duckstation/data/resources/shaders/dolphinfx/edge-smoothing/XBR.glsl

277 lines
8.5 KiB
Plaintext
Raw Normal View History

// Hyllian's xBR-lv2-standalone Shader
// Copyright (C) 2011-2024 Hyllian - sergiogdb@gmail.com
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/*
[configuration]
[OptionRangeFloat]
GUIName = COLOR DISTINCTION THRESHOLD
OptionName = XBR_EQ_THRESHOLD
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.32
[OptionRangeFloat]
GUIName = SMOOTHNESS THRESHOLD
OptionName = XBR_LV2_COEFFICIENT
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.1
DefaultValue = 0.3
[OptionRangeFloat]
GUIName = COLOR BLENDING
OptionName = XBR_BLENDING
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[/configuration]
*/
// Uncomment just one of the three params below to choose the corner detection
//#define CORNER_A
//#define CORNER_B
#define CORNER_C
#define lv2_cf (GetOption(XBR_LV2_COEFFICIENT)+2.0)
#define P(x,y) (vec2(x,y)*vec2(dx,dy))
const vec4 Ao = vec4( 1.0, -1.0, -1.0, 1.0 );
const vec4 Bo = vec4( 1.0, 1.0, -1.0,-1.0 );
const vec4 Co = vec4( 1.5, 0.5, -0.5, 0.5 );
const vec4 Ax = vec4( 1.0, -1.0, -1.0, 1.0 );
const vec4 Bx = vec4( 0.5, 2.0, -0.5,-2.0 );
const vec4 Cx = vec4( 1.0, 1.0, -0.5, 0.0 );
const vec4 Ay = vec4( 1.0, -1.0, -1.0, 1.0 );
const vec4 By = vec4( 2.0, 0.5, -2.0,-0.5 );
const vec4 Cy = vec4( 2.0, 0.0, -1.0, 0.5 );
const vec4 Ci = vec4(0.25, 0.25, 0.25, 0.25);
const vec3 v2f = vec3( 65536, 256, 1); // vec to float encode
const vec3 Y = vec3(0.2627, 0.6780, 0.0593);
// Return if A components are less than or equal B ones.
vec4 LTE(vec4 A, vec4 B)
{
return step(A, B);
}
// Return if A components are less than B ones.
vec4 LT(vec4 A, vec4 B)
{
return vec4(lessThan(A, B));
}
// Return logically inverted vector components. BEWARE: Only works with 0.0 or 1.0 components.
vec4 NOT(vec4 A)
{
return (vec4(1.0) - A);
}
// Compare two vectors and return their components are different.
vec4 diff(vec4 A, vec4 B)
{
return vec4(notEqual(A, B));
}
float dist(vec3 A, vec3 B)
{
return dot(abs(A-B), Y);
}
// Calculate color distance between two vectors of four pixels
vec4 dist4(mat4x3 A, mat4x3 B)
{
return vec4(dist(A[0],B[0]), dist(A[1],B[1]), dist(A[2],B[2]), dist(A[3],B[3]));
}
// Tests if color components are under a threshold. In this case they are considered 'equal'.
vec4 eq(mat4x3 A, mat4x3 B)
{
return (step(dist4(A, B), vec4(GetOption(XBR_EQ_THRESHOLD))));
}
// Determine if two vector components are NOT equal based on a threshold.
vec4 neq(mat4x3 A, mat4x3 B)
{
return (vec4(1.0, 1.0, 1.0, 1.0) - eq(A, B));
}
// Calculate weighted distance among pixels in some directions.
vec4 weighted_distance(mat4x3 a, mat4x3 b, mat4x3 c, mat4x3 d, mat4x3 e, mat4x3 f, mat4x3 g, mat4x3 h)
{
return (dist4(a,b) + dist4(a,c) + dist4(d,e) + dist4(d,f) + 4.0*dist4(g,h));
}
void main()
{
vec2 texCoord = GetCoordinates();
vec2 SourceSize = 1.0 / GetInvNativePixelSize();
float aa_factor = 2.0* (1.0/GetWindowSize().x) * SourceSize.x;
vec4 edri, edr, edr_l, edr_u, px; // px = pixel, edr = edge detection rule
vec4 irlv0, irlv1, irlv2l, irlv2u;
vec4 fx, fx_l, fx_u; // inequations of straight lines.
vec3 res1, res2;
vec4 fx45i, fx45, fx30, fx60;
float dx = 1.0/SourceSize.x;
float dy = 1.0/SourceSize.y;
vec2 loc = texCoord*SourceSize.xy;
vec2 fp = fract(loc);
vec2 tc = (floor(loc)+vec2(0.5,0.5))/SourceSize;
// A1 B1 C1
// A0 A B C C4
// D0 D E F F4
// G0 G H I I4
// G5 H5 I5
vec3 A1 = SampleLocation(tc+P(-1.0,-2.0)).xyz;
vec3 B1 = SampleLocation(tc+P( 0.0,-2.0)).xyz;
vec3 C1 = SampleLocation(tc+P( 1.0,-2.0)).xyz;
vec3 A = SampleLocation(tc+P(-1.0,-1.0)).xyz;
vec3 B = SampleLocation(tc+P( 0.0,-1.0)).xyz;
vec3 C = SampleLocation(tc+P( 1.0,-1.0)).xyz;
vec3 D = SampleLocation(tc+P(-1.0, 0.0)).xyz;
vec3 E = SampleLocation(tc+P( 0.0, 0.0)).xyz;
vec3 F = SampleLocation(tc+P( 1.0, 0.0)).xyz;
vec3 G = SampleLocation(tc+P(-1.0, 1.0)).xyz;
vec3 H = SampleLocation(tc+P( 0.0, 1.0)).xyz;
vec3 I = SampleLocation(tc+P( 1.0, 1.0)).xyz;
vec3 G5 = SampleLocation(tc+P(-1.0, 2.0)).xyz;
vec3 H5 = SampleLocation(tc+P( 0.0, 2.0)).xyz;
vec3 I5 = SampleLocation(tc+P( 1.0, 2.0)).xyz;
vec3 A0 = SampleLocation(tc+P(-2.0,-1.0)).xyz;
vec3 D0 = SampleLocation(tc+P(-2.0, 0.0)).xyz;
vec3 G0 = SampleLocation(tc+P(-2.0,-1.0)).xyz;
vec3 C4 = SampleLocation(tc+P( 2.0,-1.0)).xyz;
vec3 F4 = SampleLocation(tc+P( 2.0, 0.0)).xyz;
vec3 I4 = SampleLocation(tc+P( 2.0, 1.0)).xyz;
mat4x3 b = mat4x3(B, D, H, F);
mat4x3 c = mat4x3(C, A, G, I);
mat4x3 d = mat4x3(D, H, F, B);
mat4x3 e = mat4x3(E, E, E, E);
mat4x3 f = mat4x3(F, B, D, H);
mat4x3 g = mat4x3(G, I, C, A);
mat4x3 h = mat4x3(H, F, B, D);
mat4x3 i = mat4x3(I, C, A, G);
mat4x3 i4 = mat4x3(I4, C1, A0, G5);
mat4x3 i5 = mat4x3(I5, C4, A1, G0);
mat4x3 h5 = mat4x3(H5, F4, B1, D0);
mat4x3 f4 = mat4x3(F4, B1, D0, H5);
vec4 b_ = v2f * b;
vec4 c_ = v2f * c;
vec4 d_ = b_.yzwx;
vec4 e_ = v2f * e;
vec4 f_ = b_.wxyz;
vec4 g_ = c_.zwxy;
vec4 h_ = b_.zwxy;
vec4 i_ = c_.wxyz;
vec4 i4_ = v2f * i4;
vec4 i5_ = v2f * i5;
vec4 h5_ = v2f * h5;
vec4 f4_ = h5_.yzwx;
// These inequations define the line below which interpolation occurs.
fx = ( Ao*fp.y + Bo*fp.x );
fx_l = ( Ax*fp.y + Bx*fp.x );
fx_u = ( Ay*fp.y + By*fp.x );
irlv0 = diff(e_,f_) * diff(e_,h_);
irlv1 = irlv0;
#ifdef CORNER_B
irlv1 = saturate(irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) );
#endif
#ifdef CORNER_C
irlv1 = saturate(irlv0 * ( neq(f,b) * neq(f,c) + neq(h,d) * neq(h,g) + eq(e,i) * (neq(f,f4) * neq(f,i4) + neq(h,h5) * neq(h,i5)) + eq(e,g) + eq(e,c)) );
#endif
irlv2l = diff(e_,g_) * diff( d_, g_);
irlv2u = diff(e_,c_) * diff( b_, c_);
if (GetOption(XBR_BLENDING) == 1.0) {
vec4 delta = vec4(aa_factor);
vec4 deltaL = vec4(0.5, 1.0, 0.5, 1.0) * aa_factor;
vec4 deltaU = deltaL.yxwz;
fx45i = saturate( 0.5 + (fx - Co - Ci) / delta );
fx45 = saturate( 0.5 + (fx - Co ) / delta );
fx30 = saturate( 0.5 + (fx_l - Cx ) / deltaL );
fx60 = saturate( 0.5 + (fx_u - Cy ) / deltaU );
}
else {
fx45i = LT( Co + Ci, fx );
fx45 = LT( Co, fx );
fx30 = LT( Cx, fx_l );
fx60 = LT( Cy, fx_u );
}
vec4 wd1 = weighted_distance( e, c, g, i, h5, f4, h, f);
vec4 wd2 = weighted_distance( h, d, i5, f, i4, b, e, i);
vec4 d_fg = dist4(f, g);
vec4 d_hc = dist4(h, c);
edri = LTE(wd1, wd2) * irlv0;
edr = LT( wd1, wd2) * irlv1 * NOT(edri.yzwx * edri.wxyz);
edr_l = LTE( lv2_cf * d_fg, d_hc ) * irlv2l * edr * (NOT(edri.yzwx) * eq(e, c));
edr_u = LTE( lv2_cf * d_hc, d_fg ) * irlv2u * edr * (NOT(edri.wxyz) * eq(e, g));
fx45i = edri * fx45i;
fx45 = edr * fx45;
fx30 = edr_l * fx30;
fx60 = edr_u * fx60;
px = LTE(dist4(e,f), dist4(e,h));
vec4 maximos = max(max(fx30, fx60), max(fx45, fx45i));
res1 = mix(E, mix(H, F, px.x), maximos.x);
res2 = mix(E, mix(B, D, px.z), maximos.z);
vec3 res1a = mix(res1, res2, step(dist(E, res1), dist(E, res2)));
res1 = mix(E, mix(F, B, px.y), maximos.y);
res2 = mix(E, mix(D, H, px.w), maximos.w);
vec3 res1b = mix(res1, res2, step(dist(E, res1), dist(E, res2)));
vec3 res = mix(res1a, res1b, step(dist(E, res1a), dist(E, res1b)));
SetOutput(vec4(res, 1.0));
}