
carp->KL = (src[3] >> 6) & 3;
carp->WF = (src[3] >> 4) & 1;
modp->WF = (src[3] >> 3) & 1;
modp->FB = (src[3]) & 7;
modp->AR = (src[4] >> 4) & 0xF;
modp->DR = (src[4] & 0xF);
carp->AR = (src[5] >> 4) & 0xF;
carp->DR = (src[5] & 0xF);
modp->SL = (src[6] >> 4) & 0xF;
modp->RR = (src[6] & 0xF);
carp->SL = (src[7] >> 4) & 0xF;
carp->RR = (src[7] & 0xF);
}
void OPLL_writeReg(OPLL * opll, uint32 reg, uint32 data) {
int32 i, v, ch;
data = data & 0xff;
reg = reg & 0x3f;
switch (reg) {
case 0x00:
opll->CustInst[0] = data;
for (i = 0; i < 6; i++) {
if (opll->patch_number[i] == 0) {
setInstrument(opll, i, 0);
UPDATE_PG(MOD(opll, i));
UPDATE_RKS(MOD(opll, i));
UPDATE_EG(MOD(opll, i));
}
}
break;
case 0x01:
opll->CustInst[1] = data;
for (i = 0; i < 6; i++) {
if (opll->patch_number[i] == 0) {
setInstrument(opll, i, 0);
UPDATE_PG(CAR(opll, i));
UPDATE_RKS(CAR(opll, i));
UPDATE_EG(CAR(opll, i));
}
}
break;
case 0x02:
opll->CustInst[2] = data;
for (i = 0; i < 6; i++) {
if (opll->patch_number[i] == 0) {
setInstrument(opll, i, 0);
UPDATE_TLL(MOD(opll, i));
}
}
break;
case 0x03:
opll->CustInst[3] = data;
for (i = 0; i < 6; i++) {
if (opll->patch_number[i] == 0) {
setInstrument(opll, i, 0);
UPDATE_WF(MOD(opll, i));
UPDATE_WF(CAR(opll, i));
}
}
break;
case 0x04:
opll->CustInst[4] = data;
for (i = 0; i < 6; i++) {
if (opll->patch_number[i] == 0) {
setInstrument(opll, i, 0);
UPDATE_EG(MOD(opll, i));
}
}
break;
case 0x05:
opll->CustInst[5] = data;
for (i = 0; i < 6; i++) {
if (opll->patch_number[i] == 0) {
setInstrument(opll, i, 0);
UPDATE_EG(CAR(opll, i));
}
}
break;
case 0x06:
opll->CustInst[6] = data;
for (i = 0; i < 6; i++) {
if (opll->patch_number[i] == 0) {
setInstrument(opll, i, 0);
UPDATE_EG(MOD(opll, i));
}
}
break;
case 0x07:
opll->CustInst[7] = data;
for (i = 0; i < 6; i++) {
if (opll->patch_number[i] == 0) {
setInstrument(opll, i, 0);
UPDATE_EG(CAR(opll, i));
}
}
break;
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
ch = reg - 0x10;
opll->LowFreq[ch] = data;
setFnumber(opll, ch, data + ((opll->HiFreq[ch] & 1) << 8));
UPDATE_ALL(MOD(opll, ch));
UPDATE_ALL(CAR(opll, ch));
break;
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
ch = reg - 0x20;
opll->HiFreq[ch] = data;
setFnumber(opll, ch, ((data & 1) << 8) + opll->LowFreq[ch]);
setBlock(opll, ch, (data >> 1) & 7);
setSustine(opll, ch, (data >> 5) & 1);
if (data & 0x10)
keyOn(opll, ch);
else
keyOff(opll, ch);
UPDATE_ALL(MOD(opll, ch));
UPDATE_ALL(CAR(opll, ch));
update_key_status(opll);
break;
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
opll->InstVol[reg - 0x30] = data;
i = (data >> 4) & 15;
v = data & 15;
setInstrument(opll, reg - 0x30, i);
setVolume(opll, reg - 0x30, v << 2);
UPDATE_ALL(MOD(opll, reg - 0x30));
UPDATE_ALL(CAR(opll, reg - 0x30));
break;
default:
break;
}
}
void OPLL_writeIO(OPLL * opll, uint32 adr, uint32 val) {
if (adr & 1)
OPLL_writeReg(opll, opll->adr, val);
else
opll->adr = val;
}