Add some shaders to dolphinfx folder

This is a first pack of shaders ported to dolphinfx specs.

It includes: crt-hyllian, crt-easymode, zfast-crt, ddt, xbr, jinc2 and pixellate.
This commit is contained in:
Hyllian 2024-06-11 14:51:55 -03:00 committed by Connor McLaughlin
parent e6a11abedc
commit 7cf7a0a11f
7 changed files with 1567 additions and 0 deletions

View File

@ -0,0 +1,277 @@
// CRT Shader by EasyMode
// License: GPL
// A flat CRT shader ideally for 1080p or higher displays.
// Recommended Settings:
// Video
// - Aspect Ratio: 4:3
// - Integer Scale: Off
// Shader
// - Filter: Nearest
// - Scale: Don't Care
// Example RGB Mask Parameter Settings:
// Aperture Grille (Default)
// - Dot Width: 1
// - Dot Height: 1
// - Stagger: 0
// Lottes' Shadow Mask
// - Dot Width: 2
// - Dot Height: 1
// - Stagger: 3
/*
[configuration]
[OptionRangeFloat]
GUIName = Sharpness Horizontal
OptionName = SHARPNESS_H
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.5
[OptionRangeFloat]
GUIName = Sharpness Vertical
OptionName = SHARPNESS_V
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = Mask Strength
OptionName = MASK_STRENGTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.3
[OptionRangeFloat]
GUIName = Mask Dot Width
OptionName = MASK_DOT_WIDTH
MinValue = 1.0
MaxValue = 100.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = Mask Dot Height
OptionName = MASK_DOT_HEIGHT
MinValue = 1.0
MaxValue = 100.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = Mask Stagger
OptionName = MASK_STAGGER
MinValue = 0.0
MaxValue = 100.0
StepAmount = 1.0
DefaultValue = 0.0
[OptionRangeFloat]
GUIName = Mask Size
OptionName = MASK_SIZE
MinValue = 1.0
MaxValue = 100.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = Scanline Strength
OptionName = SCANLINE_STRENGTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = Scanline Beam Width Min.
OptionName = SCANLINE_BEAM_WIDTH_MIN
MinValue = 0.5
MaxValue = 5.0
StepAmount = 0.5
DefaultValue = 1.5
[OptionRangeFloat]
GUIName = Scanline Beam Width Max.
OptionName = SCANLINE_BEAM_WIDTH_MAX
MinValue = 0.5
MaxValue = 5.0
StepAmount = 0.5
DefaultValue = 1.5
[OptionRangeFloat]
GUIName = Scanline Brightness Min.
OptionName = SCANLINE_BRIGHT_MIN
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.35
[OptionRangeFloat]
GUIName = Scanline Brightness Max.
OptionName = SCANLINE_BRIGHT_MAX
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.65
[OptionRangeFloat]
GUIName = Scanline Cutoff
OptionName = SCANLINE_CUTOFF
MinValue = 1.0
MaxValue = 1000.0
StepAmount = 1.0
DefaultValue = 400.0
[OptionRangeFloat]
GUIName = Gamma Input
OptionName = GAMMA_INPUT
MinValue = 0.1
MaxValue = 5.0
StepAmount = 0.1
DefaultValue = 2.0
[OptionRangeFloat]
GUIName = Gamma Output
OptionName = GAMMA_OUTPUT
MinValue = 0.1
MaxValue = 5.0
StepAmount = 0.1
DefaultValue = 1.8
[OptionRangeFloat]
GUIName = Brightness Boost
OptionName = BRIGHT_BOOST
MinValue = 1.0
MaxValue = 2.0
StepAmount = 0.01
DefaultValue = 1.2
[OptionRangeFloat]
GUIName = Dilation
OptionName = DILATION
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[/configuration]
*/
#define FIX(c) max(abs(c), 1e-5)
#define PI 3.141592653589
#define TEX2D(c) dilate(SampleLocation(c))
// Set to 0 to use linear filter and gain speed
#define ENABLE_LANCZOS 1
vec4 dilate(vec4 col)
{
vec4 x = mix(vec4(1.0), col, GetOption(DILATION));
return col * x;
}
float curve_distance(float x, float sharp)
{
/*
apply half-circle s-curve to distance for sharper (more pixelated) interpolation
single line formula for Graph Toy:
0.5 - sqrt(0.25 - (x - step(0.5, x)) * (x - step(0.5, x))) * sign(0.5 - x)
*/
float x_step = step(0.5, x);
float curve = 0.5 - sqrt(0.25 - (x - x_step) * (x - x_step)) * sign(0.5 - x);
return mix(x, curve, sharp);
}
mat4x4 get_color_matrix(vec2 co, vec2 dx)
{
return mat4x4(TEX2D(co - dx), TEX2D(co), TEX2D(co + dx), TEX2D(co + 2.0 * dx));
}
vec3 filter_lanczos(vec4 coeffs, mat4x4 color_matrix)
{
vec4 col = color_matrix * coeffs;
vec4 sample_min = min(color_matrix[1], color_matrix[2]);
vec4 sample_max = max(color_matrix[1], color_matrix[2]);
col = clamp(col, sample_min, sample_max);
return col.rgb;
}
void main()
{
vec2 vTexCoord = GetCoordinates();
vec2 nativeSize = 1.0 / GetInvNativePixelSize();
vec4 SourceSize = vec4(nativeSize, 1.0/nativeSize);
vec2 dx = vec2(SourceSize.z, 0.0);
vec2 dy = vec2(0.0, SourceSize.w);
vec2 pix_co = vTexCoord * SourceSize.xy - vec2(0.5, 0.5);
vec2 tex_co = (floor(pix_co) + vec2(0.5, 0.5)) * SourceSize.zw;
vec2 dist = fract(pix_co);
float curve_x;
vec3 col, col2;
#if ENABLE_LANCZOS
curve_x = curve_distance(dist.x, GetOption(SHARPNESS_H) * GetOption(SHARPNESS_H));
vec4 coeffs = PI * vec4(1.0 + curve_x, curve_x, 1.0 - curve_x, 2.0 - curve_x);
coeffs = FIX(coeffs);
coeffs = 2.0 * sin(coeffs) * sin(coeffs * 0.5) / (coeffs * coeffs);
coeffs /= dot(coeffs, vec4(1.0));
col = filter_lanczos(coeffs, get_color_matrix(tex_co, dx));
col2 = filter_lanczos(coeffs, get_color_matrix(tex_co + dy, dx));
#else
curve_x = curve_distance(dist.x, GetOption(SHARPNESS_H));
col = mix(TEX2D(tex_co).rgb, TEX2D(tex_co + dx).rgb, curve_x);
col2 = mix(TEX2D(tex_co + dy).rgb, TEX2D(tex_co + dx + dy).rgb, curve_x);
#endif
col = mix(col, col2, curve_distance(dist.y, GetOption(SHARPNESS_V)));
col = pow(col, vec3(GetOption(GAMMA_INPUT) / (GetOption(DILATION) + 1.0)));
float luma = dot(vec3(0.2126, 0.7152, 0.0722), col);
float bright = (max(col.r, max(col.g, col.b)) + luma) * 0.5;
float scan_bright = clamp(bright, GetOption(SCANLINE_BRIGHT_MIN), GetOption(SCANLINE_BRIGHT_MAX));
float scan_beam = clamp(bright * GetOption(SCANLINE_BEAM_WIDTH_MAX), GetOption(SCANLINE_BEAM_WIDTH_MIN), GetOption(SCANLINE_BEAM_WIDTH_MAX));
float scan_weight = 1.0 - pow(cos(vTexCoord.y * 2.0 * PI * SourceSize.y) * 0.5 + 0.5, scan_beam) * GetOption(SCANLINE_STRENGTH);
float mask = 1.0 - GetOption(MASK_STRENGTH);
vec2 mod_fac = floor(vTexCoord * GetResolution().xy * SourceSize.xy / (SourceSize.xy * vec2(GetOption(MASK_SIZE), GetOption(MASK_DOT_HEIGHT) * GetOption(MASK_SIZE))));
int dot_no = int(mod((mod_fac.x + mod(mod_fac.y, 2.0) * GetOption(MASK_STAGGER)) / GetOption(MASK_DOT_WIDTH), 3.0));
vec3 mask_weight;
if (dot_no == 0) mask_weight = vec3(1.0, mask, mask);
else if (dot_no == 1) mask_weight = vec3(mask, 1.0, mask);
else mask_weight = vec3(mask, mask, 1.0);
if (SourceSize.y >= GetOption(SCANLINE_CUTOFF))
scan_weight = 1.0;
col2 = col.rgb;
col *= vec3(scan_weight);
col = mix(col, col2, scan_bright);
col *= mask_weight;
col = pow(col, vec3(1.0 / GetOption(GAMMA_OUTPUT)));
SetOutput(vec4(col * GetOption(BRIGHT_BOOST), 1.0));
}

View File

@ -0,0 +1,504 @@
// Hyllian's CRT Shader
// Copyright (C) 2011-2024 Hyllian - sergiogdb@gmail.com
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/*
[configuration]
[OptionRangeFloat]
GUIName = HIGH RESOLUTION SCANLINES
OptionName = SCANLINES_HIRES
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName =VERTICAL SCANLINES
OptionName = VSCANLINES
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 0.0
[OptionRangeFloat]
GUIName = BEAM PROFILE
OptionName = BEAM_PROFILE
MinValue = 0.0
MaxValue = 2.0
StepAmount = 1.0
DefaultValue = 0.0
[OptionRangeFloat]
GUIName = HORIZONTAL FILTER PROFILE
OptionName = HFILTER_PROFILE
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = COLOR BOOST
OptionName = COLOR_BOOST
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 1.40
[OptionRangeFloat]
GUIName = SHARPNESS HACK
OptionName = SHARPNESS_HACK
MinValue = 1.0
MaxValue = 4.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = PHOSPHOR LAYOUT
OptionName = PHOSPHOR_LAYOUT
MinValue = 0.0
MaxValue = 15.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = MASK INTENSITY
OptionName = MASK_INTENSITY
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.65
[OptionRangeFloat]
GUIName = MIN BEAM WIDTH
OptionName = BEAM_MIN_WIDTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.86
[OptionRangeFloat]
GUIName = MAX BEAM WIDTH
OptionName = BEAM_MAX_WIDTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = SCANLINES STRENGTH
OptionName = SCANLINES_STRENGTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.58
[OptionRangeFloat]
GUIName = MONITOR SUBPIXELS LAYOUT
OptionName = MONITOR_SUBPIXELS
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 0.0
[OptionRangeFloat]
GUIName = ANTI RINGING
OptionName = CRT_ANTI_RINGING
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = INPUT GAMMA
OptionName = CRT_InputGamma
MinValue = 1.0
MaxValue = 3.0
StepAmount = 0.05
DefaultValue = 2.4
[OptionRangeFloat]
GUIName = OUTPUT GAMMA
OptionName = CRT_OutputGamma
MinValue = 1.0
MaxValue = 3.0
StepAmount = 0.05
DefaultValue = 2.2
[/configuration]
*/
#define GAMMA_IN(color) pow(color, vec3(GetOption(CRT_InputGamma), GetOption(CRT_InputGamma), GetOption(CRT_InputGamma)))
#define GAMMA_OUT(color) pow(color, vec3(1.0 / GetOption(CRT_OutputGamma), 1.0 / GetOption(CRT_OutputGamma), 1.0 / GetOption(CRT_OutputGamma)))
const vec3 Y = vec3(0.2627, 0.6780, 0.0593);
// A collection of CRT mask effects that work with LCD subpixel structures for
// small details
// author: hunterk
// license: public domain
// Mask code pasted from subpixel_masks.h. Masks 3 and 4 added.
vec3 mask_weights(vec2 coord, float mask_intensity, int phosphor_layout, float monitor_subpixels){
vec3 weights = vec3(1.,1.,1.);
float on = 1.;
float off = 1.-mask_intensity;
vec3 red = monitor_subpixels==1.0 ? vec3(on, off, off) : vec3(off, off, on );
vec3 green = vec3(off, on, off);
vec3 blue = monitor_subpixels==1.0 ? vec3(off, off, on ) : vec3(on, off, off);
vec3 magenta = vec3(on, off, on );
vec3 yellow = monitor_subpixels==1.0 ? vec3(on, on, off) : vec3(off, on, on );
vec3 cyan = monitor_subpixels==1.0 ? vec3(off, on, on ) : vec3(on, on, off);
vec3 black = vec3(off, off, off);
vec3 white = vec3(on, on, on );
int w, z = 0;
// This pattern is used by a few layouts, so we'll define it here
vec3 aperture_weights = mix(magenta, green, floor(mod(coord.x, 2.0)));
if(phosphor_layout == 0) return weights;
else if(phosphor_layout == 1){
// classic aperture for RGB panels; good for 1080p, too small for 4K+
// aka aperture_1_2_bgr
weights = aperture_weights;
return weights;
}
else if(phosphor_layout == 2){
// Classic RGB layout; good for 1080p and lower
vec3 bw3[3] = vec3[](red, green, blue);
z = int(floor(mod(coord.x, 3.0)));
weights = bw3[z];
return weights;
}
else if(phosphor_layout == 3){
// black and white aperture; good for weird subpixel layouts and low brightness; good for 1080p and lower
vec3 bw3[3] = vec3[](black, white, black);
z = int(floor(mod(coord.x, 3.0)));
weights = bw3[z];
return weights;
}
else if(phosphor_layout == 4){
// reduced TVL aperture for RGB panels. Good for 4k.
// aperture_2_4_rgb
vec3 big_ap_rgb[4] = vec3[](red, yellow, cyan, blue);
w = int(floor(mod(coord.x, 4.0)));
weights = big_ap_rgb[w];
return weights;
}
else if(phosphor_layout == 5){
// black and white aperture; good for weird subpixel layouts and low brightness; good for 4k
vec3 bw4[4] = vec3[](black, black, white, white);
z = int(floor(mod(coord.x, 4.0)));
weights = bw4[z];
return weights;
}
else if(phosphor_layout == 6){
// aperture_1_4_rgb; good for simulating lower
vec3 ap4[4] = vec3[](red, green, blue, black);
z = int(floor(mod(coord.x, 4.0)));
weights = ap4[z];
return weights;
}
else if(phosphor_layout == 7){
// 2x2 shadow mask for RGB panels; good for 1080p, too small for 4K+
// aka delta_1_2x1_bgr
vec3 inverse_aperture = mix(green, magenta, floor(mod(coord.x, 2.0)));
weights = mix(aperture_weights, inverse_aperture, floor(mod(coord.y, 2.0)));
return weights;
}
else if(phosphor_layout == 8){
// delta_2_4x1_rgb
vec3 delta[2][4] = {
{red, yellow, cyan, blue},
{cyan, blue, red, yellow}
};
w = int(floor(mod(coord.y, 2.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = delta[w][z];
return weights;
}
else if(phosphor_layout == 9){
// delta_1_4x1_rgb; dunno why this is called 4x1 when it's obviously 4x2 /shrug
vec3 delta1[2][4] = {
{red, green, blue, black},
{blue, black, red, green}
};
w = int(floor(mod(coord.y, 2.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = delta1[w][z];
return weights;
}
else if(phosphor_layout == 10){
// delta_2_4x2_rgb
vec3 delta[4][4] = {
{red, yellow, cyan, blue},
{red, yellow, cyan, blue},
{cyan, blue, red, yellow},
{cyan, blue, red, yellow}
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = delta[w][z];
return weights;
}
else if(phosphor_layout == 11){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
vec3 slotmask[4][6] = {
{red, green, blue, red, green, blue,},
{red, green, blue, black, black, black},
{red, green, blue, red, green, blue,},
{black, black, black, red, green, blue,}
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 6.0)));
// use the indexes to find which color to apply to the current pixel
weights = slotmask[w][z];
return weights;
}
else if(phosphor_layout == 12){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
vec3 slotmask[4][6] = {
{black, white, black, black, white, black,},
{black, white, black, black, black, black},
{black, white, black, black, white, black,},
{black, black, black, black, white, black,}
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 6.0)));
// use the indexes to find which color to apply to the current pixel
weights = slotmask[w][z];
return weights;
}
else if(phosphor_layout == 13){
// based on MajorPainInTheCactus' HDR slot mask
vec3 slot[4][8] = {
{red, green, blue, black, red, green, blue, black},
{red, green, blue, black, black, black, black, black},
{red, green, blue, black, red, green, blue, black},
{black, black, black, black, red, green, blue, black}
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 8.0)));
weights = slot[w][z];
return weights;
}
else if(phosphor_layout == 14){
// same as above but for RGB panels
vec3 slot2[4][10] = {
{red, yellow, green, blue, blue, red, yellow, green, blue, blue },
{black, green, green, blue, blue, red, red, black, black, black},
{red, yellow, green, blue, blue, red, yellow, green, blue, blue },
{red, red, black, black, black, black, green, green, blue, blue }
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 10.0)));
weights = slot2[w][z];
return weights;
}
else if(phosphor_layout == 15){
// slot_3_7x6_rgb
vec3 slot[6][14] = {
{red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
{red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
{red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black},
{red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
{red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
{black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue}
};
w = int(floor(mod(coord.y, 6.0)));
z = int(floor(mod(coord.x, 14.0)));
weights = slot[w][z];
return weights;
}
else return weights;
}
// Horizontal cubic filter.
// Some known filters use these values:
// B = 0.5, C = 0.0 => A sharp almost gaussian filter.
// B = 0.0, C = 0.0 => Hermite cubic filter.
// B = 1.0, C = 0.0 => Cubic B-Spline filter.
// B = 0.0, C = 0.5 => Catmull-Rom Spline filter.
// B = C = 1.0/3.0 => Mitchell-Netravali cubic filter.
// B = 0.3782, C = 0.3109 => Robidoux filter.
// B = 0.2620, C = 0.3690 => Robidoux Sharp filter.
// For more info, see: http://www.imagemagick.org/Usage/img_diagrams/cubic_survey.gif
mat4x4 get_hfilter_profile()
{
float bf = 1.0;
float cf = 0.0;
if (GetOption(HFILTER_PROFILE) == 1) {bf = 1.0/3.0; cf = 1.0/3.0;}
return mat4x4( (-bf - 6.0*cf)/6.0, (3.0*bf + 12.0*cf)/6.0, (-3.0*bf - 6.0*cf)/6.0, bf/6.0,
(12.0 - 9.0*bf - 6.0*cf)/6.0, (-18.0 + 12.0*bf + 6.0*cf)/6.0, 0.0, (6.0 - 2.0*bf)/6.0,
-(12.0 - 9.0*bf - 6.0*cf)/6.0, (18.0 - 15.0*bf - 12.0*cf)/6.0, (3.0*bf + 6.0*cf)/6.0, bf/6.0,
(bf + 6.0*cf)/6.0, -cf, 0.0, 0.0);
}
#define scanlines_strength (4.0*profile.x)
#define beam_min_width profile.y
#define beam_max_width profile.z
#define color_boost profile.w
vec4 get_beam_profile()
{
vec4 bp = vec4(GetOption(SCANLINES_STRENGTH), GetOption(BEAM_MIN_WIDTH), GetOption(BEAM_MAX_WIDTH), GetOption(COLOR_BOOST));
if (BEAM_PROFILE == 1) bp = vec4(0.58, 0.86, 1.00, 1.60); // Catmull-rom
if (BEAM_PROFILE == 2) bp = vec4(0.58, 0.72, 1.00, 1.75); // Catmull-rom
return bp;
}
void main()
{
vec2 vTexCoord = GetCoordinates();
vec2 SourceSize = 1.0 / GetInvNativePixelSize(); // This work with previous build.
vec4 profile = get_beam_profile();
vec2 TextureSize = mix(vec2(SourceSize.x * GetOption(SHARPNESS_HACK), SourceSize.y), vec2(SourceSize.x, SourceSize.y * GetOption(SHARPNESS_HACK)), GetOption(VSCANLINES));
vec2 dx = mix(vec2(1.0/TextureSize.x, 0.0), vec2(0.0, 1.0/TextureSize.y), GetOption(VSCANLINES));
vec2 dy = mix(vec2(0.0, 1.0/TextureSize.y), vec2(1.0/TextureSize.x, 0.0), GetOption(VSCANLINES));
vec2 pix_coord = vTexCoord.xy*TextureSize.xy - vec2(0.5, 0.5);
vec2 tc = ( (SCANLINES_HIRES > 0.5) ? (mix(vec2(floor(pix_coord.x), pix_coord.y), vec2(pix_coord.x, floor(pix_coord.y)), GetOption(VSCANLINES)) + vec2(0.5, 0.5)) : (floor(pix_coord) + vec2(0.5, 0.5)) )/TextureSize;
pix_coord = mix(pix_coord, pix_coord.yx, GetOption(VSCANLINES));
vec2 fp = fract(pix_coord);
vec3 c00 = GAMMA_IN(SampleLocation(tc - dx ).xyz);
vec3 c01 = GAMMA_IN(SampleLocation(tc ).xyz);
vec3 c02 = GAMMA_IN(SampleLocation(tc + dx ).xyz);
vec3 c03 = GAMMA_IN(SampleLocation(tc + 2.0*dx ).xyz);
vec3 c10 = (SCANLINES_HIRES > 0.5) ? c00 : GAMMA_IN(SampleLocation(tc - dx +dy ).xyz);
vec3 c11 = (SCANLINES_HIRES > 0.5) ? c01 : GAMMA_IN(SampleLocation(tc +dy ).xyz);
vec3 c12 = (SCANLINES_HIRES > 0.5) ? c02 : GAMMA_IN(SampleLocation(tc + dx +dy ).xyz);
vec3 c13 = (SCANLINES_HIRES > 0.5) ? c03 : GAMMA_IN(SampleLocation(tc + 2.0*dx +dy ).xyz);
mat4x4 invX = get_hfilter_profile();
mat4x3 color_matrix0 = mat4x3(c00, c01, c02, c03);
mat4x3 color_matrix1 = mat4x3(c10, c11, c12, c13);
vec4 invX_Px = vec4(fp.x*fp.x*fp.x, fp.x*fp.x, fp.x, 1.0) * invX;
vec3 color0 = color_matrix0 * invX_Px;
vec3 color1 = color_matrix1 * invX_Px;
// Get min/max samples
vec3 min_sample0 = min(c01,c02);
vec3 max_sample0 = max(c01,c02);
vec3 min_sample1 = min(c11,c12);
vec3 max_sample1 = max(c11,c12);
// Anti-ringing
vec3 aux = color0;
color0 = clamp(color0, min_sample0, max_sample0);
color0 = mix(aux, color0, GetOption(CRT_ANTI_RINGING) * step(0.0, (c00-c01)*(c02-c03)));
aux = color1;
color1 = clamp(color1, min_sample1, max_sample1);
color1 = mix(aux, color1, GetOption(CRT_ANTI_RINGING) * step(0.0, (c10-c11)*(c12-c13)));
float pos0 = fp.y;
float pos1 = 1 - fp.y;
vec3 lum0 = mix(vec3(beam_min_width), vec3(beam_max_width), color0);
vec3 lum1 = mix(vec3(beam_min_width), vec3(beam_max_width), color1);
vec3 d0 = scanlines_strength*pos0/(lum0*lum0+0.0000001);
vec3 d1 = scanlines_strength*pos1/(lum1*lum1+0.0000001);
d0 = exp(-d0*d0);
d1 = exp(-d1*d1);
vec3 color = (color0*d0+color1*d1);
color = GAMMA_OUT(color);
vec2 mask_coords =vTexCoord.xy * GetResolution().xy;
mask_coords = mix(mask_coords.xy, mask_coords.yx, GetOption(VSCANLINES));
color.rgb*=GAMMA_OUT(mask_weights(mask_coords, GetOption(MASK_INTENSITY), int(GetOption(PHOSPHOR_LAYOUT)), GetOption(MONITOR_SUBPIXELS)));
SetOutput(vec4(color_boost*color, 1.0));
}

View File

@ -0,0 +1,180 @@
// zfast_crt - A very simple CRT shader.
// Copyright (C) 2017 Greg Hogan (SoltanGris42)
// edited by metallic 77.
// ported to slang by gregoricavichioli & hunterk.
// ported to dolphinfx by Hyllian.
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or (at your option)
// any later version.
/*
[configuration]
[OptionRangeFloat]
GUIName = Curvature
OptionName = Curvature
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = Convergence X-Axis
OptionName = blurx
MinValue = -1.0
MaxValue = 2.0
StepAmount = 0.05
DefaultValue = 0.85
[OptionRangeFloat]
GUIName = Convergence Y-Axis
OptionName = blury
MinValue = -1.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = -0.10
[OptionRangeFloat]
GUIName = Scanline Amount (Low)
OptionName = HIGHSCANAMOUNT1
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.4
[OptionRangeFloat]
GUIName = Scanline Amount (High)
OptionName = HIGHSCANAMOUNT2
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.3
[OptionRangeFloat]
GUIName = Mask Type
OptionName = TYPE
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 0.0
[OptionRangeFloat]
GUIName = Mask Effect Amount
OptionName = MASK_DARK
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.3
[OptionRangeFloat]
GUIName = Mask/Scanline Fade
OptionName = MASK_FADE
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.7
[OptionRangeFloat]
GUIName = Saturation
OptionName = sat
MinValue = 0.0
MaxValue = 3.0
StepAmount = 0.05
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = Flicker
OptionName = FLICK
MinValue = 0.0
MaxValue = 50.0
StepAmount = 1.0
DefaultValue = 10.0
[/configuration]
*/
#define pi 3.14159
#define blur_y GetOption(blury)/(SourceSize.y*2.0)
#define blur_x GetOption(blurx)/(SourceSize.x*2.0)
#define iTimer (float(GetTime())*2.0)
#define flicker GetOption(FLICK)/1000.0
// Distortion of scanlines, and end of screen alpha.
vec2 Warp(vec2 pos)
{
pos = pos*2.0-1.0;
pos *= vec2(1.0 + (pos.y*pos.y)*0.03, 1.0 + (pos.x*pos.x)*0.05);
return pos*0.5 + 0.5;
}
void main()
{
vec2 vTexCoord = GetCoordinates();
vec2 texSize = 1.0 / GetInvNativePixelSize();
vec4 SourceSize = vec4(texSize, 1.0 / texSize);
float maskFade = 0.3333*GetOption(MASK_FADE);
float omega = 2.0*pi*SourceSize.y;
vec2 pos,corn;
if (GetOption(Curvature) == 1.0)
{
pos = Warp(vTexCoord.xy);
corn = min(pos,vec2(1.0)-pos); // This is used to mask the rounded
corn.x = 0.00001/corn.x; // corners later on
}
else pos = vTexCoord;
float OGL2Pos = pos.y*SourceSize.y;
float cent = floor(OGL2Pos)+0.5;
float ycoord = cent*SourceSize.w;
ycoord = mix(pos.y,ycoord,0.6);
pos = vec2(pos.x,ycoord);
vec3 sample1 = sin(iTimer)*flicker + SampleLocation(vec2(pos.x + blur_x, pos.y - blur_y)).rgb;
vec3 sample2 = 0.5*SampleLocation(pos).rgb;
vec3 sample3 = sin(iTimer)*flicker + SampleLocation(vec2(pos.x - blur_x, pos.y + blur_y)).rgb;
vec3 colour = vec3 (sample1.r*0.5 + sample2.r,
sample1.g*0.25 + sample2.g + sample3.g*0.25,
sample2.b + sample3.b*0.5);
vec3 interl = colour;
vec3 lumweight=vec3(0.22,0.71,0.07);
float lumsat = dot(colour,lumweight);
vec3 graycolour = vec3(lumsat);
colour = vec3(mix(graycolour,colour.rgb,sat));
float SCANAMOUNT = mix(GetOption(HIGHSCANAMOUNT1),GetOption(HIGHSCANAMOUNT2),max(max(colour.r,colour.g),colour.b));
if (SourceSize.y > 400.0) {
colour ;
}
else {
colour *= SCANAMOUNT * sin(fract(OGL2Pos)*3.14159)+1.0-SCANAMOUNT;
colour *= SCANAMOUNT * sin(fract(1.0-OGL2Pos)*3.14159)+1.0-SCANAMOUNT;
colour *= SCANAMOUNT * sin(fract(1.0+OGL2Pos)*3.14159)+1.0-SCANAMOUNT;
}
float steps; if (GetOption(TYPE) == 0.0) steps = 0.5; else steps = 0.3333;
float whichmask = fract(vTexCoord.x*GetResolution().x*steps);
float mask = 1.0 + float(whichmask < steps) * (-GetOption(MASK_DARK));
colour.rgb = mix(mask*colour, colour, dot(colour.rgb,vec3(maskFade)));
if (GetOption(Curvature) == 1.0 && corn.y < corn.x || GetOption(Curvature) == 1.0 && corn.x < 0.00001 )
colour = vec3(0.0);
SetOutput(vec4(colour.rgb, 1.0));
}

View File

@ -0,0 +1,110 @@
// Hyllian's DDT Shader
// Copyright (C) 2011-2024 Hyllian - sergiogdb@gmail.com
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/*
[configuration]
[OptionRangeFloat]
GUIName = Bilinear Fallback Threshold
OptionName = BIL_FALLBACK
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.6
[/configuration]
*/
const vec3 Y = vec3(0.2126729, 0.7151522, 0.0721750);
float luma(vec3 color)
{
return dot(color, Y);
}
vec3 bilinear(float p, float q, vec3 A, vec3 B, vec3 C, vec3 D)
{
return ((1-p)*(1-q)*A + p*(1-q)*B + (1-p)*q*C + p*q*D);
}
void main()
{
vec2 texCoord = GetCoordinates();
vec2 nativeSize = 1.0 / GetInvNativePixelSize();
vec2 loc = texCoord*nativeSize;
vec2 pos = fract(loc) - vec2(0.5, 0.5); // pos = pixel position
vec2 dir = sign(pos); // dir = pixel direction
vec2 dx = vec2(1.0/nativeSize.x, 0.0);
vec2 dy = vec2(0.0, 1.0/nativeSize.y);
vec2 g1 = dir*dx;
vec2 g2 = dir*dy;
vec2 tc = (floor(loc)+vec2(0.5,0.5))/nativeSize;
vec3 A = SampleLocation(tc ).rgb;
vec3 B = SampleLocation(tc +g1 ).rgb;
vec3 C = SampleLocation(tc +g2).rgb;
vec3 D = SampleLocation(tc +g1+g2).rgb;
float a = luma(A);
float b = luma(B);
float c = luma(C);
float d = luma(D);
float p = abs(pos.x);
float q = abs(pos.y);
float k = distance(pos,g1);
float l = distance(pos,g2);
float wd1 = abs(a-d);
float wd2 = abs(b-c);
vec3 color = bilinear(p, q, A, B, C, D);
if ( wd1 < wd2 )
{
if (k < l)
{
C = A + D - B;
}
else
{
B = A + D - C;
}
}
else if (wd1 > wd2)
{
D = B + C - A;
}
vec3 ddt = bilinear(p, q, A, B, C, D);
color = mix(color, ddt, smoothstep(0.0, BIL_FALLBACK, abs(wd2-wd1)));
SetOutput(vec4(color, 1.0));
}

View File

@ -0,0 +1,276 @@
// Hyllian's xBR-lv2-standalone Shader
// Copyright (C) 2011-2024 Hyllian - sergiogdb@gmail.com
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/*
[configuration]
[OptionRangeFloat]
GUIName = COLOR DISTINCTION THRESHOLD
OptionName = XBR_EQ_THRESHOLD
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.32
[OptionRangeFloat]
GUIName = SMOOTHNESS THRESHOLD
OptionName = XBR_LV2_COEFFICIENT
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.1
DefaultValue = 0.3
[OptionRangeFloat]
GUIName = COLOR BLENDING
OptionName = XBR_BLENDING
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[/configuration]
*/
// Uncomment just one of the three params below to choose the corner detection
//#define CORNER_A
//#define CORNER_B
#define CORNER_C
#define lv2_cf (GetOption(XBR_LV2_COEFFICIENT)+2.0)
#define P(x,y) (vec2(x,y)*vec2(dx,dy))
const vec4 Ao = vec4( 1.0, -1.0, -1.0, 1.0 );
const vec4 Bo = vec4( 1.0, 1.0, -1.0,-1.0 );
const vec4 Co = vec4( 1.5, 0.5, -0.5, 0.5 );
const vec4 Ax = vec4( 1.0, -1.0, -1.0, 1.0 );
const vec4 Bx = vec4( 0.5, 2.0, -0.5,-2.0 );
const vec4 Cx = vec4( 1.0, 1.0, -0.5, 0.0 );
const vec4 Ay = vec4( 1.0, -1.0, -1.0, 1.0 );
const vec4 By = vec4( 2.0, 0.5, -2.0,-0.5 );
const vec4 Cy = vec4( 2.0, 0.0, -1.0, 0.5 );
const vec4 Ci = vec4(0.25, 0.25, 0.25, 0.25);
const vec3 v2f = vec3( 65536, 256, 1); // vec to float encode
const vec3 Y = vec3(0.2627, 0.6780, 0.0593);
// Return if A components are less than or equal B ones.
vec4 LTE(vec4 A, vec4 B)
{
return step(A, B);
}
// Return if A components are less than B ones.
vec4 LT(vec4 A, vec4 B)
{
return vec4(lessThan(A, B));
}
// Return logically inverted vector components. BEWARE: Only works with 0.0 or 1.0 components.
vec4 NOT(vec4 A)
{
return (vec4(1.0) - A);
}
// Compare two vectors and return their components are different.
vec4 diff(vec4 A, vec4 B)
{
return vec4(notEqual(A, B));
}
float dist(vec3 A, vec3 B)
{
return dot(abs(A-B), Y);
}
// Calculate color distance between two vectors of four pixels
vec4 dist4(mat4x3 A, mat4x3 B)
{
return vec4(dist(A[0],B[0]), dist(A[1],B[1]), dist(A[2],B[2]), dist(A[3],B[3]));
}
// Tests if color components are under a threshold. In this case they are considered 'equal'.
vec4 eq(mat4x3 A, mat4x3 B)
{
return (step(dist4(A, B), vec4(GetOption(XBR_EQ_THRESHOLD))));
}
// Determine if two vector components are NOT equal based on a threshold.
vec4 neq(mat4x3 A, mat4x3 B)
{
return (vec4(1.0, 1.0, 1.0, 1.0) - eq(A, B));
}
// Calculate weighted distance among pixels in some directions.
vec4 weighted_distance(mat4x3 a, mat4x3 b, mat4x3 c, mat4x3 d, mat4x3 e, mat4x3 f, mat4x3 g, mat4x3 h)
{
return (dist4(a,b) + dist4(a,c) + dist4(d,e) + dist4(d,f) + 4.0*dist4(g,h));
}
void main()
{
vec2 texCoord = GetCoordinates();
vec2 SourceSize = 1.0 / GetInvNativePixelSize();
float aa_factor = 2.0* (1.0/GetResolution().x) * SourceSize.x;
vec4 edri, edr, edr_l, edr_u, px; // px = pixel, edr = edge detection rule
vec4 irlv0, irlv1, irlv2l, irlv2u;
vec4 fx, fx_l, fx_u; // inequations of straight lines.
vec3 res1, res2;
vec4 fx45i, fx45, fx30, fx60;
float dx = 1.0/SourceSize.x;
float dy = 1.0/SourceSize.y;
vec2 loc = texCoord*SourceSize.xy;
vec2 fp = fract(loc);
vec2 tc = (floor(loc)+vec2(0.5,0.5))/SourceSize;
// A1 B1 C1
// A0 A B C C4
// D0 D E F F4
// G0 G H I I4
// G5 H5 I5
vec3 A1 = SampleLocation(tc+P(-1.0,-2.0)).xyz;
vec3 B1 = SampleLocation(tc+P( 0.0,-2.0)).xyz;
vec3 C1 = SampleLocation(tc+P( 1.0,-2.0)).xyz;
vec3 A = SampleLocation(tc+P(-1.0,-1.0)).xyz;
vec3 B = SampleLocation(tc+P( 0.0,-1.0)).xyz;
vec3 C = SampleLocation(tc+P( 1.0,-1.0)).xyz;
vec3 D = SampleLocation(tc+P(-1.0, 0.0)).xyz;
vec3 E = SampleLocation(tc+P( 0.0, 0.0)).xyz;
vec3 F = SampleLocation(tc+P( 1.0, 0.0)).xyz;
vec3 G = SampleLocation(tc+P(-1.0, 1.0)).xyz;
vec3 H = SampleLocation(tc+P( 0.0, 1.0)).xyz;
vec3 I = SampleLocation(tc+P( 1.0, 1.0)).xyz;
vec3 G5 = SampleLocation(tc+P(-1.0, 2.0)).xyz;
vec3 H5 = SampleLocation(tc+P( 0.0, 2.0)).xyz;
vec3 I5 = SampleLocation(tc+P( 1.0, 2.0)).xyz;
vec3 A0 = SampleLocation(tc+P(-2.0,-1.0)).xyz;
vec3 D0 = SampleLocation(tc+P(-2.0, 0.0)).xyz;
vec3 G0 = SampleLocation(tc+P(-2.0,-1.0)).xyz;
vec3 C4 = SampleLocation(tc+P( 2.0,-1.0)).xyz;
vec3 F4 = SampleLocation(tc+P( 2.0, 0.0)).xyz;
vec3 I4 = SampleLocation(tc+P( 2.0, 1.0)).xyz;
mat4x3 b = mat4x3(B, D, H, F);
mat4x3 c = mat4x3(C, A, G, I);
mat4x3 d = mat4x3(D, H, F, B);
mat4x3 e = mat4x3(E, E, E, E);
mat4x3 f = mat4x3(F, B, D, H);
mat4x3 g = mat4x3(G, I, C, A);
mat4x3 h = mat4x3(H, F, B, D);
mat4x3 i = mat4x3(I, C, A, G);
mat4x3 i4 = mat4x3(I4, C1, A0, G5);
mat4x3 i5 = mat4x3(I5, C4, A1, G0);
mat4x3 h5 = mat4x3(H5, F4, B1, D0);
mat4x3 f4 = mat4x3(F4, B1, D0, H5);
vec4 b_ = v2f * b;
vec4 c_ = v2f * c;
vec4 d_ = b_.yzwx;
vec4 e_ = v2f * e;
vec4 f_ = b_.wxyz;
vec4 g_ = c_.zwxy;
vec4 h_ = b_.zwxy;
vec4 i_ = c_.wxyz;
vec4 i4_ = v2f * i4;
vec4 i5_ = v2f * i5;
vec4 h5_ = v2f * h5;
vec4 f4_ = h5_.yzwx;
// These inequations define the line below which interpolation occurs.
fx = ( Ao*fp.y + Bo*fp.x );
fx_l = ( Ax*fp.y + Bx*fp.x );
fx_u = ( Ay*fp.y + By*fp.x );
irlv0 = diff(e_,f_) * diff(e_,h_);
irlv1 = irlv0;
#ifdef CORNER_B
irlv1 = saturate(irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) );
#endif
#ifdef CORNER_C
irlv1 = saturate(irlv0 * ( neq(f,b) * neq(f,c) + neq(h,d) * neq(h,g) + eq(e,i) * (neq(f,f4) * neq(f,i4) + neq(h,h5) * neq(h,i5)) + eq(e,g) + eq(e,c)) );
#endif
irlv2l = diff(e_,g_) * diff( d_, g_);
irlv2u = diff(e_,c_) * diff( b_, c_);
if (GetOption(XBR_BLENDING) == 1.0) {
vec4 delta = vec4(aa_factor);
vec4 deltaL = vec4(0.5, 1.0, 0.5, 1.0) * aa_factor;
vec4 deltaU = deltaL.yxwz;
fx45i = saturate( 0.5 + (fx - Co - Ci) / delta );
fx45 = saturate( 0.5 + (fx - Co ) / delta );
fx30 = saturate( 0.5 + (fx_l - Cx ) / deltaL );
fx60 = saturate( 0.5 + (fx_u - Cy ) / deltaU );
}
else {
fx45i = LT( Co + Ci, fx );
fx45 = LT( Co, fx );
fx30 = LT( Cx, fx_l );
fx60 = LT( Cy, fx_u );
}
vec4 wd1 = weighted_distance( e, c, g, i, h5, f4, h, f);
vec4 wd2 = weighted_distance( h, d, i5, f, i4, b, e, i);
vec4 d_fg = dist4(f, g);
vec4 d_hc = dist4(h, c);
edri = LTE(wd1, wd2) * irlv0;
edr = LT( wd1, wd2) * irlv1 * NOT(edri.yzwx * edri.wxyz);
edr_l = LTE( lv2_cf * d_fg, d_hc ) * irlv2l * edr * (NOT(edri.yzwx) * eq(e, c));
edr_u = LTE( lv2_cf * d_hc, d_fg ) * irlv2u * edr * (NOT(edri.wxyz) * eq(e, g));
fx45i = edri * fx45i;
fx45 = edr * fx45;
fx30 = edr_l * fx30;
fx60 = edr_u * fx60;
px = LTE(dist4(e,f), dist4(e,h));
vec4 maximos = max(max(fx30, fx60), max(fx45, fx45i));
res1 = mix(E, mix(H, F, px.x), maximos.x);
res2 = mix(E, mix(B, D, px.z), maximos.z);
vec3 res1a = mix(res1, res2, step(dist(E, res1), dist(E, res2)));
res1 = mix(E, mix(F, B, px.y), maximos.y);
res2 = mix(E, mix(D, H, px.w), maximos.w);
vec3 res1b = mix(res1, res2, step(dist(E, res1), dist(E, res2)));
vec3 res = mix(res1a, res1b, step(dist(E, res1a), dist(E, res1b)));
SetOutput(vec4(res, 1.0));
}

View File

@ -0,0 +1,144 @@
// Hyllian's jinc windowed-jinc 2-lobe with anti-ringing Shader
// Copyright (C) 2011-2024 Hyllian - sergiogdb@gmail.com
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
/*
[configuration]
[OptionRangeFloat]
GUIName = Window Sinc Param
OptionName = JINC2_WINDOW_SINC
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.50
[OptionRangeFloat]
GUIName = Sinc Param
OptionName = JINC2_SINC
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.88
[OptionRangeFloat]
GUIName = Anti-ringing Strength
OptionName = JINC2_AR_STRENGTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.1
DefaultValue = 0.5
[/configuration]
*/
#define halfpi 1.5707963267948966192313216916398
#define pi 3.1415926535897932384626433832795
#define wa (JINC2_WINDOW_SINC*pi)
#define wb (JINC2_SINC*pi)
// Calculates the distance between two points
float d(vec2 pt1, vec2 pt2)
{
vec2 v = pt2 - pt1;
return sqrt(dot(v,v));
}
vec3 min4(vec3 a, vec3 b, vec3 c, vec3 d)
{
return min(a, min(b, min(c, d)));
}
vec3 max4(vec3 a, vec3 b, vec3 c, vec3 d)
{
return max(a, max(b, max(c, d)));
}
vec4 resampler(vec4 x)
{
vec4 res;
res.x = (x.x==0.0) ? wa*wb : sin(x.x*wa)*sin(x.x*wb)/(x.x*x.x);
res.y = (x.y==0.0) ? wa*wb : sin(x.y*wa)*sin(x.y*wb)/(x.y*x.y);
res.z = (x.z==0.0) ? wa*wb : sin(x.z*wa)*sin(x.z*wb)/(x.z*x.z);
res.w = (x.w==0.0) ? wa*wb : sin(x.w*wa)*sin(x.w*wb)/(x.w*x.w);
return res;
}
void main()
{
vec2 SourceSize = 1.0 / GetInvNativePixelSize();
vec2 invSourceSize = 1.0 / SourceSize;
vec2 vTexCoord = GetCoordinates();
vec3 color;
mat4x4 weights;
vec2 dx = vec2(1.0, 0.0);
vec2 dy = vec2(0.0, 1.0);
vec2 pc = vTexCoord*SourceSize;
vec2 tc = (floor(pc-vec2(0.5,0.5))+vec2(0.5,0.5));
weights[0] = resampler(vec4(d(pc, tc -dx -dy), d(pc, tc -dy), d(pc, tc +dx -dy), d(pc, tc+2.0*dx -dy)));
weights[1] = resampler(vec4(d(pc, tc -dx ), d(pc, tc ), d(pc, tc +dx ), d(pc, tc+2.0*dx )));
weights[2] = resampler(vec4(d(pc, tc -dx +dy), d(pc, tc +dy), d(pc, tc +dx +dy), d(pc, tc+2.0*dx +dy)));
weights[3] = resampler(vec4(d(pc, tc -dx+2.0*dy), d(pc, tc +2.0*dy), d(pc, tc +dx+2.0*dy), d(pc, tc+2.0*dx+2.0*dy)));
dx = dx * invSourceSize;
dy = dy * invSourceSize;
tc = tc * invSourceSize;
// reading the texels
vec3 c00 = SampleLocation(tc -dx -dy).xyz;
vec3 c10 = SampleLocation(tc -dy).xyz;
vec3 c20 = SampleLocation(tc +dx -dy).xyz;
vec3 c30 = SampleLocation(tc+2.0*dx -dy).xyz;
vec3 c01 = SampleLocation(tc -dx ).xyz;
vec3 c11 = SampleLocation(tc ).xyz;
vec3 c21 = SampleLocation(tc +dx ).xyz;
vec3 c31 = SampleLocation(tc+2.0*dx ).xyz;
vec3 c02 = SampleLocation(tc -dx +dy).xyz;
vec3 c12 = SampleLocation(tc +dy).xyz;
vec3 c22 = SampleLocation(tc +dx +dy).xyz;
vec3 c32 = SampleLocation(tc+2.0*dx +dy).xyz;
vec3 c03 = SampleLocation(tc -dx+2.0*dy).xyz;
vec3 c13 = SampleLocation(tc +2.0*dy).xyz;
vec3 c23 = SampleLocation(tc +dx+2.0*dy).xyz;
vec3 c33 = SampleLocation(tc+2.0*dx+2.0*dy).xyz;
// Get min/max samples
vec3 min_sample = min4(c11, c21, c12, c22);
vec3 max_sample = max4(c11, c21, c12, c22);
color = mat4x3(c00, c10, c20, c30) * weights[0];
color+= mat4x3(c01, c11, c21, c31) * weights[1];
color+= mat4x3(c02, c12, c22, c32) * weights[2];
color+= mat4x3(c03, c13, c23, c33) * weights[3];
color = color/(dot(weights * vec4(1.0), vec4(1.0)));
// Anti-ringing
vec3 aux = color;
color = clamp(color, min_sample, max_sample);
color = mix(aux, color, JINC2_AR_STRENGTH);
// final sum and weight normalization
SetOutput(vec4(color, 1.0));
}

View File

@ -0,0 +1,76 @@
// Pixellate Shader
// Copyright (c) 2011, 2012 Fes
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
// IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// (Fes gave their permission to have this shader distributed under this
// licence in this forum post:
// http://board.byuu.org/viewtopic.php?p=57295#p57295
/*
[configuration]
[OptionRangeFloat]
GUIName = Linear Gamma Weight
OptionName = INTERPOLATE_IN_LINEAR_GAMMA
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[/configuration]
*/
void main()
{
vec2 vTexCoord = GetCoordinates();
vec2 SourceSize = 1.0 / GetInvNativePixelSize();
vec2 texelSize = 1.0 / SourceSize.xy;
vec2 OutputSize = GetResolution().xy;
vec2 range = vec2(abs(SourceSize.x / (OutputSize.x * SourceSize.x)), abs(SourceSize.y / (OutputSize.y * SourceSize.y)));
range = range / 2.0 * 0.999;
float left = vTexCoord.x - range.x;
float top = vTexCoord.y + range.y;
float right = vTexCoord.x + range.x;
float bottom = vTexCoord.y - range.y;
vec3 topLeftColor;
vec3 bottomRightColor;
vec3 bottomLeftColor;
vec3 topRightColor;
if (GetOption(INTERPOLATE_IN_LINEAR_GAMMA) > 0.5){
topLeftColor = pow(SampleLocation((floor(vec2(left, top) / texelSize) + vec2(0.5)) * texelSize).rgb, vec3(2.2));
bottomRightColor = pow(SampleLocation((floor(vec2(right, bottom) / texelSize) + vec2(0.5)) * texelSize).rgb, vec3(2.2));
bottomLeftColor = pow(SampleLocation((floor(vec2(left, bottom) / texelSize) + vec2(0.5)) * texelSize).rgb, vec3(2.2));
topRightColor = pow(SampleLocation((floor(vec2(right, top) / texelSize) + vec2(0.5)) * texelSize).rgb, vec3(2.2));
}else{
topLeftColor = SampleLocation((floor(vec2(left, top) / texelSize) + vec2(0.5)) * texelSize).rgb;
bottomRightColor = SampleLocation((floor(vec2(right, bottom) / texelSize) + vec2(0.5)) * texelSize).rgb;
bottomLeftColor = SampleLocation((floor(vec2(left, bottom) / texelSize) + vec2(0.5)) * texelSize).rgb;
topRightColor = SampleLocation((floor(vec2(right, top) / texelSize) + vec2(0.5)) * texelSize).rgb;}
vec2 border = clamp(round(vTexCoord / texelSize) * texelSize, vec2(left, bottom), vec2(right, top));
float totalArea = 4.0 * range.x * range.y;
vec3 averageColor;
averageColor = ((border.x - left) * (top - border.y) / totalArea) * topLeftColor;
averageColor += ((right - border.x) * (border.y - bottom) / totalArea) * bottomRightColor;
averageColor += ((border.x - left) * (border.y - bottom) / totalArea) * bottomLeftColor;
averageColor += ((right - border.x) * (top - border.y) / totalArea) * topRightColor;
vec4 color = (GetOption(INTERPOLATE_IN_LINEAR_GAMMA) > 0.5) ? vec4(pow(averageColor, vec3(1.0 / 2.2)), 1.0) : vec4(averageColor, 1.0);
SetOutput(color);
}