1512 lines
41 KiB
C++
1512 lines
41 KiB
C++
// Copyright (C) 2003-2008 Dolphin Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official SVN repository and contact information can be found at
|
|
// http://code.google.com/p/dolphin-emu/
|
|
#include "Common.h"
|
|
#include "x64Emitter.h"
|
|
#include "ABI.h"
|
|
#include "CPUDetect.h"
|
|
|
|
namespace Gen
|
|
{
|
|
static u8 *code;
|
|
static bool enableBranchHints = false;
|
|
|
|
void SetCodePtr(u8 *ptr)
|
|
{
|
|
code = ptr;
|
|
}
|
|
|
|
const u8 *GetCodePtr()
|
|
{
|
|
return code;
|
|
}
|
|
|
|
u8 *GetWritableCodePtr()
|
|
{
|
|
return code;
|
|
}
|
|
|
|
void ReserveCodeSpace(int bytes)
|
|
{
|
|
for (int i = 0; i < bytes; i++)
|
|
*code++ = 0xCC;
|
|
}
|
|
|
|
const u8 *AlignCode4()
|
|
{
|
|
int c = int((u64)code & 3);
|
|
if (c)
|
|
ReserveCodeSpace(4-c);
|
|
return code;
|
|
}
|
|
|
|
const u8 *AlignCode16()
|
|
{
|
|
int c = int((u64)code & 15);
|
|
if (c)
|
|
ReserveCodeSpace(16-c);
|
|
return code;
|
|
}
|
|
|
|
const u8 *AlignCodePage()
|
|
{
|
|
int c = int((u64)code & 4095);
|
|
if (c)
|
|
ReserveCodeSpace(4096-c);
|
|
return code;
|
|
}
|
|
|
|
inline void Write8(u8 value)
|
|
{
|
|
*code++ = value;
|
|
}
|
|
|
|
inline void Write16(u16 value)
|
|
{
|
|
*(u16*)code = value;
|
|
code += 2;
|
|
}
|
|
|
|
inline void Write32(u32 value)
|
|
{
|
|
*(u32*)code = value;
|
|
code += 4;
|
|
}
|
|
|
|
inline void Write64(u64 value)
|
|
{
|
|
*(u64*)code = value;
|
|
code += 8;
|
|
}
|
|
|
|
void WriteModRM( int mod, int rm, int reg )
|
|
{
|
|
Write8((u8)((mod << 6) | ((rm & 7) << 3) | (reg & 7)));
|
|
}
|
|
|
|
void WriteSIB(int scale, int index, int base)
|
|
{
|
|
Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
|
|
}
|
|
|
|
void OpArg::WriteRex(bool op64, int customOp) const
|
|
{
|
|
#ifdef _M_X64
|
|
u8 op = 0x40;
|
|
if (customOp == -1) customOp = operandReg;
|
|
if (op64) op |= 8;
|
|
if (customOp >> 3) op |= 4;
|
|
if (indexReg >> 3) op |= 2;
|
|
if (offsetOrBaseReg >> 3) op |= 1; //TODO investigate if this is dangerous
|
|
if (op != 0x40)
|
|
Write8(op);
|
|
#else
|
|
_dbg_assert_(DYNA_REC, (operandReg >> 3) == 0);
|
|
_dbg_assert_(DYNA_REC, (indexReg >> 3) == 0);
|
|
_dbg_assert_(DYNA_REC, (offsetOrBaseReg >> 3) == 0);
|
|
#endif
|
|
}
|
|
|
|
void OpArg::WriteRest(int extraBytes, X64Reg _operandReg) const
|
|
{
|
|
if (_operandReg == 0xff)
|
|
_operandReg = (X64Reg)this->operandReg;
|
|
int mod = 0;
|
|
int ireg = indexReg;
|
|
bool SIB = false;
|
|
int _offsetOrBaseReg = this->offsetOrBaseReg;
|
|
|
|
if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
|
|
{
|
|
// Oh, RIP addressing.
|
|
_offsetOrBaseReg = 5;
|
|
WriteModRM(0, _operandReg&7, 5);
|
|
//TODO : add some checks
|
|
#ifdef _M_X64
|
|
u64 ripAddr = (u64)code + 4 + extraBytes;
|
|
s32 offs = (s32)((s64)offset - (s64)ripAddr);
|
|
Write32((u32)offs);
|
|
#else
|
|
Write32((u32)offset);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if (scale == 0)
|
|
{
|
|
// Oh, no memory, Just a reg.
|
|
mod = 3; //11
|
|
}
|
|
else if (scale >= 1)
|
|
{
|
|
//Ah good, no scaling.
|
|
if (scale == SCALE_ATREG && !((_offsetOrBaseReg&7) == 4 || (_offsetOrBaseReg&7) == 5))
|
|
{
|
|
//Okay, we're good. No SIB necessary.
|
|
int ioff = (int)offset;
|
|
if (ioff == 0)
|
|
{
|
|
mod = 0;
|
|
}
|
|
else if (ioff<-128 || ioff>127)
|
|
{
|
|
mod = 2; //32-bit displacement
|
|
}
|
|
else
|
|
{
|
|
mod = 1; //8-bit displacement
|
|
}
|
|
}
|
|
else //if (scale != SCALE_ATREG)
|
|
{
|
|
if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
|
|
{
|
|
//So we have to fake it with SIB encoding :(
|
|
SIB = true;
|
|
}
|
|
|
|
if (scale >= SCALE_1 && scale < SCALE_ATREG)
|
|
{
|
|
SIB = true;
|
|
}
|
|
|
|
if (scale == SCALE_ATREG && _offsetOrBaseReg == 4)
|
|
{
|
|
SIB = true;
|
|
ireg = 4;
|
|
}
|
|
|
|
//Okay, we're fine. Just disp encoding.
|
|
//We need displacement. Which size?
|
|
int ioff = (int)(s64)offset;
|
|
if (ioff < -128 || ioff > 127)
|
|
{
|
|
mod = 2; //32-bit displacement
|
|
}
|
|
else
|
|
{
|
|
mod = 1; //8-bit displacement
|
|
}
|
|
}
|
|
}
|
|
|
|
// Okay. Time to do the actual writing
|
|
// ModRM byte:
|
|
int oreg = _offsetOrBaseReg;
|
|
if (SIB)
|
|
oreg = 4;
|
|
|
|
// TODO(ector): WTF is this if about? I don't remember writing it :-)
|
|
//if (RIP)
|
|
// oreg = 5;
|
|
|
|
WriteModRM(mod, _operandReg&7, oreg&7);
|
|
|
|
if (SIB)
|
|
{
|
|
//SIB byte
|
|
int ss;
|
|
switch (scale)
|
|
{
|
|
case 0: _offsetOrBaseReg = 4; ss = 0; break; //RSP
|
|
case 1: ss = 0; break;
|
|
case 2: ss = 1; break;
|
|
case 4: ss = 2; break;
|
|
case 8: ss = 3; break;
|
|
case SCALE_ATREG: ss = 0; break;
|
|
default: _assert_msg_(DYNA_REC, 0, "Invalid scale for SIB byte"); ss = 0; break;
|
|
}
|
|
Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7)));
|
|
}
|
|
|
|
if (mod == 1) //8-bit disp
|
|
{
|
|
Write8((u8)(s8)(s32)offset);
|
|
}
|
|
else if (mod == 2) //32-bit disp
|
|
{
|
|
Write32((u32)offset);
|
|
}
|
|
}
|
|
|
|
|
|
// W = operand extended width (1 if 64-bit)
|
|
// R = register# upper bit
|
|
// X = scale amnt upper bit
|
|
// B = base register# upper bit
|
|
void Rex(int w, int r, int x, int b)
|
|
{
|
|
w = w ? 1 : 0;
|
|
r = r ? 1 : 0;
|
|
x = x ? 1 : 0;
|
|
b = b ? 1 : 0;
|
|
u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
|
|
if (rx != 0x40)
|
|
Write8(rx);
|
|
}
|
|
|
|
void JMP(const u8 *addr, bool force5Bytes)
|
|
{
|
|
u64 fn = (u64)addr;
|
|
if (!force5Bytes)
|
|
{
|
|
s32 distance = (s32)(fn - ((u64)code + 2)); //TODO - sanity check
|
|
//8 bits will do
|
|
Write8(0xEB);
|
|
Write8((u8)(s8)distance);
|
|
}
|
|
else
|
|
{
|
|
s32 distance = (s32)(fn - ((u64)code + 5)); //TODO - sanity check
|
|
Write8(0xE9);
|
|
Write32((u32)(s32)distance);
|
|
}
|
|
}
|
|
|
|
void JMPptr(const OpArg &arg2)
|
|
{
|
|
OpArg arg = arg2;
|
|
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "JMPptr - Imm argument");
|
|
arg.operandReg = 4;
|
|
arg.WriteRex(false);
|
|
Write8(0xFF);
|
|
arg.WriteRest();
|
|
}
|
|
|
|
//Can be used to trap other processors, before overwriting their code
|
|
// not used in dolphin
|
|
void JMPself()
|
|
{
|
|
Write8(0xEB);
|
|
Write8(0xFE);
|
|
}
|
|
|
|
void CALLptr(OpArg arg)
|
|
{
|
|
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "CALLptr - Imm argument");
|
|
arg.operandReg = 2;
|
|
arg.WriteRex(false);
|
|
Write8(0xFF);
|
|
arg.WriteRest();
|
|
}
|
|
|
|
void CALL(void *fnptr)
|
|
{
|
|
u64 distance = u64(fnptr) - (u64(code) + 5);
|
|
if (distance >= 0x0000000080000000ULL
|
|
&& distance < 0xFFFFFFFF80000000ULL) {
|
|
PanicAlert("CALL out of range (%p calls %p)", code, fnptr);
|
|
}
|
|
Write8(0xE8);
|
|
Write32(u32(distance));
|
|
}
|
|
|
|
FixupBranch J(bool force5bytes)
|
|
{
|
|
FixupBranch branch;
|
|
branch.type = force5bytes ? 1 : 0;
|
|
branch.ptr = code + (force5bytes ? 5 : 2);
|
|
if (!force5bytes)
|
|
{
|
|
//8 bits will do
|
|
Write8(0xEB);
|
|
Write8(0);
|
|
}
|
|
else
|
|
{
|
|
Write8(0xE9);
|
|
Write32(0);
|
|
}
|
|
return branch;
|
|
}
|
|
|
|
// These are to be used with Jcc only.
|
|
// Found in intel manual 2A
|
|
// These do not really make a difference for any current X86 CPU,
|
|
// but are provided here for future use
|
|
void HINT_NOT_TAKEN() { if (enableBranchHints) Write8(0x2E); }
|
|
void HINT_TAKEN() { if (enableBranchHints) Write8(0x3E); }
|
|
|
|
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes)
|
|
{
|
|
FixupBranch branch;
|
|
branch.type = force5bytes ? 1 : 0;
|
|
branch.ptr = code + (force5bytes ? 5 : 2);
|
|
if (!force5bytes)
|
|
{
|
|
//8 bits will do
|
|
Write8(0x70 + conditionCode);
|
|
Write8(0);
|
|
}
|
|
else
|
|
{
|
|
Write8(0x0F);
|
|
Write8(0x80 + conditionCode);
|
|
Write32(0);
|
|
}
|
|
return branch;
|
|
}
|
|
|
|
void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes)
|
|
{
|
|
u64 fn = (u64)addr;
|
|
if (!force5Bytes)
|
|
{
|
|
s32 distance = (s32)(fn - ((u64)code + 2)); //TODO - sanity check
|
|
//8 bits will do
|
|
Write8(0x70 + conditionCode);
|
|
Write8((u8)(s8)distance);
|
|
}
|
|
else
|
|
{
|
|
s32 distance = (s32)(fn - ((u64)code + 6)); //TODO - sanity check
|
|
Write8(0x0F);
|
|
Write8(0x80 + conditionCode);
|
|
Write32((u32)(s32)distance);
|
|
}
|
|
}
|
|
|
|
void SetJumpTarget(const FixupBranch &branch)
|
|
{
|
|
if (branch.type == 0)
|
|
{
|
|
branch.ptr[-1] = (u8)(s8)(code - branch.ptr);
|
|
}
|
|
else if (branch.type == 1)
|
|
{
|
|
((s32*)branch.ptr)[-1] = (s32)(code - branch.ptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
void INC(int bits, OpArg arg)
|
|
{
|
|
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "INC - Imm argument");
|
|
arg.operandReg = 0;
|
|
if (bits == 16) {Write8(0x66);}
|
|
arg.WriteRex(bits == 64);
|
|
Write8(bits == 8 ? 0xFE : 0xFF);
|
|
arg.WriteRest();
|
|
}
|
|
void DEC(int bits, OpArg arg)
|
|
{
|
|
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "DEC - Imm argument");
|
|
arg.operandReg = 1;
|
|
if (bits == 16) {Write8(0x66);}
|
|
arg.WriteRex(bits == 64);
|
|
Write8(bits == 8 ? 0xFE : 0xFF);
|
|
arg.WriteRest();
|
|
}
|
|
*/
|
|
|
|
//Single byte opcodes
|
|
//There is no PUSHAD/POPAD in 64-bit mode.
|
|
void INT3() {Write8(0xCC);}
|
|
void RET() {Write8(0xC3);}
|
|
void RET_FAST() {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
|
|
|
|
void NOP(int count)
|
|
{
|
|
// TODO: look up the fastest nop sleds for various sizes
|
|
int i;
|
|
switch (count) {
|
|
case 1:
|
|
Write8(0x90);
|
|
break;
|
|
case 2:
|
|
Write8(0x66);
|
|
Write8(0x90);
|
|
break;
|
|
default:
|
|
for (i = 0; i < count; i++) {
|
|
Write8(0x90);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu
|
|
void CLC() {Write8(0xF8);} //clear carry
|
|
void CMC() {Write8(0xF5);} //flip carry
|
|
void STC() {Write8(0xF9);} //set carry
|
|
|
|
//TODO: xchg ah, al ???
|
|
void XCHG_AHAL()
|
|
{
|
|
Write8(0x86);
|
|
Write8(0xe0);
|
|
// alt. 86 c4
|
|
}
|
|
|
|
//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
|
|
void LAHF() {Write8(0x9F);}
|
|
void SAHF() {Write8(0x9E);}
|
|
|
|
void PUSHF() {Write8(0x9C);}
|
|
void POPF() {Write8(0x9D);}
|
|
|
|
void LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
|
|
void MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
|
|
void SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
|
|
|
|
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
|
|
{
|
|
if (bits == 16) {Write8(0x66);}
|
|
Rex(bits == 64, 0, 0, (int)reg >> 3);
|
|
Write8(byte + ((int)reg & 7));
|
|
}
|
|
|
|
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
|
|
{
|
|
if (bits == 16) {Write8(0x66);}
|
|
Rex(bits==64, 0, 0, (int)reg >> 3);
|
|
Write8(byte1);
|
|
Write8(byte2 + ((int)reg & 7));
|
|
}
|
|
|
|
void CWD(int bits)
|
|
{
|
|
if (bits == 16) {Write8(0x66);}
|
|
Rex(bits == 64, 0, 0, 0);
|
|
Write8(0x99);
|
|
}
|
|
|
|
void CBW(int bits)
|
|
{
|
|
if (bits == 8) {Write8(0x66);}
|
|
Rex(bits == 32, 0, 0, 0);
|
|
Write8(0x98);
|
|
}
|
|
|
|
//Simple opcodes
|
|
|
|
|
|
//push/pop do not need wide to be 64-bit
|
|
void PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
|
|
void POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);}
|
|
|
|
void PUSH(int bits, const OpArg ®)
|
|
{
|
|
if (reg.IsSimpleReg())
|
|
PUSH(reg.GetSimpleReg());
|
|
else if (reg.IsImm())
|
|
{
|
|
switch (reg.GetImmBits())
|
|
{
|
|
case 8:
|
|
Write8(0x6A);
|
|
Write8((u8)(s8)reg.offset);
|
|
break;
|
|
case 16:
|
|
Write8(0x66);
|
|
Write8(0x68);
|
|
Write16((u16)(s16)(s32)reg.offset);
|
|
break;
|
|
case 32:
|
|
Write8(0x68);
|
|
Write32((u32)reg.offset);
|
|
break;
|
|
default:
|
|
_assert_msg_(DYNA_REC, 0, "PUSH - Bad imm bits");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//INT3();
|
|
if (bits == 16)
|
|
Write8(0x66);
|
|
reg.WriteRex(bits == 64);
|
|
Write8(0xFF);
|
|
reg.WriteRest(0,(X64Reg)6);
|
|
}
|
|
}
|
|
|
|
void POP(int /*bits*/, const OpArg ®)
|
|
{
|
|
if (reg.IsSimpleReg())
|
|
POP(reg.GetSimpleReg());
|
|
else
|
|
INT3();
|
|
}
|
|
|
|
void BSWAP(int bits, X64Reg reg)
|
|
{
|
|
if (bits >= 32)
|
|
{
|
|
WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
|
|
}
|
|
else if (bits == 16)
|
|
{
|
|
//fake 16-bit bswap, TODO replace with xchg ah, al where appropriate
|
|
WriteSimple2Byte(false, 0x0F, 0xC8, reg);
|
|
SHR(32, R(reg), Imm8(16));
|
|
}
|
|
else if (bits == 8)
|
|
{
|
|
|
|
}
|
|
else
|
|
{
|
|
_assert_msg_(DYNA_REC, 0, "BSWAP - Wrong number of bits");
|
|
}
|
|
}
|
|
|
|
// Undefined opcode - reserved
|
|
// If we ever need a way to always cause a non-breakpoint hard exception...
|
|
void UD2()
|
|
{
|
|
Write8(0x0F);
|
|
Write8(0x0B);
|
|
}
|
|
|
|
void PREFETCH(PrefetchLevel level, OpArg arg)
|
|
{
|
|
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "PREFETCH - Imm argument");;
|
|
arg.operandReg = (u8)level;
|
|
arg.WriteRex(false);
|
|
Write8(0x0F);
|
|
Write8(0x18);
|
|
arg.WriteRest();
|
|
}
|
|
|
|
void SETcc(CCFlags flag, OpArg dest)
|
|
{
|
|
if (dest.IsImm()) _assert_msg_(DYNA_REC, 0, "SETcc - Imm argument");
|
|
dest.operandReg = 0;
|
|
dest.WriteRex(false);
|
|
Write8(0x0F);
|
|
Write8(0x90 + (u8)flag);
|
|
dest.WriteRest();
|
|
}
|
|
|
|
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
|
|
{
|
|
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "CMOVcc - Imm argument");
|
|
src.operandReg = dest;
|
|
src.WriteRex(bits == 64);
|
|
Write8(0x0F);
|
|
Write8(0x40 + (u8)flag);
|
|
src.WriteRest();
|
|
}
|
|
|
|
void WriteMulDivType(int bits, OpArg src, int ext)
|
|
{
|
|
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteMulDivType - Imm argument");
|
|
src.operandReg = ext;
|
|
if (bits == 16) Write8(0x66);
|
|
src.WriteRex(bits == 64);
|
|
if (bits == 8)
|
|
{
|
|
Write8(0xF6);
|
|
}
|
|
else
|
|
{
|
|
Write8(0xF7);
|
|
}
|
|
src.WriteRest();
|
|
}
|
|
|
|
void MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);}
|
|
void DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);}
|
|
void IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);}
|
|
void IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);}
|
|
void NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);}
|
|
void NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);}
|
|
|
|
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2)
|
|
{
|
|
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteBitSearchType - Imm argument");
|
|
src.operandReg = (u8)dest;
|
|
if (bits == 16) Write8(0x66);
|
|
src.WriteRex(bits == 64);
|
|
Write8(0x0F);
|
|
Write8(byte2);
|
|
src.WriteRest();
|
|
}
|
|
|
|
void MOVNTI(int bits, OpArg dest, X64Reg src)
|
|
{
|
|
if (bits <= 16) _assert_msg_(DYNA_REC, 0, "MOVNTI - bits<=16");
|
|
WriteBitSearchType(bits, src, dest, 0xC3);
|
|
}
|
|
|
|
void BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit
|
|
void BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit
|
|
|
|
void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
|
|
{
|
|
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVSX - Imm argument");
|
|
if (dbits == sbits) {
|
|
MOV(dbits, R(dest), src);
|
|
return;
|
|
}
|
|
src.operandReg = (u8)dest;
|
|
if (dbits == 16) Write8(0x66);
|
|
src.WriteRex(dbits == 64);
|
|
if (sbits == 8)
|
|
{
|
|
Write8(0x0F);
|
|
Write8(0xBE);
|
|
}
|
|
else if (sbits == 16)
|
|
{
|
|
Write8(0x0F);
|
|
Write8(0xBF);
|
|
}
|
|
else if (sbits == 32 && dbits == 64)
|
|
{
|
|
Write8(0x63);
|
|
}
|
|
else
|
|
{
|
|
Crash();
|
|
}
|
|
src.WriteRest();
|
|
}
|
|
|
|
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
|
|
{
|
|
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVZX - Imm argument");
|
|
if (dbits == sbits) {
|
|
MOV(dbits, R(dest), src);
|
|
return;
|
|
}
|
|
src.operandReg = (u8)dest;
|
|
if (dbits == 16) Write8(0x66);
|
|
src.WriteRex(dbits == 64);
|
|
if (sbits == 8)
|
|
{
|
|
Write8(0x0F);
|
|
Write8(0xB6);
|
|
}
|
|
else if (sbits == 16)
|
|
{
|
|
Write8(0x0F);
|
|
Write8(0xB7);
|
|
}
|
|
else
|
|
{
|
|
Crash();
|
|
}
|
|
src.WriteRest();
|
|
}
|
|
|
|
|
|
void LEA(int bits, X64Reg dest, OpArg src)
|
|
{
|
|
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "LEA - Imm argument");
|
|
src.operandReg = (u8)dest;
|
|
if (bits == 16) Write8(0x66); //TODO: performance warning
|
|
src.WriteRex(bits == 64);
|
|
Write8(0x8D);
|
|
src.WriteRest();
|
|
}
|
|
|
|
//shift can be either imm8 or cl
|
|
void WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
|
|
{
|
|
bool writeImm = false;
|
|
if (dest.IsImm())
|
|
{
|
|
_assert_msg_(DYNA_REC, 0, "WriteShift - can't shift imms");
|
|
}
|
|
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
|
|
{
|
|
_assert_msg_(DYNA_REC, 0, "WriteShift - illegal argument");
|
|
}
|
|
dest.operandReg = ext;
|
|
if (bits == 16) Write8(0x66);
|
|
dest.WriteRex(bits == 64);
|
|
if (shift.GetImmBits() == 8)
|
|
{
|
|
//ok an imm
|
|
u8 imm = (u8)shift.offset;
|
|
if (imm == 1)
|
|
{
|
|
Write8(bits == 8 ? 0xD0 : 0xD1);
|
|
}
|
|
else
|
|
{
|
|
writeImm = true;
|
|
Write8(bits == 8 ? 0xC0 : 0xC1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Write8(bits == 8 ? 0xD2 : 0xD3);
|
|
}
|
|
dest.WriteRest(writeImm ? 1 : 0);
|
|
if (writeImm)
|
|
Write8((u8)shift.offset);
|
|
}
|
|
|
|
// large rotates and shift are slower on intel than amd
|
|
// intel likes to rotate by 1, and the op is smaller too
|
|
void ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);}
|
|
void ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);}
|
|
void RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);}
|
|
void RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);}
|
|
void SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);}
|
|
void SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);}
|
|
void SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);}
|
|
|
|
void OpArg::WriteSingleByteOp(u8 op, X64Reg _operandReg, int bits)
|
|
{
|
|
if (bits == 16)
|
|
Write8(0x66);
|
|
|
|
this->operandReg = (u8)_operandReg;
|
|
WriteRex(bits == 64);
|
|
Write8(op);
|
|
WriteRest();
|
|
}
|
|
|
|
//todo : add eax special casing
|
|
struct NormalOpDef
|
|
{
|
|
u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, ext;
|
|
};
|
|
|
|
const NormalOpDef nops[11] =
|
|
{
|
|
{0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0}, //ADD
|
|
{0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 2}, //ADC
|
|
|
|
{0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 5}, //SUB
|
|
{0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 3}, //SBB
|
|
|
|
{0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 4}, //AND
|
|
{0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 1}, //OR
|
|
|
|
{0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 6}, //XOR
|
|
{0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0}, //MOV
|
|
|
|
{0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0}, //TEST (to == from)
|
|
{0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 7}, //CMP
|
|
|
|
{0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 7}, //XCHG
|
|
};
|
|
|
|
//operand can either be immediate or register
|
|
void OpArg::WriteNormalOp(bool toRM, NormalOp op, const OpArg &operand, int bits) const
|
|
{
|
|
X64Reg _operandReg = (X64Reg)this->operandReg;
|
|
if (IsImm())
|
|
{
|
|
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
|
|
}
|
|
|
|
if (bits == 16)
|
|
Write8(0x66);
|
|
|
|
int immToWrite = 0;
|
|
|
|
if (operand.IsImm())
|
|
{
|
|
_operandReg = (X64Reg)0;
|
|
WriteRex(bits == 64);
|
|
|
|
if (!toRM)
|
|
{
|
|
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
|
|
}
|
|
|
|
if (operand.scale == SCALE_IMM8 && bits == 8)
|
|
{
|
|
Write8(nops[op].imm8);
|
|
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH1");
|
|
immToWrite = 8;
|
|
}
|
|
else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
|
|
(operand.scale == SCALE_IMM32 && bits == 32) ||
|
|
(operand.scale == SCALE_IMM32 && bits == 64))
|
|
{
|
|
Write8(nops[op].imm32);
|
|
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH2");
|
|
immToWrite = 32;
|
|
}
|
|
else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
|
|
(operand.scale == SCALE_IMM8 && bits == 32) ||
|
|
(operand.scale == SCALE_IMM8 && bits == 64))
|
|
{
|
|
Write8(nops[op].simm8);
|
|
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH3");
|
|
immToWrite = 8;
|
|
}
|
|
else if (operand.scale == SCALE_IMM64 && bits == 64)
|
|
{
|
|
if (op == nrmMOV)
|
|
{
|
|
Write8(0xB8 + (offsetOrBaseReg & 7));
|
|
Write64((u64)operand.offset);
|
|
return;
|
|
}
|
|
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
|
|
}
|
|
else
|
|
{
|
|
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
|
|
}
|
|
_operandReg = (X64Reg)nops[op].ext; //pass extension in REG of ModRM
|
|
}
|
|
else
|
|
{
|
|
_operandReg = (X64Reg)operand.offsetOrBaseReg;
|
|
WriteRex(bits == 64, _operandReg);
|
|
// mem/reg or reg/reg op
|
|
if (toRM)
|
|
{
|
|
Write8(bits == 8 ? nops[op].toRm8 : nops[op].toRm32);
|
|
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH4");
|
|
}
|
|
else
|
|
{
|
|
Write8(bits == 8 ? nops[op].fromRm8 : nops[op].fromRm32);
|
|
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH5");
|
|
}
|
|
}
|
|
WriteRest(immToWrite>>3, _operandReg);
|
|
switch (immToWrite)
|
|
{
|
|
case 0:
|
|
break;
|
|
case 8:
|
|
Write8((u8)operand.offset);
|
|
break;
|
|
case 32:
|
|
Write32((u32)operand.offset);
|
|
break;
|
|
default:
|
|
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
|
|
}
|
|
}
|
|
|
|
void WriteNormalOp(int bits, NormalOp op, const OpArg &a1, const OpArg &a2)
|
|
{
|
|
if (a1.IsImm())
|
|
{
|
|
//Booh! Can't write to an imm
|
|
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
|
|
return;
|
|
}
|
|
if (a2.IsImm())
|
|
{
|
|
a1.WriteNormalOp(true, op, a2, bits);
|
|
}
|
|
else
|
|
{
|
|
if (a1.IsSimpleReg())
|
|
{
|
|
a2.WriteNormalOp(false, op, a1, bits);
|
|
}
|
|
else
|
|
{
|
|
a1.WriteNormalOp(true, op, a2, bits);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ADD (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmADD, a1, a2);}
|
|
void ADC (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmADC, a1, a2);}
|
|
void SUB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmSUB, a1, a2);}
|
|
void SBB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmSBB, a1, a2);}
|
|
void AND (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmAND, a1, a2);}
|
|
void OR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmOR , a1, a2);}
|
|
void XOR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmXOR, a1, a2);}
|
|
void MOV (int bits, const OpArg &a1, const OpArg &a2)
|
|
{
|
|
_assert_msg_(DYNA_REC, !a1.IsSimpleReg() || !a2.IsSimpleReg() || a1.GetSimpleReg() != a2.GetSimpleReg(), "Redundant MOV @ %p",
|
|
code);
|
|
WriteNormalOp(bits, nrmMOV, a1, a2);
|
|
}
|
|
void TEST(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmTEST, a1, a2);}
|
|
void CMP (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmCMP, a1, a2);}
|
|
void XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmXCHG, a1, a2);}
|
|
|
|
void IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
|
|
{
|
|
if (bits == 8) {
|
|
_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
|
|
return;
|
|
}
|
|
if (a1.IsImm()) {
|
|
_assert_msg_(DYNA_REC, 0, "IMUL - second arg cannot be imm!");
|
|
return;
|
|
}
|
|
if (!a2.IsImm())
|
|
{
|
|
_assert_msg_(DYNA_REC, 0, "IMUL - third arg must be imm!");
|
|
return;
|
|
}
|
|
|
|
if (bits == 16)
|
|
Write8(0x66);
|
|
a1.WriteRex(bits == 64, regOp);
|
|
|
|
if (a2.GetImmBits() == 8) {
|
|
Write8(0x6B);
|
|
a1.WriteRest(1, regOp);
|
|
Write8((u8)a2.offset);
|
|
} else {
|
|
Write8(0x69);
|
|
if (a2.GetImmBits() == 16 && bits == 16) {
|
|
a1.WriteRest(2, regOp);
|
|
Write16((u16)a2.offset);
|
|
} else if (a2.GetImmBits() == 32 &&
|
|
(bits == 32 || bits == 64)) {
|
|
a1.WriteRest(4, regOp);
|
|
Write32((u32)a2.offset);
|
|
} else {
|
|
_assert_msg_(DYNA_REC, 0, "IMUL - unhandled case!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void IMUL(int bits, X64Reg regOp, OpArg a)
|
|
{
|
|
if (bits == 8) {
|
|
_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
|
|
return;
|
|
}
|
|
if (a.IsImm())
|
|
{
|
|
IMUL(bits, regOp, R(regOp), a) ;
|
|
return ;
|
|
}
|
|
|
|
if (bits == 16)
|
|
Write8(0x66);
|
|
a.WriteRex(bits == 64, regOp);
|
|
Write8(0x0F);
|
|
Write8(0xAF);
|
|
a.WriteRest(0, regOp);
|
|
}
|
|
|
|
|
|
void WriteSSEOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes = 0)
|
|
{
|
|
if (size == 64 && packed)
|
|
Write8(0x66); //this time, override goes upwards
|
|
if (!packed)
|
|
Write8(size == 64 ? 0xF2 : 0xF3);
|
|
arg.operandReg = regOp;
|
|
arg.WriteRex(false);
|
|
Write8(0x0F);
|
|
Write8(sseOp);
|
|
arg.WriteRest(extrabytes);
|
|
}
|
|
|
|
void MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x6E, true, dest, arg, 0);}
|
|
|
|
void MOVQ_xmm(X64Reg dest, OpArg arg) {
|
|
#ifdef _M_X64
|
|
// Alternate encoding
|
|
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
|
|
arg.operandReg = dest;
|
|
Write8(0x66);
|
|
arg.WriteRex(true);
|
|
Write8(0x0f);
|
|
Write8(0x6E);
|
|
arg.WriteRest(0);
|
|
#else
|
|
arg.operandReg = dest;
|
|
Write8(0xF3);
|
|
Write8(0x0f);
|
|
Write8(0x7E);
|
|
arg.WriteRest(0);
|
|
#endif
|
|
}
|
|
|
|
void MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);}
|
|
void MOVQ_xmm(OpArg arg, X64Reg src) {
|
|
if (src > 7)
|
|
{
|
|
// Alternate encoding
|
|
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
|
|
arg.operandReg = src;
|
|
Write8(0x66);
|
|
arg.WriteRex(true);
|
|
Write8(0x0f);
|
|
Write8(0x7E);
|
|
arg.WriteRest(0);
|
|
} else {
|
|
// INT3();
|
|
arg.operandReg = src;
|
|
arg.WriteRex(false);
|
|
Write8(0x66);
|
|
Write8(0x0f);
|
|
Write8(0xD6);
|
|
arg.WriteRest(0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void WriteMXCSR(OpArg arg, int ext)
|
|
{
|
|
if (arg.IsImm() || arg.IsSimpleReg())
|
|
_assert_msg_(DYNA_REC, 0, "MXCSR - invalid operand");
|
|
|
|
arg.operandReg = ext;
|
|
arg.WriteRex(false);
|
|
Write8(0x0F);
|
|
Write8(0xAE);
|
|
arg.WriteRest();
|
|
}
|
|
|
|
enum NormalSSEOps
|
|
{
|
|
sseCMP = 0xC2,
|
|
sseADD = 0x58, //ADD
|
|
sseSUB = 0x5C, //SUB
|
|
sseAND = 0x54, //AND
|
|
sseANDN = 0x55, //ANDN
|
|
sseOR = 0x56,
|
|
sseXOR = 0x57,
|
|
sseMUL = 0x59, //MUL,
|
|
sseDIV = 0x5E, //DIV
|
|
sseMIN = 0x5D, //MIN
|
|
sseMAX = 0x5F, //MAX
|
|
sseCOMIS = 0x2F, //COMIS
|
|
sseUCOMIS = 0x2E, //UCOMIS
|
|
sseSQRT = 0x51, //SQRT
|
|
sseRSQRT = 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
|
|
sseMOVAPfromRM = 0x28, //MOVAP from RM
|
|
sseMOVAPtoRM = 0x29, //MOVAP to RM
|
|
sseMOVUPfromRM = 0x10, //MOVUP from RM
|
|
sseMOVUPtoRM = 0x11, //MOVUP to RM
|
|
sseMASKMOVDQU = 0xF7,
|
|
sseLDDQU = 0xF0,
|
|
sseSHUF = 0xC6,
|
|
sseMOVNTDQ = 0xE7,
|
|
sseMOVNTP = 0x2B,
|
|
};
|
|
|
|
void STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);}
|
|
void LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);}
|
|
|
|
void MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVNTDQ, true, regOp, arg);}
|
|
void MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVNTP, true, regOp, arg);}
|
|
void MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVNTP, true, regOp, arg);}
|
|
|
|
void ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseADD, false, regOp, arg);}
|
|
void ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseADD, false, regOp, arg);}
|
|
void SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSUB, false, regOp, arg);}
|
|
void SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSUB, false, regOp, arg);}
|
|
void CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(32, sseCMP, false, regOp, arg,1); Write8(compare);}
|
|
void CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(64, sseCMP, false, regOp, arg,1); Write8(compare);}
|
|
void MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMUL, false, regOp, arg);}
|
|
void MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMUL, false, regOp, arg);}
|
|
void DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseDIV, false, regOp, arg);}
|
|
void DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseDIV, false, regOp, arg);}
|
|
void MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMIN, false, regOp, arg);}
|
|
void MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMIN, false, regOp, arg);}
|
|
void MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMAX, false, regOp, arg);}
|
|
void MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMAX, false, regOp, arg);}
|
|
void SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSQRT, false, regOp, arg);}
|
|
void SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSQRT, false, regOp, arg);}
|
|
void RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, false, regOp, arg);}
|
|
void RSQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseRSQRT, false, regOp, arg);}
|
|
|
|
void ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseADD, true, regOp, arg);}
|
|
void ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseADD, true, regOp, arg);}
|
|
void SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSUB, true, regOp, arg);}
|
|
void SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSUB, true, regOp, arg);}
|
|
void CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(32, sseCMP, true, regOp, arg,1); Write8(compare);}
|
|
void CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(64, sseCMP, true, regOp, arg,1); Write8(compare);}
|
|
void ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseAND, true, regOp, arg);}
|
|
void ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseAND, true, regOp, arg);}
|
|
void ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseANDN, true, regOp, arg);}
|
|
void ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseANDN, true, regOp, arg);}
|
|
void ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseOR, true, regOp, arg);}
|
|
void ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseOR, true, regOp, arg);}
|
|
void XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseXOR, true, regOp, arg);}
|
|
void XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseXOR, true, regOp, arg);}
|
|
void MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMUL, true, regOp, arg);}
|
|
void MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMUL, true, regOp, arg);}
|
|
void DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseDIV, true, regOp, arg);}
|
|
void DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseDIV, true, regOp, arg);}
|
|
void MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMIN, true, regOp, arg);}
|
|
void MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMIN, true, regOp, arg);}
|
|
void MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMAX, true, regOp, arg);}
|
|
void MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMAX, true, regOp, arg);}
|
|
void SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSQRT, true, regOp, arg);}
|
|
void SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSQRT, true, regOp, arg);}
|
|
void RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, true, regOp, arg);}
|
|
void RSQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseRSQRT, true, regOp, arg);}
|
|
void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(32, sseSHUF, true, regOp, arg,1); Write8(shuffle);}
|
|
void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, sseSHUF, true, regOp, arg,1); Write8(shuffle);}
|
|
|
|
void COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseCOMIS, true, regOp, arg);} //weird that these should be packed
|
|
void COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseCOMIS, true, regOp, arg);} //ordered
|
|
void UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseUCOMIS, true, regOp, arg);} //unordered
|
|
void UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseUCOMIS, true, regOp, arg);}
|
|
|
|
void MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVAPfromRM, true, regOp, arg);}
|
|
void MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVAPfromRM, true, regOp, arg);}
|
|
void MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVAPtoRM, true, regOp, arg);}
|
|
void MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVAPtoRM, true, regOp, arg);}
|
|
|
|
void MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVUPfromRM, true, regOp, arg);}
|
|
void MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVUPfromRM, true, regOp, arg);}
|
|
void MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVUPtoRM, true, regOp, arg);}
|
|
void MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVUPtoRM, true, regOp, arg);}
|
|
|
|
void MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVUPfromRM, false, regOp, arg);}
|
|
void MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVUPfromRM, false, regOp, arg);}
|
|
void MOVSS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVUPtoRM, false, regOp, arg);}
|
|
void MOVSD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVUPtoRM, false, regOp, arg);}
|
|
|
|
void CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, true, regOp, arg);}
|
|
void CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, true, regOp, arg);}
|
|
|
|
void CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, false, regOp, arg);}
|
|
void CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, false, regOp, arg);}
|
|
void CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xF2, false, regOp, arg);}
|
|
|
|
void CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xE6, false, regOp, arg);}
|
|
void CVTDQ2PS(X64Reg regOp, const OpArg &arg) {WriteSSEOp(32, 0x5B, true, regOp, arg);}
|
|
void CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0xE6, false, regOp, arg);}
|
|
|
|
void MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(64, sseMASKMOVDQU, true, dest, R(src));}
|
|
|
|
void MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x50, true, dest, arg);}
|
|
void MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x50, true, dest, arg);}
|
|
|
|
void LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(64, sseLDDQU, false, dest, arg);} // For integer data only
|
|
|
|
void UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x14, true, dest, arg);}
|
|
void UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x15, true, dest, arg);}
|
|
|
|
void MOVDDUP(X64Reg regOp, OpArg arg)
|
|
{
|
|
if (cpu_info.bSSE3)
|
|
{
|
|
WriteSSEOp(64, 0x12, false, regOp, arg); //SSE3 movddup
|
|
}
|
|
else
|
|
{
|
|
// Simulate this instruction with SSE2 instructions
|
|
if (!arg.IsSimpleReg(regOp))
|
|
MOVQ_xmm(regOp, arg);
|
|
UNPCKLPD(regOp, R(regOp));
|
|
}
|
|
}
|
|
|
|
//There are a few more left
|
|
|
|
// Also some integer instrucitons are missing
|
|
void PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x6B, true, dest, arg);}
|
|
void PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x63, true, dest, arg);}
|
|
//void PACKUSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);} // WRONG
|
|
void PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x67, true, dest, arg);}
|
|
|
|
void PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
|
|
void PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x61, true, dest, arg);}
|
|
void PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x62, true, dest, arg);}
|
|
//void PUNPCKLQDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
|
|
|
|
// WARNING not REX compatible
|
|
void PSRAW(X64Reg reg, int shift) {
|
|
if (reg > 7)
|
|
PanicAlert("The PSRAW-emitter does not support regs above 7");
|
|
Write8(0x66);
|
|
Write8(0x0f);
|
|
Write8(0x71);
|
|
Write8(0xE0 | reg);
|
|
Write8(shift);
|
|
}
|
|
|
|
void PSRLW(X64Reg reg, int shift) {
|
|
WriteSSEOp(64, 0x71, true, (X64Reg)2, R(reg));
|
|
Write8(shift);
|
|
}
|
|
|
|
void PSLLW(X64Reg reg, int shift) {
|
|
WriteSSEOp(64, 0x71, true, (X64Reg)6, R(reg));
|
|
Write8(shift);
|
|
}
|
|
|
|
// WARNING not REX compatible
|
|
void PSRAD(X64Reg reg, int shift) {
|
|
if (reg > 7)
|
|
PanicAlert("The PSRAD-emitter does not support regs above 7");
|
|
Write8(0x66);
|
|
Write8(0x0f);
|
|
Write8(0x72);
|
|
Write8(0xE0 | reg);
|
|
Write8(shift);
|
|
}
|
|
|
|
void PSHUFB(X64Reg dest, OpArg arg) {
|
|
if (!cpu_info.bSSSE3) {
|
|
PanicAlert("Trying to use PSHUFB on a system that doesn't support it. Bad programmer.");
|
|
}
|
|
Write8(0x66);
|
|
arg.operandReg = dest;
|
|
arg.WriteRex(false);
|
|
Write8(0x0f);
|
|
Write8(0x38);
|
|
Write8(0x00);
|
|
arg.WriteRest(0);
|
|
}
|
|
|
|
void PAND(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDB, true, dest, arg);}
|
|
void PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDF, true, dest, arg);}
|
|
void PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEF, true, dest, arg);}
|
|
void POR(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEB, true, dest, arg);}
|
|
|
|
void PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFC, true, dest, arg);}
|
|
void PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFD, true, dest, arg);}
|
|
void PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFE, true, dest, arg);}
|
|
void PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD4, true, dest, arg);}
|
|
|
|
void PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEC, true, dest, arg);}
|
|
void PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xED, true, dest, arg);}
|
|
void PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDC, true, dest, arg);}
|
|
void PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDD, true, dest, arg);}
|
|
|
|
void PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF8, true, dest, arg);}
|
|
void PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF9, true, dest, arg);}
|
|
void PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFA, true, dest, arg);}
|
|
void PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDB, true, dest, arg);}
|
|
|
|
void PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE8, true, dest, arg);}
|
|
void PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE9, true, dest, arg);}
|
|
void PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD8, true, dest, arg);}
|
|
void PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD9, true, dest, arg);}
|
|
|
|
void PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE0, true, dest, arg);}
|
|
void PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE3, true, dest, arg);}
|
|
|
|
void PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x74, true, dest, arg);}
|
|
void PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x75, true, dest, arg);}
|
|
void PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x76, true, dest, arg);}
|
|
|
|
void PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x64, true, dest, arg);}
|
|
void PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x65, true, dest, arg);}
|
|
void PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);}
|
|
|
|
void PEXTRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(64, 0x64, true, dest, arg); Write8(subreg);}
|
|
void PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(64, 0x64, true, dest, arg); Write8(subreg);}
|
|
|
|
void PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF5, true, dest, arg); }
|
|
void PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF6, true, dest, arg);}
|
|
|
|
void PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEE, true, dest, arg); }
|
|
void PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDE, true, dest, arg); }
|
|
void PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEA, true, dest, arg); }
|
|
void PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDA, true, dest, arg); }
|
|
|
|
void PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD7, true, dest, arg); }
|
|
|
|
void PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, 0x70, false, regOp, arg, 1); Write8(shuffle);}
|
|
|
|
// Prefixes
|
|
|
|
void LOCK() { Write8(0xF0); }
|
|
void REP() { Write8(0xF3); }
|
|
void REPNE(){ Write8(0xF2); }
|
|
|
|
void FWAIT()
|
|
{
|
|
Write8(0x9B);
|
|
}
|
|
|
|
void RTDSC() { Write8(0x0F); Write8(0x31); }
|
|
|
|
// helper routines for setting pointers
|
|
void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2)
|
|
{
|
|
using namespace Gen;
|
|
#ifdef _M_X64
|
|
|
|
#ifdef _MSC_VER
|
|
MOV(32, R(RCX), Imm32(arg0));
|
|
MOV(32, R(RDX), Imm32(arg1));
|
|
MOV(32, R(R8), Imm32(arg2));
|
|
CALL(fnptr);
|
|
#else
|
|
MOV(32, R(RDI), Imm32(arg0));
|
|
MOV(32, R(RSI), Imm32(arg1));
|
|
MOV(32, R(RDX), Imm32(arg2));
|
|
CALL(fnptr);
|
|
#endif
|
|
|
|
#else
|
|
ABI_AlignStack(3 * 4);
|
|
PUSH(32, Imm32(arg2));
|
|
PUSH(32, Imm32(arg1));
|
|
PUSH(32, Imm32(arg0));
|
|
CALL(fnptr);
|
|
#ifdef _WIN32
|
|
// don't inc stack
|
|
#else
|
|
ABI_RestoreStack(3 * 4);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3)
|
|
{
|
|
using namespace Gen;
|
|
#ifdef _M_X64
|
|
|
|
#ifdef _MSC_VER
|
|
MOV(32, R(RCX), Imm32(arg0));
|
|
MOV(32, R(RDX), Imm32(arg1));
|
|
MOV(32, R(R8), Imm32(arg2));
|
|
MOV(32, R(R9), Imm32(arg3));
|
|
CALL(fnptr);
|
|
#else
|
|
MOV(32, R(RDI), Imm32(arg0));
|
|
MOV(32, R(RSI), Imm32(arg1));
|
|
MOV(32, R(RDX), Imm32(arg2));
|
|
MOV(32, R(RCX), Imm32(arg3));
|
|
CALL(fnptr);
|
|
#endif
|
|
|
|
#else
|
|
ABI_AlignStack(4 * 4);
|
|
PUSH(32, Imm32(arg3));
|
|
PUSH(32, Imm32(arg2));
|
|
PUSH(32, Imm32(arg1));
|
|
PUSH(32, Imm32(arg0));
|
|
CALL(fnptr);
|
|
#ifdef _WIN32
|
|
// don't inc stack
|
|
#else
|
|
ABI_RestoreStack(4 * 4);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
|
|
{
|
|
using namespace Gen;
|
|
#ifdef _M_X64
|
|
|
|
#ifdef _MSC_VER
|
|
MOV(32, R(RCX), Imm32(arg0));
|
|
MOV(32, R(RDX), Imm32(arg1));
|
|
MOV(32, R(R8), Imm32(arg2));
|
|
MOV(32, R(R9), Imm32(arg3));
|
|
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
|
|
CALL(fnptr);
|
|
#else
|
|
MOV(32, R(RDI), Imm32(arg0));
|
|
MOV(32, R(RSI), Imm32(arg1));
|
|
MOV(32, R(RDX), Imm32(arg2));
|
|
MOV(32, R(RCX), Imm32(arg3));
|
|
MOV(32, R(R8), Imm32(arg4));
|
|
CALL(fnptr);
|
|
#endif
|
|
|
|
#else
|
|
ABI_AlignStack(5 * 4);
|
|
PUSH(32, Imm32(arg4));
|
|
PUSH(32, Imm32(arg3));
|
|
PUSH(32, Imm32(arg2));
|
|
PUSH(32, Imm32(arg1));
|
|
PUSH(32, Imm32(arg0));
|
|
CALL(fnptr);
|
|
#ifdef _WIN32
|
|
// don't inc stack
|
|
#else
|
|
ABI_RestoreStack(5 * 4);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
|
|
{
|
|
using namespace Gen;
|
|
#ifdef _M_X64
|
|
|
|
#ifdef _MSC_VER
|
|
MOV(32, R(RCX), Imm32(arg0));
|
|
MOV(32, R(RDX), Imm32(arg1));
|
|
MOV(32, R(R8), Imm32(arg2));
|
|
MOV(32, R(R9), Imm32(arg3));
|
|
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
|
|
MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
|
|
CALL(fnptr);
|
|
#else
|
|
MOV(32, R(RDI), Imm32(arg0));
|
|
MOV(32, R(RSI), Imm32(arg1));
|
|
MOV(32, R(RDX), Imm32(arg2));
|
|
MOV(32, R(RCX), Imm32(arg3));
|
|
MOV(32, R(R8), Imm32(arg4));
|
|
MOV(32, R(R9), Imm32(arg5));
|
|
CALL(fnptr);
|
|
#endif
|
|
|
|
#else
|
|
ABI_AlignStack(6 * 4);
|
|
PUSH(32, Imm32(arg5));
|
|
PUSH(32, Imm32(arg4));
|
|
PUSH(32, Imm32(arg3));
|
|
PUSH(32, Imm32(arg2));
|
|
PUSH(32, Imm32(arg1));
|
|
PUSH(32, Imm32(arg0));
|
|
CALL(fnptr);
|
|
#ifdef _WIN32
|
|
// don't inc stack
|
|
#else
|
|
ABI_RestoreStack(6 * 4);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#ifdef _M_X64
|
|
|
|
// See header
|
|
void ___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) {
|
|
MOV(32, R(RCX), Imm32(arg0));
|
|
MOV(32, R(RDX), Imm32(arg1));
|
|
MOV(32, R(R8), Imm32(arg2));
|
|
CALLptr(M(impptr));
|
|
}
|
|
void ___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) {
|
|
MOV(32, R(RCX), Imm32(arg0));
|
|
MOV(32, R(RDX), Imm32(arg1));
|
|
MOV(32, R(R8), Imm32(arg2));
|
|
MOV(32, R(R9), Imm32(arg3));
|
|
CALLptr(M(impptr));
|
|
}
|
|
void ___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) {
|
|
MOV(32, R(RCX), Imm32(arg0));
|
|
MOV(32, R(RDX), Imm32(arg1));
|
|
MOV(32, R(R8), Imm32(arg2));
|
|
MOV(32, R(R9), Imm32(arg3));
|
|
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
|
|
CALLptr(M(impptr));
|
|
}
|
|
void ___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) {
|
|
MOV(32, R(RCX), Imm32(arg0));
|
|
MOV(32, R(RDX), Imm32(arg1));
|
|
MOV(32, R(R8), Imm32(arg2));
|
|
MOV(32, R(R9), Imm32(arg3));
|
|
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
|
|
MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
|
|
CALLptr(M(impptr));
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|