dolphin/Source/Plugins/Plugin_VideoOGL/Src/Render.cpp

1885 lines
54 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Globals.h"
#include "Thread.h"
#include "Atomic.h"
#include <vector>
#include <cmath>
#include <cstdio>
#include "GLUtil.h"
#if defined(HAVE_WX) && HAVE_WX
#include "WxUtils.h"
#endif
#include "FileUtil.h"
#ifdef _WIN32
#include <mmsystem.h>
#endif
#include "CommonPaths.h"
#include "DriverDetails.h"
#include "VideoConfig.h"
#include "Statistics.h"
#include "ImageWrite.h"
#include "PixelEngine.h"
#include "Render.h"
#include "OpcodeDecoding.h"
#include "BPStructs.h"
#include "TextureCache.h"
#include "RasterFont.h"
#include "VertexShaderGen.h"
#include "DLCache.h"
#include "PixelShaderManager.h"
#include "ProgramShaderCache.h"
#include "VertexShaderManager.h"
#include "VertexLoaderManager.h"
#include "VertexLoader.h"
#include "PostProcessing.h"
#include "TextureConverter.h"
#include "OnScreenDisplay.h"
#include "Timer.h"
#include "StringUtil.h"
#include "FramebufferManager.h"
#include "Fifo.h"
#include "Debugger.h"
#include "Core.h"
#include "Movie.h"
#include "Host.h"
#include "BPFunctions.h"
#include "FPSCounter.h"
#include "ConfigManager.h"
#include "VertexManager.h"
#include "SamplerCache.h"
#include "StreamBuffer.h"
#include "main.h" // Local
#ifdef _WIN32
#include "EmuWindow.h"
#endif
#if defined _WIN32 || defined HAVE_LIBAV
#include "AVIDump.h"
#endif
#if defined(HAVE_WX) && HAVE_WX
#include <wx/image.h>
#endif
// glew1.8 doesn't define KHR_debug
#ifndef GL_DEBUG_OUTPUT
#define GL_DEBUG_OUTPUT 0x92E0
#endif
void VideoConfig::UpdateProjectionHack()
{
::UpdateProjectionHack(g_Config.iPhackvalue, g_Config.sPhackvalue);
}
#if defined(HAVE_WX) && HAVE_WX
// Screenshot thread struct
typedef struct
{
int W, H;
std::string filename;
wxImage *img;
} ScrStrct;
#endif
int OSDInternalW, OSDInternalH;
namespace OGL
{
enum MultisampleMode {
MULTISAMPLE_OFF,
MULTISAMPLE_2X,
MULTISAMPLE_4X,
MULTISAMPLE_8X,
MULTISAMPLE_CSAA_8X,
MULTISAMPLE_CSAA_8XQ,
MULTISAMPLE_CSAA_16X,
MULTISAMPLE_CSAA_16XQ,
MULTISAMPLE_SSAA_4X,
};
VideoConfig g_ogl_config;
// Declarations and definitions
// ----------------------------
static int s_fps = 0;
static GLuint s_ShowEFBCopyRegions_VBO = 0;
static GLuint s_ShowEFBCopyRegions_VAO = 0;
static SHADER s_ShowEFBCopyRegions;
static RasterFont* s_pfont = NULL;
// 1 for no MSAA. Use s_MSAASamples > 1 to check for MSAA.
static int s_MSAASamples = 1;
static int s_MSAACoverageSamples = 0;
static int s_LastMultisampleMode = 0;
static u32 s_blendMode;
static bool s_vsync;
#if defined(HAVE_WX) && HAVE_WX
static std::thread scrshotThread;
#endif
// EFB cache related
static const u32 EFB_CACHE_RECT_SIZE = 64; // Cache 64x64 blocks.
static const u32 EFB_CACHE_WIDTH = (EFB_WIDTH + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE; // round up
static const u32 EFB_CACHE_HEIGHT = (EFB_HEIGHT + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE;
static bool s_efbCacheValid[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT];
static std::vector<u32> s_efbCache[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT]; // 2 for PEEK_Z and PEEK_COLOR
int GetNumMSAASamples(int MSAAMode)
{
int samples;
switch (MSAAMode)
{
case MULTISAMPLE_OFF:
samples = 1;
break;
case MULTISAMPLE_2X:
samples = 2;
break;
case MULTISAMPLE_4X:
case MULTISAMPLE_CSAA_8X:
case MULTISAMPLE_CSAA_16X:
case MULTISAMPLE_SSAA_4X:
samples = 4;
break;
case MULTISAMPLE_8X:
case MULTISAMPLE_CSAA_8XQ:
case MULTISAMPLE_CSAA_16XQ:
samples = 8;
break;
default:
samples = 1;
}
if(samples <= g_ogl_config.max_samples) return samples;
// TODO: move this to InitBackendInfo
OSD::AddMessage(StringFromFormat("%d Anti Aliasing samples selected, but only %d supported by your GPU.", samples, g_ogl_config.max_samples), 10000);
return g_ogl_config.max_samples;
}
int GetNumMSAACoverageSamples(int MSAAMode)
{
int samples;
switch (g_ActiveConfig.iMultisampleMode)
{
case MULTISAMPLE_CSAA_8X:
case MULTISAMPLE_CSAA_8XQ:
samples = 8;
break;
case MULTISAMPLE_CSAA_16X:
case MULTISAMPLE_CSAA_16XQ:
samples = 16;
break;
default:
samples = 0;
}
if(g_ogl_config.bSupportCoverageMSAA || samples == 0) return samples;
// TODO: move this to InitBackendInfo
OSD::AddMessage("CSAA Anti Aliasing isn't supported by your GPU.", 10000);
return 0;
}
void ApplySSAASettings() {
// GLES3 doesn't support SSAA
#ifndef USE_GLES3
if(g_ActiveConfig.iMultisampleMode == MULTISAMPLE_SSAA_4X) {
if(g_ogl_config.bSupportSampleShading) {
glEnable(GL_SAMPLE_SHADING_ARB);
glMinSampleShadingARB(s_MSAASamples);
} else {
// TODO: move this to InitBackendInfo
OSD::AddMessage("SSAA Anti Aliasing isn't supported by your GPU.", 10000);
}
} else if(g_ogl_config.bSupportSampleShading) {
glDisable(GL_SAMPLE_SHADING_ARB);
}
#endif
}
void GLAPIENTRY ErrorCallback( GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const char* message, void* userParam)
{
// GLES3 doesn't natively support this
// XXX: Include GLES2 extensions header so we can use this
#ifndef USE_GLES3
const char *s_source;
const char *s_type;
switch(source)
{
case GL_DEBUG_SOURCE_API_ARB: s_source = "API"; break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB: s_source = "Window System"; break;
case GL_DEBUG_SOURCE_SHADER_COMPILER_ARB: s_source = "Shader Compiler"; break;
case GL_DEBUG_SOURCE_THIRD_PARTY_ARB: s_source = "Third Party"; break;
case GL_DEBUG_SOURCE_APPLICATION_ARB: s_source = "Application"; break;
case GL_DEBUG_SOURCE_OTHER_ARB: s_source = "Other"; break;
default: s_source = "Unknown"; break;
}
switch(type)
{
case GL_DEBUG_TYPE_ERROR_ARB: s_type = "Error"; break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB: s_type = "Deprecated"; break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB: s_type = "Undefined"; break;
case GL_DEBUG_TYPE_PORTABILITY_ARB: s_type = "Portability"; break;
case GL_DEBUG_TYPE_PERFORMANCE_ARB: s_type = "Performance"; break;
case GL_DEBUG_TYPE_OTHER_ARB: s_type = "Other"; break;
default: s_type = "Unknown"; break;
}
switch(severity)
{
case GL_DEBUG_SEVERITY_HIGH_ARB: ERROR_LOG(VIDEO, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break;
case GL_DEBUG_SEVERITY_MEDIUM_ARB: WARN_LOG(VIDEO, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break;
case GL_DEBUG_SEVERITY_LOW_ARB: WARN_LOG(VIDEO, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break;
default: ERROR_LOG(VIDEO, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break;
}
#endif
}
#ifndef USE_GLES3
// Two small Fallbacks to avoid GL_ARB_ES2_compatibility
void GLAPIENTRY DepthRangef(GLfloat neardepth, GLfloat fardepth)
{
glDepthRange(neardepth, fardepth);
}
void GLAPIENTRY ClearDepthf(GLfloat depthval)
{
glClearDepth(depthval);
}
#endif
void InitDriverInfo()
{
std::string svendor = std::string(g_ogl_config.gl_vendor);
std::string srenderer = std::string(g_ogl_config.gl_renderer);
std::string sversion = std::string(g_ogl_config.gl_version);
DriverDetails::Vendor vendor = DriverDetails::VENDOR_UNKNOWN;
DriverDetails::Driver driver = DriverDetails::DRIVER_UNKNOWN;
double version = 0.0;
// Get the vendor first
if (svendor == "NVIDIA Corporation" && srenderer != "NVIDIA Tegra")
vendor = DriverDetails::VENDOR_NVIDIA;
else if (svendor == "ATI Technologies Inc." || svendor == "Advanced Micro Devices, Inc.")
vendor = DriverDetails::VENDOR_ATI;
else if (std::string::npos != sversion.find("Mesa"))
vendor = DriverDetails::VENDOR_MESA;
else if (std::string::npos != svendor.find("Intel"))
vendor = DriverDetails::VENDOR_INTEL;
else if (svendor == "ARM")
vendor = DriverDetails::VENDOR_ARM;
else if (svendor == "http://limadriver.org/")
{
vendor = DriverDetails::VENDOR_ARM;
driver = DriverDetails::DRIVER_LIMA;
}
else if (svendor == "Qualcomm")
vendor = DriverDetails::VENDOR_QUALCOMM;
else if (svendor == "Imagination Technologies")
vendor = DriverDetails::VENDOR_IMGTEC;
else if (svendor == "NVIDIA Corporation" && srenderer == "NVIDIA Tegra")
vendor = DriverDetails::VENDOR_TEGRA;
else if (svendor == "Vivante Corporation")
vendor = DriverDetails::VENDOR_VIVANTE;
// Get device family and driver version...if we care about it
switch(vendor)
{
case DriverDetails::VENDOR_QUALCOMM:
{
if (std::string::npos != srenderer.find("Adreno (TM) 3"))
driver = DriverDetails::DRIVER_QUALCOMM_3XX;
else
driver = DriverDetails::DRIVER_QUALCOMM_2XX;
double glVersion;
sscanf(g_ogl_config.gl_version, "OpenGL ES %lg V@%lg", &glVersion, &version);
}
break;
case DriverDetails::VENDOR_ARM:
if (std::string::npos != srenderer.find("Mali-T6"))
driver = DriverDetails::DRIVER_ARM_T6XX;
else if(std::string::npos != srenderer.find("Mali-4"))
driver = DriverDetails::DRIVER_ARM_4XX;
break;
case DriverDetails::VENDOR_MESA:
{
if(svendor == "nouveau")
driver = DriverDetails::DRIVER_NOUVEAU;
else if(svendor == "Intel Open Source Technology Center")
driver = DriverDetails::DRIVER_I965;
else if(std::string::npos != srenderer.find("AMD") || std::string::npos != srenderer.find("ATI"))
driver = DriverDetails::DRIVER_R600;
int major = 0;
int minor = 0;
int release = 0;
sscanf(g_ogl_config.gl_version, "%*s Mesa %d.%d.%d", &major, &minor, &release);
version = 100*major + 10*minor + release;
}
break;
// We don't care about these
default:
break;
}
DriverDetails::Init(vendor, driver, version);
}
// Init functions
Renderer::Renderer()
{
OSDInternalW = 0;
OSDInternalH = 0;
s_fps=0;
s_ShowEFBCopyRegions_VBO = 0;
s_blendMode = 0;
InitFPSCounter();
bool bSuccess = true;
g_ogl_config.gl_vendor = (const char*)glGetString(GL_VENDOR);
g_ogl_config.gl_renderer = (const char*)glGetString(GL_RENDERER);
g_ogl_config.gl_version = (const char*)glGetString(GL_VERSION);
g_ogl_config.glsl_version = (const char*)glGetString(GL_SHADING_LANGUAGE_VERSION);
InitDriverInfo();
// Init extension support.
#ifdef USE_GLES3
// Set default GLES3 options
GLFunc::Init();
WARN_LOG(VIDEO, "Running the OpenGL ES 3 backend!");
g_Config.backend_info.bSupportsDualSourceBlend = false;
g_Config.backend_info.bSupportsGLSLUBO = true;
g_Config.backend_info.bSupportsPrimitiveRestart = false;
g_Config.backend_info.bSupportsEarlyZ = false;
g_ogl_config.bSupportsGLSLCache = true;
g_ogl_config.bSupportsGLPinnedMemory = false;
g_ogl_config.bSupportsGLSync = true;
g_ogl_config.bSupportsGLBaseVertex = false;
g_ogl_config.bSupportCoverageMSAA = false; // XXX: GLES3 spec has MSAA
g_ogl_config.bSupportSampleShading = false;
g_ogl_config.bSupportOGL31 = false;
g_ogl_config.eSupportedGLSLVersion = GLSLES3;
#else
GLint numvertexattribs = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &numvertexattribs);
if (numvertexattribs < 16)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Number of attributes %d not enough.\n"
"GPU: Does your video card support OpenGL 2.x?",
numvertexattribs);
bSuccess = false;
}
#ifdef __APPLE__
glewExperimental = 1;
#endif
if (glewInit() != GLEW_OK)
{
ERROR_LOG(VIDEO, "glewInit() failed! Does your video card support OpenGL 2.x?");
return; // TODO: fail
}
#if defined(_DEBUG) || defined(DEBUGFAST)
if (GLEW_ARB_debug_output)
{
glDebugMessageControlARB(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, NULL, true);
glDebugMessageCallbackARB( ErrorCallback, NULL );
glEnable( GL_DEBUG_OUTPUT );
}
#endif
if (!GLEW_EXT_secondary_color)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_EXT_secondary_color.\n"
"GPU: Does your video card support OpenGL 2.x?");
bSuccess = false;
}
if (!GLEW_ARB_framebuffer_object)
{
ERROR_LOG(VIDEO, "GPU: ERROR: Need GL_ARB_framebuffer_object for multiple render targets.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_vertex_array_object)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_ARB_vertex_array_object.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_map_buffer_range)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_ARB_map_buffer_range.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_sampler_objects && bSuccess)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_ARB_sampler_objects."
"GPU: Does your video card support OpenGL 3.2?"
"Please report this issue, then there will be a workaround");
bSuccess = false;
}
if (!GLEW_ARB_texture_non_power_of_two)
WARN_LOG(VIDEO, "ARB_texture_non_power_of_two not supported.");
// OpenGL 3 doesn't provide GLES like float functions for depth.
// They are in core in OpenGL 4.1, so almost every driver should support them.
// But for the oldest ones, we provide fallbacks to the old double functions.
if (!GLEW_ARB_ES2_compatibility)
{
glDepthRangef = DepthRangef;
glClearDepthf = ClearDepthf;
}
if (!bSuccess)
return; // TODO: fail
g_Config.backend_info.bSupportsDualSourceBlend = GLEW_ARB_blend_func_extended;
g_Config.backend_info.bSupportsGLSLUBO = GLEW_ARB_uniform_buffer_object;
g_Config.backend_info.bSupportsPrimitiveRestart = GLEW_VERSION_3_1 || GLEW_NV_primitive_restart;
g_Config.backend_info.bSupportsEarlyZ = GLEW_ARB_shader_image_load_store;
g_ogl_config.bSupportsGLSLCache = GLEW_ARB_get_program_binary;
g_ogl_config.bSupportsGLPinnedMemory = GLEW_AMD_pinned_memory;
g_ogl_config.bSupportsGLSync = GLEW_ARB_sync;
g_ogl_config.bSupportsGLBaseVertex = GLEW_ARB_draw_elements_base_vertex;
g_ogl_config.bSupportCoverageMSAA = GLEW_NV_framebuffer_multisample_coverage;
g_ogl_config.bSupportSampleShading = GLEW_ARB_sample_shading;
g_ogl_config.bSupportOGL31 = GLEW_VERSION_3_1;
if(strstr(g_ogl_config.glsl_version, "1.00") || strstr(g_ogl_config.glsl_version, "1.10"))
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need at least GLSL 1.20\n"
"GPU: Does your video card support OpenGL 2.1?\n"
"GPU: Your driver supports GLSL %s", g_ogl_config.glsl_version);
bSuccess = false;
}
else if(strstr(g_ogl_config.glsl_version, "1.20"))
{
g_ogl_config.eSupportedGLSLVersion = GLSL_120;
g_Config.backend_info.bSupportsDualSourceBlend = false; //TODO: implement dual source blend
g_Config.backend_info.bSupportsEarlyZ = false; // layout keyword is only supported on glsl150+
}
else if(strstr(g_ogl_config.glsl_version, "1.30"))
{
g_ogl_config.eSupportedGLSLVersion = GLSL_130;
g_Config.backend_info.bSupportsEarlyZ = false; // layout keyword is only supported on glsl150+
}
else if(strstr(g_ogl_config.glsl_version, "1.40"))
{
g_ogl_config.eSupportedGLSLVersion = GLSL_140;
g_Config.backend_info.bSupportsEarlyZ = false; // layout keyword is only supported on glsl150+
}
else
{
g_ogl_config.eSupportedGLSLVersion = GLSL_150;
}
#endif
glGetIntegerv(GL_MAX_SAMPLES, &g_ogl_config.max_samples);
if(g_ogl_config.max_samples < 1)
g_ogl_config.max_samples = 1;
if(g_Config.backend_info.bSupportsGLSLUBO && DriverDetails::HasBug(DriverDetails::BUG_BROKENUBO))
{
g_Config.backend_info.bSupportsGLSLUBO = false;
ERROR_LOG(VIDEO, "Buggy driver detected. Disable UBO");
OSD::AddMessage("Major performance warning: Buggy GPU driver detected.", 20000);
OSD::AddMessage("Please either install the closed-source GPU driver or update your Mesa 3D version.", 20000);
}
UpdateActiveConfig();
OSD::AddMessage(StringFromFormat("Video Info: %s, %s, %s",
g_ogl_config.gl_vendor,
g_ogl_config.gl_renderer,
g_ogl_config.gl_version), 5000);
WARN_LOG(VIDEO,"Missing OGL Extensions: %s%s%s%s%s%s%s%s%s%s",
g_ActiveConfig.backend_info.bSupportsDualSourceBlend ? "" : "DualSourceBlend ",
g_ActiveConfig.backend_info.bSupportsGLSLUBO ? "" : "UniformBuffer ",
g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ? "" : "PrimitiveRestart ",
g_ActiveConfig.backend_info.bSupportsEarlyZ ? "" : "EarlyZ ",
g_ogl_config.bSupportsGLPinnedMemory ? "" : "PinnedMemory ",
g_ogl_config.bSupportsGLSLCache ? "" : "ShaderCache ",
g_ogl_config.bSupportsGLBaseVertex ? "" : "BaseVertex ",
g_ogl_config.bSupportsGLSync ? "" : "Sync ",
g_ogl_config.bSupportCoverageMSAA ? "" : "CSAA ",
g_ogl_config.bSupportSampleShading ? "" : "SSAA "
);
s_LastMultisampleMode = g_ActiveConfig.iMultisampleMode;
s_MSAASamples = GetNumMSAASamples(s_LastMultisampleMode);
s_MSAACoverageSamples = GetNumMSAACoverageSamples(s_LastMultisampleMode);
ApplySSAASettings();
// Decide framebuffer size
s_backbuffer_width = (int)GLInterface->GetBackBufferWidth();
s_backbuffer_height = (int)GLInterface->GetBackBufferHeight();
// Handle VSync on/off
s_vsync = g_ActiveConfig.IsVSync();
GLInterface->SwapInterval(s_vsync);
// check the max texture width and height
GLint max_texture_size;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, (GLint *)&max_texture_size);
if (max_texture_size < 1024)
ERROR_LOG(VIDEO, "GL_MAX_TEXTURE_SIZE too small at %i - must be at least 1024.",
max_texture_size);
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
// TODO: Move these somewhere else?
FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH);
FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT);
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
s_LastEFBScale = g_ActiveConfig.iEFBScale;
CalculateTargetSize(s_backbuffer_width, s_backbuffer_height);
// Because of the fixed framebuffer size we need to disable the resolution
// options while running
g_Config.bRunning = true;
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
glStencilFunc(GL_ALWAYS, 0, 0);
glBlendFunc(GL_ONE, GL_ONE);
glViewport(0, 0, GetTargetWidth(), GetTargetHeight()); // Reset The Current Viewport
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepthf(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4); // 4-byte pixel alignment
glDisable(GL_STENCIL_TEST);
glEnable(GL_SCISSOR_TEST);
glScissor(0, 0, GetTargetWidth(), GetTargetHeight());
glBlendColor(0, 0, 0, 0.5f);
glClearDepthf(1.0f);
#ifndef USE_GLES3
if(g_ActiveConfig.backend_info.bSupportsPrimitiveRestart)
{
if(g_ogl_config.bSupportOGL31)
{
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex(65535);
}
else
{
glEnableClientState(GL_PRIMITIVE_RESTART_NV);
glPrimitiveRestartIndexNV(65535);
}
}
#endif
UpdateActiveConfig();
}
Renderer::~Renderer()
{
#if defined(HAVE_WX) && HAVE_WX
if (scrshotThread.joinable())
scrshotThread.join();
#endif
}
void Renderer::Shutdown()
{
delete g_framebuffer_manager;
g_Config.bRunning = false;
UpdateActiveConfig();
glDeleteBuffers(1, &s_ShowEFBCopyRegions_VBO);
glDeleteVertexArrays(1, &s_ShowEFBCopyRegions_VAO);
s_ShowEFBCopyRegions_VBO = 0;
delete s_pfont;
s_pfont = 0;
s_ShowEFBCopyRegions.Destroy();
}
void Renderer::Init()
{
// Initialize the FramebufferManager
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
s_pfont = new RasterFont();
ProgramShaderCache::CompileShader(s_ShowEFBCopyRegions,
"ATTRIN vec2 rawpos;\n"
"ATTRIN vec3 color0;\n"
"VARYOUT vec4 c;\n"
"void main(void) {\n"
" gl_Position = vec4(rawpos, 0.0f, 1.0f);\n"
" c = vec4(color0, 1.0f);\n"
"}\n",
"VARYIN vec4 c;\n"
"COLOROUT(ocol0)\n"
"void main(void) {\n"
" ocol0 = c;\n"
"}\n");
// creating buffers
glGenBuffers(1, &s_ShowEFBCopyRegions_VBO);
glGenVertexArrays(1, &s_ShowEFBCopyRegions_VAO);
glBindBuffer(GL_ARRAY_BUFFER, s_ShowEFBCopyRegions_VBO);
glBindVertexArray( s_ShowEFBCopyRegions_VAO );
glEnableVertexAttribArray(SHADER_POSITION_ATTRIB);
glVertexAttribPointer(SHADER_POSITION_ATTRIB, 2, GL_FLOAT, 0, sizeof(GLfloat)*5, NULL);
glEnableVertexAttribArray(SHADER_COLOR0_ATTRIB);
glVertexAttribPointer(SHADER_COLOR0_ATTRIB, 3, GL_FLOAT, 0, sizeof(GLfloat)*5, (GLfloat*)NULL+2);
}
// Create On-Screen-Messages
void Renderer::DrawDebugInfo()
{
// Reset viewport for drawing text
glViewport(0, 0, GLInterface->GetBackBufferWidth(), GLInterface->GetBackBufferHeight());
// Draw various messages on the screen, like FPS, statistics, etc.
char debugtext_buffer[8192];
char *p = debugtext_buffer;
p[0] = 0;
if (g_ActiveConfig.bShowFPS)
p+=sprintf(p, "FPS: %d\n", s_fps);
if (SConfig::GetInstance().m_ShowLag)
p+=sprintf(p, "Lag: %llu\n", Movie::g_currentLagCount);
if (g_ActiveConfig.bShowInputDisplay)
p+=sprintf(p, "%s", Movie::GetInputDisplay().c_str());
#ifndef USE_GLES3
if (g_ActiveConfig.bShowEFBCopyRegions)
{
// Set Line Size
glLineWidth(3.0f);
// 2*Coords + 3*Color
u32 length = stats.efb_regions.size() * sizeof(GLfloat) * (2+3)*2*6;
glBindBuffer(GL_ARRAY_BUFFER, s_ShowEFBCopyRegions_VBO);
glBufferData(GL_ARRAY_BUFFER, length, NULL, GL_STREAM_DRAW);
GLfloat *Vertices = (GLfloat*)glMapBufferRange(GL_ARRAY_BUFFER, 0, length, GL_MAP_WRITE_BIT);
// Draw EFB copy regions rectangles
int a = 0;
GLfloat color[3] = {0.0f, 1.0f, 1.0f};
for (std::vector<EFBRectangle>::const_iterator it = stats.efb_regions.begin();
it != stats.efb_regions.end(); ++it)
{
GLfloat halfWidth = EFB_WIDTH / 2.0f;
GLfloat halfHeight = EFB_HEIGHT / 2.0f;
GLfloat x = (GLfloat) -1.0f + ((GLfloat)it->left / halfWidth);
GLfloat y = (GLfloat) 1.0f - ((GLfloat)it->top / halfHeight);
GLfloat x2 = (GLfloat) -1.0f + ((GLfloat)it->right / halfWidth);
GLfloat y2 = (GLfloat) 1.0f - ((GLfloat)it->bottom / halfHeight);
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
// TO DO: build something nicer here
GLfloat temp = color[0];
color[0] = color[1];
color[1] = color[2];
color[2] = temp;
}
glUnmapBuffer(GL_ARRAY_BUFFER);
s_ShowEFBCopyRegions.Bind();
glBindVertexArray( s_ShowEFBCopyRegions_VAO );
glDrawArrays(GL_LINES, 0, stats.efb_regions.size() * 2*6);
// Restore Line Size
SetLineWidth();
// Clear stored regions
stats.efb_regions.clear();
}
#endif
if (g_ActiveConfig.bOverlayStats)
p = Statistics::ToString(p);
if (g_ActiveConfig.bOverlayProjStats)
p = Statistics::ToStringProj(p);
// Render a shadow, and then the text.
if (p != debugtext_buffer)
{
Renderer::RenderText(debugtext_buffer, 21, 21, 0xDD000000);
Renderer::RenderText(debugtext_buffer, 20, 20, 0xFF00FFFF);
}
}
void Renderer::RenderText(const char *text, int left, int top, u32 color)
{
const int nBackbufferWidth = (int)GLInterface->GetBackBufferWidth();
const int nBackbufferHeight = (int)GLInterface->GetBackBufferHeight();
s_pfont->printMultilineText(text,
left * 2.0f / (float)nBackbufferWidth - 1,
1 - top * 2.0f / (float)nBackbufferHeight,
0, nBackbufferWidth, nBackbufferHeight, color);
GL_REPORT_ERRORD();
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(EFB_HEIGHT - rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(EFB_HEIGHT - rc.bottom);
return result;
}
// Function: This function handles the OpenGL glScissor() function
// ----------------------------
// Call browser: OpcodeDecoding.cpp ExecuteDisplayList > Decode() > LoadBPReg()
// case 0x52 > SetScissorRect()
// ----------------------------
// bpmem.scissorTL.x, y = 342x342
// bpmem.scissorBR.x, y = 981x821
// Renderer::GetTargetHeight() = the fixed ini file setting
// donkopunchstania - it appears scissorBR is the bottom right pixel inside the scissor box
// therefore the width and height are (scissorBR + 1) - scissorTL
void Renderer::SetScissorRect(const TargetRectangle& rc)
{
glScissor(rc.left, rc.bottom, rc.GetWidth(), rc.GetHeight());
}
void Renderer::SetColorMask()
{
// Only enable alpha channel if it's supported by the current EFB format
GLenum ColorMask = GL_FALSE, AlphaMask = GL_FALSE;
if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL)
{
if (bpmem.blendmode.colorupdate)
ColorMask = GL_TRUE;
if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24))
AlphaMask = GL_TRUE;
}
glColorMask(ColorMask, ColorMask, ColorMask, AlphaMask);
}
void ClearEFBCache()
{
for (u32 i = 0; i < EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT; ++i)
s_efbCacheValid[0][i] = false;
for (u32 i = 0; i < EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT; ++i)
s_efbCacheValid[1][i] = false;
}
void Renderer::UpdateEFBCache(EFBAccessType type, u32 cacheRectIdx, const EFBRectangle& efbPixelRc, const TargetRectangle& targetPixelRc, const u32* data)
{
u32 cacheType = (type == PEEK_Z ? 0 : 1);
if (!s_efbCache[cacheType][cacheRectIdx].size())
s_efbCache[cacheType][cacheRectIdx].resize(EFB_CACHE_RECT_SIZE * EFB_CACHE_RECT_SIZE);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 efbPixelRcHeight = efbPixelRc.bottom - efbPixelRc.top;
u32 efbPixelRcWidth = efbPixelRc.right - efbPixelRc.left;
for (u32 yCache = 0; yCache < efbPixelRcHeight; ++yCache)
{
u32 yEFB = efbPixelRc.top + yCache;
u32 yPixel = (EFBToScaledY(EFB_HEIGHT - yEFB) + EFBToScaledY(EFB_HEIGHT - yEFB - 1)) / 2;
u32 yData = yPixel - targetPixelRc.bottom;
for (u32 xCache = 0; xCache < efbPixelRcWidth; ++xCache)
{
u32 xEFB = efbPixelRc.left + xCache;
u32 xPixel = (EFBToScaledX(xEFB) + EFBToScaledX(xEFB + 1)) / 2;
u32 xData = xPixel - targetPixelRc.left;
s_efbCache[cacheType][cacheRectIdx][yCache * EFB_CACHE_RECT_SIZE + xCache] = data[yData * targetPixelRcWidth + xData];
}
}
s_efbCacheValid[cacheType][cacheRectIdx] = true;
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
if (!g_ActiveConfig.bEFBAccessEnable)
return 0;
u32 cacheRectIdx = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_WIDTH
+ (x / EFB_CACHE_RECT_SIZE);
// Get the rectangular target region containing the EFB pixel
EFBRectangle efbPixelRc;
efbPixelRc.left = (x / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.top = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.right = std::min(efbPixelRc.left + EFB_CACHE_RECT_SIZE, (u32)EFB_WIDTH);
efbPixelRc.bottom = std::min(efbPixelRc.top + EFB_CACHE_RECT_SIZE, (u32)EFB_HEIGHT);
TargetRectangle targetPixelRc = ConvertEFBRectangle(efbPixelRc);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 targetPixelRcHeight = targetPixelRc.top - targetPixelRc.bottom;
// TODO (FIX) : currently, AA path is broken/offset and doesn't return the correct pixel
switch (type)
{
case PEEK_Z:
{
u32 z;
if (!s_efbCacheValid[0][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
g_renderer->ResetAPIState();
// Resolve our rectangle.
FramebufferManager::GetEFBDepthTexture(efbPixelRc);
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer());
g_renderer->RestoreAPIState();
}
u32* depthMap = new u32[targetPixelRcWidth * targetPixelRcHeight];
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, depthMap);
GL_REPORT_ERRORD();
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, depthMap);
delete[] depthMap;
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
z = s_efbCache[0][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// Scale the 32-bit value returned by glReadPixels to a 24-bit
// value (GC uses a 24-bit Z-buffer).
// TODO: in RE0 this value is often off by one, which causes lighting to disappear
if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
z = z >> 16;
}
else
{
z = z >> 8;
}
return z;
}
case PEEK_COLOR: // GXPeekARGB
{
// Although it may sound strange, this really is A8R8G8B8 and not RGBA or 24-bit...
// Tested in Killer 7, the first 8bits represent the alpha value which is used to
// determine if we're aiming at an enemy (0x80 / 0x88) or not (0x70)
// Wind Waker is also using it for the pictograph to determine the color of each pixel
u32 color;
if (!s_efbCacheValid[1][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
g_renderer->ResetAPIState();
// Resolve our rectangle.
FramebufferManager::GetEFBColorTexture(efbPixelRc);
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer());
g_renderer->RestoreAPIState();
}
u32* colorMap = new u32[targetPixelRcWidth * targetPixelRcHeight];
#ifdef USE_GLES3
// XXX: Swap colours
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_RGBA, GL_UNSIGNED_BYTE, colorMap);
#else
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, colorMap);
#endif
GL_REPORT_ERRORD();
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, colorMap);
delete[] colorMap;
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
color = s_efbCache[1][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode;
PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD);
if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
}
if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24)
{
color |= 0xFF000000;
}
if(alpha_read_mode.ReadMode == 2) return color; // GX_READ_NONE
else if(alpha_read_mode.ReadMode == 1) return (color | 0xFF000000); // GX_READ_FF
else /*if(alpha_read_mode.ReadMode == 0)*/ return (color & 0x00FFFFFF); // GX_READ_00
}
case POKE_COLOR:
case POKE_Z:
// TODO: Implement. One way is to draw a tiny pixel-sized rectangle at
// the exact location. Note: EFB pokes are susceptible to Z-buffering
// and perhaps blending.
//WARN_LOG(VIDEOINTERFACE, "This is probably some kind of software rendering");
break;
default:
break;
}
return 0;
}
// Called from VertexShaderManager
void Renderer::UpdateViewport(Matrix44& vpCorrection)
{
// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
// [0] = width/2
// [1] = height/2
// [2] = 16777215 * (farz - nearz)
// [3] = xorig + width/2 + 342
// [4] = yorig + height/2 + 342
// [5] = 16777215 * farz
int scissorXOff = bpmem.scissorOffset.x * 2;
int scissorYOff = bpmem.scissorOffset.y * 2;
// TODO: ceil, floor or just cast to int?
int X = EFBToScaledX((int)ceil(xfregs.viewport.xOrig - xfregs.viewport.wd - (float)scissorXOff));
int Y = EFBToScaledY((int)ceil((float)EFB_HEIGHT - xfregs.viewport.yOrig + xfregs.viewport.ht + (float)scissorYOff));
int Width = EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd));
int Height = EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht));
double GLNear = (xfregs.viewport.farZ - xfregs.viewport.zRange) / 16777216.0f;
double GLFar = xfregs.viewport.farZ / 16777216.0f;
if (Width < 0)
{
X += Width;
Width *= -1;
}
if (Height < 0)
{
Y += Height;
Height *= -1;
}
// OpenGL does not require any viewport correct
Matrix44::LoadIdentity(vpCorrection);
// Update the view port
glViewport(X, Y, Width, Height);
glDepthRangef(GLNear, GLFar);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z)
{
ResetAPIState();
// color
GLboolean const
color_mask = colorEnable ? GL_TRUE : GL_FALSE,
alpha_mask = alphaEnable ? GL_TRUE : GL_FALSE;
glColorMask(color_mask, color_mask, color_mask, alpha_mask);
glClearColor(
float((color >> 16) & 0xFF) / 255.0f,
float((color >> 8) & 0xFF) / 255.0f,
float((color >> 0) & 0xFF) / 255.0f,
float((color >> 24) & 0xFF) / 255.0f);
// depth
glDepthMask(zEnable ? GL_TRUE : GL_FALSE);
glClearDepthf(float(z & 0xFFFFFF) / float(0xFFFFFF));
// Update rect for clearing the picture
glEnable(GL_SCISSOR_TEST);
TargetRectangle const targetRc = ConvertEFBRectangle(rc);
glScissor(targetRc.left, targetRc.bottom, targetRc.GetWidth(), targetRc.GetHeight());
// glColorMask/glDepthMask/glScissor affect glClear (glViewport does not)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RestoreAPIState();
ClearEFBCache();
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
if (convtype == 0 || convtype == 2)
{
FramebufferManager::ReinterpretPixelData(convtype);
}
else
{
ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype);
}
}
void Renderer::SetBlendMode(bool forceUpdate)
{
// Our render target always uses an alpha channel, so we need to override the blend functions to assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel
// Example: D3DBLEND_DESTALPHA needs to be D3DBLEND_ONE since the result without an alpha channel is assumed to always be 1.
bool target_has_alpha = bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24;
bool useDstAlpha = !g_ActiveConfig.bDstAlphaPass && bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate && target_has_alpha;
bool useDualSource = useDstAlpha && g_ActiveConfig.backend_info.bSupportsDualSourceBlend;
const GLenum glSrcFactors[8] =
{
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
(useDualSource) ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA,
(useDualSource) ? GL_ONE_MINUS_SRC1_ALPHA : (GLenum)GL_ONE_MINUS_SRC_ALPHA,
(target_has_alpha) ? GL_DST_ALPHA : (GLenum)GL_ONE,
(target_has_alpha) ? GL_ONE_MINUS_DST_ALPHA : (GLenum)GL_ZERO
};
const GLenum glDestFactors[8] =
{
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
(useDualSource) ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA,
(useDualSource) ? GL_ONE_MINUS_SRC1_ALPHA : (GLenum)GL_ONE_MINUS_SRC_ALPHA,
(target_has_alpha) ? GL_DST_ALPHA : (GLenum)GL_ONE,
(target_has_alpha) ? GL_ONE_MINUS_DST_ALPHA : (GLenum)GL_ZERO
};
// blend mode bit mask
// 0 - blend enable
// 1 - dst alpha enabled
// 2 - reverse subtract enable (else add)
// 3-5 - srcRGB function
// 6-8 - dstRGB function
u32 newval = useDualSource << 1;
newval |= bpmem.blendmode.subtract << 2;
if (bpmem.blendmode.subtract)
newval |= 0x0049; // enable blending src 1 dst 1
else if (bpmem.blendmode.blendenable)
{
newval |= 1; // enable blending
newval |= bpmem.blendmode.srcfactor << 3;
newval |= bpmem.blendmode.dstfactor << 6;
}
u32 changes = forceUpdate ? 0xFFFFFFFF : newval ^ s_blendMode;
if (changes & 1)
// blend enable change
(newval & 1) ? glEnable(GL_BLEND) : glDisable(GL_BLEND);
if (changes & 4)
{
// subtract enable change
GLenum equation = newval & 4 ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
GLenum equationAlpha = useDualSource ? GL_FUNC_ADD : equation;
glBlendEquationSeparate(equation, equationAlpha);
}
if (changes & 0x1FA)
{
u32 srcidx = (newval >> 3) & 7;
u32 dstidx = (newval >> 6) & 7;
GLenum srcFactor = glSrcFactors[srcidx];
GLenum dstFactor = glDestFactors[dstidx];
// adjust alpha factors
if (useDualSource)
{
srcidx = GX_BL_ONE;
dstidx = GX_BL_ZERO;
}
else
{
// we can't use GL_DST_COLOR or GL_ONE_MINUS_DST_COLOR for source in alpha channel so use their alpha equivalent instead
if (srcidx == GX_BL_DSTCLR) srcidx = GX_BL_DSTALPHA;
if (srcidx == GX_BL_INVDSTCLR) srcidx = GX_BL_INVDSTALPHA;
// we can't use GL_SRC_COLOR or GL_ONE_MINUS_SRC_COLOR for destination in alpha channel so use their alpha equivalent instead
if (dstidx == GX_BL_SRCCLR) dstidx = GX_BL_SRCALPHA;
if (dstidx == GX_BL_INVSRCCLR) dstidx = GX_BL_INVSRCALPHA;
}
GLenum srcFactorAlpha = glSrcFactors[srcidx];
GLenum dstFactorAlpha = glDestFactors[dstidx];
// blend RGB change
glBlendFuncSeparate(srcFactor, dstFactor, srcFactorAlpha, dstFactorAlpha);
}
s_blendMode = newval;
}
void DumpFrame(const std::vector<u8>& data, int w, int h)
{
#if defined(HAVE_LIBAV) || defined(_WIN32)
if (g_ActiveConfig.bDumpFrames && !data.empty())
{
AVIDump::AddFrame(&data[0], w, h);
}
#endif
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma)
{
static int w = 0, h = 0;
if (g_bSkipCurrentFrame || (!XFBWrited && !g_ActiveConfig.RealXFBEnabled()) || !fbWidth || !fbHeight)
{
DumpFrame(frame_data, w, h);
Core::Callback_VideoCopiedToXFB(false);
return;
}
if (field == FIELD_LOWER) xfbAddr -= fbWidth * 2;
u32 xfbCount = 0;
const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount);
if (g_ActiveConfig.VirtualXFBEnabled() && (!xfbSourceList || xfbCount == 0))
{
DumpFrame(frame_data, w, h);
Core::Callback_VideoCopiedToXFB(false);
return;
}
ResetAPIState();
PostProcessing::Update(s_backbuffer_width, s_backbuffer_height);
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
TargetRectangle flipped_trc = GetTargetRectangle();
// Flip top and bottom for some reason; TODO: Fix the code to suck less?
int tmp = flipped_trc.top;
flipped_trc.top = flipped_trc.bottom;
flipped_trc.bottom = tmp;
GL_REPORT_ERRORD();
// Copy the framebuffer to screen.
const XFBSourceBase* xfbSource = NULL;
if(g_ActiveConfig.bUseXFB)
{
// Render to the real/postprocessing buffer now.
PostProcessing::BindTargetFramebuffer();
// draw each xfb source
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetXFBFramebuffer());
for (u32 i = 0; i < xfbCount; ++i)
{
xfbSource = xfbSourceList[i];
MathUtil::Rectangle<float> drawRc;
if (g_ActiveConfig.bUseRealXFB)
{
drawRc.top = flipped_trc.top;
drawRc.bottom = flipped_trc.bottom;
drawRc.left = flipped_trc.left;
drawRc.right = flipped_trc.right;
}
else
{
// use virtual xfb with offset
int xfbHeight = xfbSource->srcHeight;
int xfbWidth = xfbSource->srcWidth;
int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2);
drawRc.top = flipped_trc.top - hOffset * flipped_trc.GetHeight() / fbHeight;
drawRc.bottom = flipped_trc.top - (hOffset + xfbHeight) * flipped_trc.GetHeight() / fbHeight;
drawRc.left = flipped_trc.left + (flipped_trc.GetWidth() - xfbWidth * flipped_trc.GetWidth() / fbWidth)/2;
drawRc.right = flipped_trc.left + (flipped_trc.GetWidth() + xfbWidth * flipped_trc.GetWidth() / fbWidth)/2;
// The following code disables auto stretch. Kept for reference.
// scale draw area for a 1 to 1 pixel mapping with the draw target
//float vScale = (float)fbHeight / (float)flipped_trc.GetHeight();
//float hScale = (float)fbWidth / (float)flipped_trc.GetWidth();
//drawRc.top *= vScale;
//drawRc.bottom *= vScale;
//drawRc.left *= hScale;
//drawRc.right *= hScale;
}
// Tell the OSD Menu about the current internal resolution
OSDInternalW = xfbSource->sourceRc.GetWidth(); OSDInternalH = xfbSource->sourceRc.GetHeight();
MathUtil::Rectangle<float> sourceRc;
sourceRc.left = xfbSource->sourceRc.left;
sourceRc.right = xfbSource->sourceRc.right;
sourceRc.top = xfbSource->sourceRc.top;
sourceRc.bottom = xfbSource->sourceRc.bottom;
xfbSource->Draw(sourceRc, drawRc, 0, 0);
}
}
else
{
TargetRectangle targetRc = ConvertEFBRectangle(rc);
// for msaa mode, we must resolve the efb content to non-msaa
FramebufferManager::ResolveAndGetRenderTarget(rc);
// Render to the real/postprocessing buffer now. (resolve have changed this in msaa mode)
PostProcessing::BindTargetFramebuffer();
// always the non-msaa fbo
GLuint fb = s_MSAASamples>1?FramebufferManager::GetResolvedFramebuffer():FramebufferManager::GetEFBFramebuffer();
glBindFramebuffer(GL_READ_FRAMEBUFFER, fb);
glBlitFramebuffer(targetRc.left, targetRc.bottom, targetRc.right, targetRc.top,
flipped_trc.left, flipped_trc.bottom, flipped_trc.right, flipped_trc.top,
GL_COLOR_BUFFER_BIT, GL_LINEAR);
}
PostProcessing::BlitToScreen();
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
// Save screenshot
if (s_bScreenshot)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
SaveScreenshot(s_sScreenshotName, flipped_trc);
// Reset settings
s_sScreenshotName.clear();
s_bScreenshot = false;
}
// Frame dumps are handled a little differently in Windows
// Frame dumping disabled entirely on GLES3
#ifndef USE_GLES3
#if defined _WIN32 || defined HAVE_LIBAV
if (g_ActiveConfig.bDumpFrames)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
if (frame_data.empty() || w != flipped_trc.GetWidth() ||
h != flipped_trc.GetHeight())
{
w = flipped_trc.GetWidth();
h = flipped_trc.GetHeight();
frame_data.resize(3 * w * h);
}
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(flipped_trc.left, flipped_trc.bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, &frame_data[0]);
if (GL_REPORT_ERROR() == GL_NO_ERROR && w > 0 && h > 0)
{
if (!bLastFrameDumped)
{
#ifdef _WIN32
bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), w, h);
#else
bAVIDumping = AVIDump::Start(w, h);
#endif
if (!bAVIDumping)
OSD::AddMessage("AVIDump Start failed", 2000);
else
{
OSD::AddMessage(StringFromFormat(
"Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)",
File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), w, h).c_str(), 2000);
}
}
if (bAVIDumping)
{
#ifndef _WIN32
FlipImageData(&frame_data[0], w, h);
#endif
AVIDump::AddFrame(&frame_data[0], w, h);
}
bLastFrameDumped = true;
}
else
NOTICE_LOG(VIDEO, "Error reading framebuffer");
}
else
{
if (bLastFrameDumped && bAVIDumping)
{
std::vector<u8>().swap(frame_data);
w = h = 0;
AVIDump::Stop();
bAVIDumping = false;
OSD::AddMessage("Stop dumping frames", 2000);
}
bLastFrameDumped = false;
}
#else
if (g_ActiveConfig.bDumpFrames)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
std::string movie_file_name;
w = GetTargetRectangle().GetWidth();
h = GetTargetRectangle().GetHeight();
frame_data.resize(3 * w * h);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(GetTargetRectangle().left, GetTargetRectangle().bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, &frame_data[0]);
if (GL_REPORT_ERROR() == GL_NO_ERROR)
{
if (!bLastFrameDumped)
{
movie_file_name = File::GetUserPath(D_DUMPFRAMES_IDX) + "framedump.raw";
pFrameDump.Open(movie_file_name, "wb");
if (!pFrameDump)
OSD::AddMessage("Error opening framedump.raw for writing.", 2000);
else
{
OSD::AddMessage(StringFromFormat("Dumping Frames to \"%s\" (%dx%d RGB24)", movie_file_name.c_str(), w, h).c_str(), 2000);
}
}
if (pFrameDump)
{
FlipImageData(&frame_data[0], w, h);
pFrameDump.WriteBytes(&frame_data[0], w * 3 * h);
pFrameDump.Flush();
}
bLastFrameDumped = true;
}
}
else
{
if (bLastFrameDumped)
pFrameDump.Close();
bLastFrameDumped = false;
}
#endif
#endif
// Finish up the current frame, print some stats
SetWindowSize(fbWidth, fbHeight);
GLInterface->Update(); // just updates the render window position and the backbuffer size
bool xfbchanged = false;
if (FramebufferManagerBase::LastXfbWidth() != fbWidth || FramebufferManagerBase::LastXfbHeight() != fbHeight)
{
xfbchanged = true;
unsigned int const last_w = (fbWidth < 1 || fbWidth > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbWidth;
unsigned int const last_h = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight;
FramebufferManagerBase::SetLastXfbWidth(last_w);
FramebufferManagerBase::SetLastXfbHeight(last_h);
}
bool WindowResized = false;
int W = (int)GLInterface->GetBackBufferWidth();
int H = (int)GLInterface->GetBackBufferHeight();
if (W != s_backbuffer_width || H != s_backbuffer_height || s_LastEFBScale != g_ActiveConfig.iEFBScale)
{
WindowResized = true;
s_backbuffer_width = W;
s_backbuffer_height = H;
s_LastEFBScale = g_ActiveConfig.iEFBScale;
}
if (xfbchanged || WindowResized || (s_LastMultisampleMode != g_ActiveConfig.iMultisampleMode))
{
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
if (CalculateTargetSize(s_backbuffer_width, s_backbuffer_height) || s_LastMultisampleMode != g_ActiveConfig.iMultisampleMode)
{
s_LastMultisampleMode = g_ActiveConfig.iMultisampleMode;
s_MSAASamples = GetNumMSAASamples(s_LastMultisampleMode);
s_MSAACoverageSamples = GetNumMSAACoverageSamples(s_LastMultisampleMode);
ApplySSAASettings();
delete g_framebuffer_manager;
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
}
}
if (XFBWrited)
s_fps = UpdateFPSCounter();
// ---------------------------------------------------------------------
GL_REPORT_ERRORD();
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
DrawDebugInfo();
DrawDebugText();
GL_REPORT_ERRORD();
// Do our OSD callbacks
OSD::DoCallbacks(OSD::OSD_ONFRAME);
OSD::DrawMessages();
GL_REPORT_ERRORD();
// Copy the rendered frame to the real window
GLInterface->Swap();
GL_REPORT_ERRORD();
// Clear framebuffer
if(!g_ActiveConfig.bAnaglyphStereo)
{
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
}
GL_REPORT_ERRORD();
if(s_vsync != g_ActiveConfig.IsVSync())
{
s_vsync = g_ActiveConfig.IsVSync();
GLInterface->SwapInterval(s_vsync);
}
// Clean out old stuff from caches. It's not worth it to clean out the shader caches.
DLCache::ProgressiveCleanup();
TextureCache::Cleanup();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
// Render to the framebuffer.
FramebufferManager::SetFramebuffer(0);
GL_REPORT_ERRORD();
RestoreAPIState();
GL_REPORT_ERRORD();
g_Config.iSaveTargetId = 0;
UpdateActiveConfig();
TextureCache::OnConfigChanged(g_ActiveConfig);
// For testing zbuffer targets.
// Renderer::SetZBufferRender();
// SaveTexture("tex.tga", GL_TEXTURE_2D, s_FakeZTarget,
// GetTargetWidth(), GetTargetHeight());
Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
// Invalidate EFB cache
ClearEFBCache();
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
// Gets us to a reasonably sane state where it's possible to do things like
// image copies with textured quads, etc.
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthMask(GL_FALSE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
void Renderer::RestoreAPIState()
{
// Gets us back into a more game-like state.
glEnable(GL_SCISSOR_TEST);
SetGenerationMode();
BPFunctions::SetScissor();
SetColorMask();
SetDepthMode();
SetBlendMode(true);
VertexShaderManager::SetViewportChanged();
#ifndef USE_GLES3
glPolygonMode(GL_FRONT_AND_BACK, g_ActiveConfig.bWireFrame ? GL_LINE : GL_FILL);
#endif
VertexManager *vm = (OGL::VertexManager*)g_vertex_manager;
glBindBuffer(GL_ARRAY_BUFFER, vm->m_vertex_buffers);
vm->m_last_vao = 0;
TextureCache::SetStage();
}
void Renderer::SetGenerationMode()
{
// none, ccw, cw, ccw
if (bpmem.genMode.cullmode > 0)
{
glEnable(GL_CULL_FACE);
glFrontFace(bpmem.genMode.cullmode == 2 ? GL_CCW : GL_CW);
}
else
glDisable(GL_CULL_FACE);
}
void Renderer::SetDepthMode()
{
const GLenum glCmpFuncs[8] =
{
GL_NEVER,
GL_LESS,
GL_EQUAL,
GL_LEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_GEQUAL,
GL_ALWAYS
};
if (bpmem.zmode.testenable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(bpmem.zmode.updateenable ? GL_TRUE : GL_FALSE);
glDepthFunc(glCmpFuncs[bpmem.zmode.func]);
}
else
{
// if the test is disabled write is disabled too
// TODO: When PE performance metrics are being emulated via occlusion queries, we should (probably?) enable depth test with depth function ALWAYS here
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
}
}
void Renderer::SetLogicOpMode()
{
// Logic ops aren't available in GLES3/GLES2
#ifndef USE_GLES3
const GLenum glLogicOpCodes[16] =
{
GL_CLEAR,
GL_AND,
GL_AND_REVERSE,
GL_COPY,
GL_AND_INVERTED,
GL_NOOP,
GL_XOR,
GL_OR,
GL_NOR,
GL_EQUIV,
GL_INVERT,
GL_OR_REVERSE,
GL_COPY_INVERTED,
GL_OR_INVERTED,
GL_NAND,
GL_SET
};
if (bpmem.blendmode.logicopenable)
{
glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(glLogicOpCodes[bpmem.blendmode.logicmode]);
}
else
{
glDisable(GL_COLOR_LOGIC_OP);
}
#endif
}
void Renderer::SetDitherMode()
{
if (bpmem.blendmode.dither)
glEnable(GL_DITHER);
else
glDisable(GL_DITHER);
}
void Renderer::SetLineWidth()
{
float fratio = xfregs.viewport.wd != 0 ?
((float)Renderer::GetTargetWidth() / EFB_WIDTH) : 1.0f;
if (bpmem.lineptwidth.linesize > 0)
// scale by ratio of widths
glLineWidth((float)bpmem.lineptwidth.linesize * fratio / 6.0f);
#ifndef USE_GLES3
if (bpmem.lineptwidth.pointsize > 0)
glPointSize((float)bpmem.lineptwidth.pointsize * fratio / 6.0f);
#endif
}
void Renderer::SetSamplerState(int stage, int texindex)
{
auto const& tex = bpmem.tex[texindex];
auto const& tm0 = tex.texMode0[stage];
auto const& tm1 = tex.texMode1[stage];
g_sampler_cache->SetSamplerState((texindex * 4) + stage, tm0, tm1);
}
void Renderer::SetInterlacingMode()
{
// TODO
}
void Renderer::FlipImageData(u8 *data, int w, int h)
{
// Flip image upside down. Damn OpenGL.
for (int y = 0; y < h / 2; y++)
{
for(int x = 0; x < w; x++)
{
std::swap(data[(y * w + x) * 3], data[((h - 1 - y) * w + x) * 3]);
std::swap(data[(y * w + x) * 3 + 1], data[((h - 1 - y) * w + x) * 3 + 1]);
std::swap(data[(y * w + x) * 3 + 2], data[((h - 1 - y) * w + x) * 3 + 2]);
}
}
}
}
// TODO: remove
extern bool g_aspect_wide;
#if defined(HAVE_WX) && HAVE_WX
void TakeScreenshot(ScrStrct* threadStruct)
{
// These will contain the final image size
float FloatW = (float)threadStruct->W;
float FloatH = (float)threadStruct->H;
// Handle aspect ratio for the final ScrStrct to look exactly like what's on screen.
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
bool use16_9 = g_aspect_wide;
// Check for force-settings and override.
if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9)
use16_9 = true;
else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3)
use16_9 = false;
float Ratio = (FloatW / FloatH) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f));
// If ratio > 1 the picture is too wide and we have to limit the width.
if (Ratio > 1)
FloatW /= Ratio;
// ratio == 1 or the image is too high, we have to limit the height.
else
FloatH *= Ratio;
// This is a bit expensive on high resolutions
threadStruct->img->Rescale((int)FloatW, (int)FloatH, wxIMAGE_QUALITY_HIGH);
}
// Save the screenshot and finally kill the wxImage object
// This is really expensive when saving to PNG, but not at all when using BMP
threadStruct->img->SaveFile(StrToWxStr(threadStruct->filename),
wxBITMAP_TYPE_PNG);
threadStruct->img->Destroy();
// Show success messages
OSD::AddMessage(StringFromFormat("Saved %i x %i %s", (int)FloatW, (int)FloatH,
threadStruct->filename.c_str()), 2000);
delete threadStruct;
}
#endif
namespace OGL
{
bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &back_rc)
{
u32 W = back_rc.GetWidth();
u32 H = back_rc.GetHeight();
u8 *data = (u8 *)malloc((sizeof(u8) * 3 * W * H));
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(back_rc.left, back_rc.bottom, W, H, GL_RGB, GL_UNSIGNED_BYTE, data);
// Show failure message
if (GL_REPORT_ERROR() != GL_NO_ERROR)
{
free(data);
OSD::AddMessage("Error capturing or saving screenshot.", 2000);
return false;
}
// Turn image upside down
FlipImageData(data, W, H);
#if defined(HAVE_WX) && HAVE_WX
// Create wxImage
wxImage *a = new wxImage(W, H, data);
if (scrshotThread.joinable())
scrshotThread.join();
ScrStrct *threadStruct = new ScrStrct;
threadStruct->filename = filename;
threadStruct->img = a;
threadStruct->H = H; threadStruct->W = W;
scrshotThread = std::thread(TakeScreenshot, threadStruct);
#ifdef _WIN32
SetThreadPriority(scrshotThread.native_handle(), THREAD_PRIORITY_BELOW_NORMAL);
#endif
bool result = true;
OSD::AddMessage("Saving Screenshot... ", 2000);
#else
bool result = SaveTGA(filename.c_str(), W, H, data);
free(data);
#endif
return result;
}
}