duckstation/data/resources/shaders/dolphinfx/crt/CRT-HYLLIAN.glsl

513 lines
16 KiB
Plaintext
Raw Normal View History

// Hyllian's CRT Shader
// Copyright (C) 2011-2024 Hyllian - sergiogdb@gmail.com
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/*
[configuration]
[OptionRangeFloat]
GUIName = HIGH RESOLUTION SCANLINES
OptionName = SCANLINES_HIRES
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName =VERTICAL SCANLINES
OptionName = VSCANLINES
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 0.0
[OptionRangeFloat]
GUIName = BEAM PROFILE
OptionName = BEAM_PROFILE
MinValue = 0.0
MaxValue = 2.0
StepAmount = 1.0
DefaultValue = 0.0
[OptionRangeFloat]
GUIName = HORIZONTAL FILTER PROFILE
OptionName = HFILTER_PROFILE
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = COLOR BOOST
OptionName = COLOR_BOOST
MinValue = 1.0
MaxValue = 3.0
StepAmount = 0.05
DefaultValue = 1.40
[OptionRangeFloat]
GUIName = SHARPNESS HACK
OptionName = SHARPNESS_HACK
MinValue = 1.0
MaxValue = 4.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = PHOSPHOR LAYOUT
OptionName = PHOSPHOR_LAYOUT
MinValue = 0.0
MaxValue = 15.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = MASK INTENSITY
OptionName = MASK_INTENSITY
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.05
DefaultValue = 0.65
[OptionRangeFloat]
GUIName = MIN BEAM WIDTH
OptionName = BEAM_MIN_WIDTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.86
[OptionRangeFloat]
GUIName = MAX BEAM WIDTH
OptionName = BEAM_MAX_WIDTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = SCANLINES STRENGTH
OptionName = SCANLINES_STRENGTH
MinValue = 0.0
MaxValue = 1.0
StepAmount = 0.01
DefaultValue = 0.58
[OptionRangeFloat]
GUIName = SCANLINES CUTOFF
OptionName = SCANLINES_CUTOFF
MinValue = 0.0
MaxValue = 1000.0
StepAmount = 1.0
DefaultValue = 390.0
[OptionRangeFloat]
GUIName = MONITOR SUBPIXELS LAYOUT
OptionName = MONITOR_SUBPIXELS
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 0.0
[OptionRangeFloat]
GUIName = ANTI RINGING
OptionName = CRT_ANTI_RINGING
MinValue = 0.0
MaxValue = 1.0
StepAmount = 1.0
DefaultValue = 1.0
[OptionRangeFloat]
GUIName = INPUT GAMMA
OptionName = CRT_InputGamma
MinValue = 1.0
MaxValue = 3.0
StepAmount = 0.05
DefaultValue = 2.4
[OptionRangeFloat]
GUIName = OUTPUT GAMMA
OptionName = CRT_OutputGamma
MinValue = 1.0
MaxValue = 3.0
StepAmount = 0.05
DefaultValue = 2.2
[/configuration]
*/
#define GAMMA_IN(color) pow(color, vec3(GetOption(CRT_InputGamma), GetOption(CRT_InputGamma), GetOption(CRT_InputGamma)))
#define GAMMA_OUT(color) pow(color, vec3(1.0 / GetOption(CRT_OutputGamma), 1.0 / GetOption(CRT_OutputGamma), 1.0 / GetOption(CRT_OutputGamma)))
const vec3 Y = vec3(0.2627, 0.6780, 0.0593);
// A collection of CRT mask effects that work with LCD subpixel structures for
// small details
// author: hunterk
// license: public domain
// Mask code pasted from subpixel_masks.h. Masks 3 and 4 added.
vec3 mask_weights(vec2 coord, float mask_intensity, int phosphor_layout, float monitor_subpixels){
vec3 weights = vec3(1.,1.,1.);
float on = 1.;
float off = 1.-mask_intensity;
vec3 red = monitor_subpixels==1.0 ? vec3(on, off, off) : vec3(off, off, on );
vec3 green = vec3(off, on, off);
vec3 blue = monitor_subpixels==1.0 ? vec3(off, off, on ) : vec3(on, off, off);
vec3 magenta = vec3(on, off, on );
vec3 yellow = monitor_subpixels==1.0 ? vec3(on, on, off) : vec3(off, on, on );
vec3 cyan = monitor_subpixels==1.0 ? vec3(off, on, on ) : vec3(on, on, off);
vec3 black = vec3(off, off, off);
vec3 white = vec3(on, on, on );
int w, z = 0;
// This pattern is used by a few layouts, so we'll define it here
vec3 aperture_weights = mix(magenta, green, floor(mod(coord.x, 2.0)));
if(phosphor_layout == 0) return weights;
else if(phosphor_layout == 1){
// classic aperture for RGB panels; good for 1080p, too small for 4K+
// aka aperture_1_2_bgr
weights = aperture_weights;
return weights;
}
else if(phosphor_layout == 2){
// Classic RGB layout; good for 1080p and lower
vec3 bw3[3] = vec3[](red, green, blue);
z = int(floor(mod(coord.x, 3.0)));
weights = bw3[z];
return weights;
}
else if(phosphor_layout == 3){
// black and white aperture; good for weird subpixel layouts and low brightness; good for 1080p and lower
vec3 bw3[3] = vec3[](black, white, black);
z = int(floor(mod(coord.x, 3.0)));
weights = bw3[z];
return weights;
}
else if(phosphor_layout == 4){
// reduced TVL aperture for RGB panels. Good for 4k.
// aperture_2_4_rgb
vec3 big_ap_rgb[4] = vec3[](red, yellow, cyan, blue);
w = int(floor(mod(coord.x, 4.0)));
weights = big_ap_rgb[w];
return weights;
}
else if(phosphor_layout == 5){
// black and white aperture; good for weird subpixel layouts and low brightness; good for 4k
vec3 bw4[4] = vec3[](black, black, white, white);
z = int(floor(mod(coord.x, 4.0)));
weights = bw4[z];
return weights;
}
else if(phosphor_layout == 6){
// aperture_1_4_rgb; good for simulating lower
vec3 ap4[4] = vec3[](red, green, blue, black);
z = int(floor(mod(coord.x, 4.0)));
weights = ap4[z];
return weights;
}
else if(phosphor_layout == 7){
// 2x2 shadow mask for RGB panels; good for 1080p, too small for 4K+
// aka delta_1_2x1_bgr
vec3 inverse_aperture = mix(green, magenta, floor(mod(coord.x, 2.0)));
weights = mix(aperture_weights, inverse_aperture, floor(mod(coord.y, 2.0)));
return weights;
}
else if(phosphor_layout == 8){
// delta_2_4x1_rgb
vec3 delta[2][4] = {
{red, yellow, cyan, blue},
{cyan, blue, red, yellow}
};
w = int(floor(mod(coord.y, 2.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = delta[w][z];
return weights;
}
else if(phosphor_layout == 9){
// delta_1_4x1_rgb; dunno why this is called 4x1 when it's obviously 4x2 /shrug
vec3 delta1[2][4] = {
{red, green, blue, black},
{blue, black, red, green}
};
w = int(floor(mod(coord.y, 2.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = delta1[w][z];
return weights;
}
else if(phosphor_layout == 10){
// delta_2_4x2_rgb
vec3 delta[4][4] = {
{red, yellow, cyan, blue},
{red, yellow, cyan, blue},
{cyan, blue, red, yellow},
{cyan, blue, red, yellow}
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 4.0)));
weights = delta[w][z];
return weights;
}
else if(phosphor_layout == 11){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
vec3 slotmask[4][6] = {
{red, green, blue, red, green, blue,},
{red, green, blue, black, black, black},
{red, green, blue, red, green, blue,},
{black, black, black, red, green, blue,}
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 6.0)));
// use the indexes to find which color to apply to the current pixel
weights = slotmask[w][z];
return weights;
}
else if(phosphor_layout == 12){
// slot mask for RGB panels; looks okay at 1080p, looks better at 4K
vec3 slotmask[4][6] = {
{black, white, black, black, white, black,},
{black, white, black, black, black, black},
{black, white, black, black, white, black,},
{black, black, black, black, white, black,}
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 6.0)));
// use the indexes to find which color to apply to the current pixel
weights = slotmask[w][z];
return weights;
}
else if(phosphor_layout == 13){
// based on MajorPainInTheCactus' HDR slot mask
vec3 slot[4][8] = {
{red, green, blue, black, red, green, blue, black},
{red, green, blue, black, black, black, black, black},
{red, green, blue, black, red, green, blue, black},
{black, black, black, black, red, green, blue, black}
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 8.0)));
weights = slot[w][z];
return weights;
}
else if(phosphor_layout == 14){
// same as above but for RGB panels
vec3 slot2[4][10] = {
{red, yellow, green, blue, blue, red, yellow, green, blue, blue },
{black, green, green, blue, blue, red, red, black, black, black},
{red, yellow, green, blue, blue, red, yellow, green, blue, blue },
{red, red, black, black, black, black, green, green, blue, blue }
};
w = int(floor(mod(coord.y, 4.0)));
z = int(floor(mod(coord.x, 10.0)));
weights = slot2[w][z];
return weights;
}
else if(phosphor_layout == 15){
// slot_3_7x6_rgb
vec3 slot[6][14] = {
{red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
{red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
{red, red, yellow, green, cyan, blue, blue, black, black, black, black, black, black, black},
{red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
{red, red, yellow, green, cyan, blue, blue, red, red, yellow, green, cyan, blue, blue},
{black, black, black, black, black, black, black, black, red, red, yellow, green, cyan, blue}
};
w = int(floor(mod(coord.y, 6.0)));
z = int(floor(mod(coord.x, 14.0)));
weights = slot[w][z];
return weights;
}
else return weights;
}
// Horizontal cubic filter.
// Some known filters use these values:
// B = 0.5, C = 0.0 => A sharp almost gaussian filter.
// B = 0.0, C = 0.0 => Hermite cubic filter.
// B = 1.0, C = 0.0 => Cubic B-Spline filter.
// B = 0.0, C = 0.5 => Catmull-Rom Spline filter.
// B = C = 1.0/3.0 => Mitchell-Netravali cubic filter.
// B = 0.3782, C = 0.3109 => Robidoux filter.
// B = 0.2620, C = 0.3690 => Robidoux Sharp filter.
// For more info, see: http://www.imagemagick.org/Usage/img_diagrams/cubic_survey.gif
mat4x4 get_hfilter_profile()
{
float bf = 1.0;
float cf = 0.0;
if (GetOption(HFILTER_PROFILE) == 1) {bf = 1.0/3.0; cf = 1.0/3.0;}
return mat4x4( (-bf - 6.0*cf)/6.0, (3.0*bf + 12.0*cf)/6.0, (-3.0*bf - 6.0*cf)/6.0, bf/6.0,
(12.0 - 9.0*bf - 6.0*cf)/6.0, (-18.0 + 12.0*bf + 6.0*cf)/6.0, 0.0, (6.0 - 2.0*bf)/6.0,
-(12.0 - 9.0*bf - 6.0*cf)/6.0, (18.0 - 15.0*bf - 12.0*cf)/6.0, (3.0*bf + 6.0*cf)/6.0, bf/6.0,
(bf + 6.0*cf)/6.0, -cf, 0.0, 0.0);
}
#define scanlines_strength (4.0*profile.x)
#define beam_min_width profile.y
#define beam_max_width profile.z
#define color_boost profile.w
vec4 get_beam_profile()
{
vec4 bp = vec4(GetOption(SCANLINES_STRENGTH), GetOption(BEAM_MIN_WIDTH), GetOption(BEAM_MAX_WIDTH), GetOption(COLOR_BOOST));
if (BEAM_PROFILE == 1) bp = vec4(0.58, 0.86, 1.00, 1.60); // Catmull-rom
if (BEAM_PROFILE == 2) bp = vec4(0.58, 0.72, 1.00, 1.75); // Catmull-rom
return bp;
}
void main()
{
vec2 vTexCoord = GetCoordinates();
vec2 SourceSize = 1.0 / GetInvNativePixelSize(); // This work with previous build.
vec4 profile = get_beam_profile();
vec2 TextureSize = mix(vec2(SourceSize.x * GetOption(SHARPNESS_HACK), SourceSize.y), vec2(SourceSize.x, SourceSize.y * GetOption(SHARPNESS_HACK)), GetOption(VSCANLINES));
vec2 dx = mix(vec2(1.0/TextureSize.x, 0.0), vec2(0.0, 1.0/TextureSize.y), GetOption(VSCANLINES));
vec2 dy = mix(vec2(0.0, 1.0/TextureSize.y), vec2(1.0/TextureSize.x, 0.0), GetOption(VSCANLINES));
vec2 pix_coord = vTexCoord.xy*TextureSize.xy - vec2(0.5, 0.5);
vec2 tc = ( (SCANLINES_HIRES > 0.5) ? (mix(vec2(floor(pix_coord.x), pix_coord.y), vec2(pix_coord.x, floor(pix_coord.y)), GetOption(VSCANLINES)) + vec2(0.5, 0.5)) : (floor(pix_coord) + vec2(0.5, 0.5)) )/TextureSize;
pix_coord = mix(pix_coord, pix_coord.yx, GetOption(VSCANLINES));
vec2 fp = fract(pix_coord);
vec3 c00 = GAMMA_IN(SampleLocation(tc - dx ).xyz);
vec3 c01 = GAMMA_IN(SampleLocation(tc ).xyz);
vec3 c02 = GAMMA_IN(SampleLocation(tc + dx ).xyz);
vec3 c03 = GAMMA_IN(SampleLocation(tc + 2.0*dx ).xyz);
vec3 c10 = (SCANLINES_HIRES > 0.5) ? c00 : GAMMA_IN(SampleLocation(tc - dx +dy ).xyz);
vec3 c11 = (SCANLINES_HIRES > 0.5) ? c01 : GAMMA_IN(SampleLocation(tc +dy ).xyz);
vec3 c12 = (SCANLINES_HIRES > 0.5) ? c02 : GAMMA_IN(SampleLocation(tc + dx +dy ).xyz);
vec3 c13 = (SCANLINES_HIRES > 0.5) ? c03 : GAMMA_IN(SampleLocation(tc + 2.0*dx +dy ).xyz);
mat4x4 invX = get_hfilter_profile();
mat4x3 color_matrix0 = mat4x3(c00, c01, c02, c03);
mat4x3 color_matrix1 = mat4x3(c10, c11, c12, c13);
vec4 invX_Px = vec4(fp.x*fp.x*fp.x, fp.x*fp.x, fp.x, 1.0) * invX;
vec3 color0 = color_matrix0 * invX_Px;
vec3 color1 = color_matrix1 * invX_Px;
// Get min/max samples
vec3 min_sample0 = min(c01,c02);
vec3 max_sample0 = max(c01,c02);
vec3 min_sample1 = min(c11,c12);
vec3 max_sample1 = max(c11,c12);
// Anti-ringing
vec3 aux = color0;
color0 = clamp(color0, min_sample0, max_sample0);
color0 = mix(aux, color0, GetOption(CRT_ANTI_RINGING) * step(0.0, (c00-c01)*(c02-c03)));
aux = color1;
color1 = clamp(color1, min_sample1, max_sample1);
color1 = mix(aux, color1, GetOption(CRT_ANTI_RINGING) * step(0.0, (c10-c11)*(c12-c13)));
float pos0 = fp.y;
float pos1 = 1 - fp.y;
vec3 lum0 = mix(vec3(beam_min_width), vec3(beam_max_width), color0);
vec3 lum1 = mix(vec3(beam_min_width), vec3(beam_max_width), color1);
vec3 d0 = scanlines_strength*pos0/(lum0*lum0+0.0000001);
vec3 d1 = scanlines_strength*pos1/(lum1*lum1+0.0000001);
d0 = exp(-d0*d0);
d1 = exp(-d1*d1);
vec3 color = (TextureSize.y <= SCANLINES_CUTOFF) ? (color0*d0+color1*d1) : GAMMA_IN(SampleLocation(vTexCoord).xyz);
color = color_boost*GAMMA_OUT(color);
vec2 mask_coords =vTexCoord.xy * GetWindowSize().xy;
mask_coords = mix(mask_coords.xy, mask_coords.yx, GetOption(VSCANLINES));
color.rgb*=GAMMA_OUT(mask_weights(mask_coords, GetOption(MASK_INTENSITY), int(GetOption(PHOSPHOR_LAYOUT)), GetOption(MONITOR_SUBPIXELS)));
SetOutput(vec4(color, 1.0));
}