Separated out from my gpu-determinism branch by request. It's not a big
commit; I just like to write long commit messages.
The main reason to kill it is hopefully a slight performance improvement
from avoiding the double switch (especially in single core mode);
however, this also improves cycle calculation, as described below.
- FifoCommandRunnable is removed; in its stead, Decode returns the
number of cycles (which only matters for "sync" GPU mode), or 0 if there
was not enough data, and is also responsible for unknown opcode alerts.
Decode and DecodeSemiNop are almost identical, so the latter is replaced
with a skipped_frame parameter to Decode. Doesn't mean we can't improve
skipped_frame mode to do less work; if, at such a point, branching on it
has too much overhead (it certainly won't now), it can always be changed
to a template parameter.
- FifoCommandRunnable used a fixed, large cycle count for display lists,
regardless of the contents. Presumably the actual hardware's processing
time is mostly the processing time of whatever commands are in the list,
and with this change InterpretDisplayList can just return the list's
cycle count to be added to the total. (Since the calculation for this
is part of Decode, it didn't seem easy to split this change up.)
To facilitate this, Decode also gains an explicit 'end' parameter in
lieu of FifoCommandRunnable's call to GetVideoBufferEndPtr, which can
point to there or to the end of a display list (or elsewhere in
gpu-determinism, but that's another story). Also, as a small
optimization, InterpretDisplayList now calls OpcodeDecoder_Run rather
than having its own Decode loop, to allow Decode to be inlined (haven't
checked whether this actually happens though).
skipped_frame mode still does not traverse display lists and uses the
old fake value of 45 cycles. degasus has suggested that this hack is
not essential for performance and can be removed, but I want to separate
any potential performance impact of that from this commit.
This is required to make packing consistent between compilers: with u32, MSVC
would not allocate a bitfield that spans two u32s (it would leave a "hole").
OSD messages can be disabled, while still leaving them in the status bar. This is incredibly useful for certain users, who may wish to see the messages, but do not wish to have them cover up half of the screen. In particular TASers will generally have OSD messages on the screen 100% of the time, and they cover up useful information, making it critical to turn them off. However the messages are still very useful to them, so it's important to have them somewhere.
This reverts 4a16211bae.
This time, check the address carefully beforehand, since apparently some games
do horrible things like running it on non-RAM addresses, or at the very least
virtual addresses.
This is no longer required since we don't support x86_32 anymore.
x86_64 implies SSE2 support.
Also this check was a bit messed up and was hitting on Generic builds.
A bug that seems to have been uncovered by allowing immediate-address loads.
Super Monkey Ball 2 crashes without this change -- it's possible, however, that
the game actually requires the MMU hack, since it crashed due to accessing an
address in the 0x20000000-0x3fffffff range.
Decreases total Wii state save time (not counting compression) from
~570ms to ~18ms.
The compiler can't remove this check because of potential aliasing; this
might be fixable (e.g. by making mode const), but there is no reason to
have the code work in such a braindead way in the first place.
- DoVoid now uses memcpy.
- DoArray now uses DoVoid on the whole rather than Doing each element
(would fail for an array of STL structures, but we don't have any of
those).
- Do also now uses DoVoid. (In the previous version, it replicated
DoVoid's code in order to ensure each type gets its own implementation,
which for small types then becomes a simple load/store in any modern
compiler. Now DoVoid is __forceinline, which addresses that issue and
shouldn't make a big difference otherwise - perhaps a few extra copies
of the code inlined into DoArray or whatever.)
We were generating a texture without ever setting the data to a known value.
This happened on the old code as well, just that PP shaders are receiving some love and people are using it and noticing some of its issues.
Doesn't support all the FPSCR flags, just the FPRF ones.
Add PPCAnalyzer support to remove unnecessary FPRF calculations.
POV-ray benchmark with enableFPRF forced on for an extreme comparison:
Before: 1500s
After, fmul/fmadd only: 728s
After, all float: 753s
In real games that use FPRF, like F-Zero GX, FPRF previously cost a few percent
of total runtime.
Since FPRF is so much faster now, if enableFPRF is set, just do it for every
float instruction, not just fmul/fmadd like before. I don't know if this will
fix any games, but there's little good reason not to.
The only possible functionality change is that s_efbAccessRequested and
s_swapRequested are no longer reset at init and shutdown of the OGL
backend (only; this is the only interaction any files other than
MainBase.cpp have with them). I am fairly certain this was entirely
vestigial.
Possible performance implications: efbAccessReady now uses an Event
rather than spinning, which might be slightly slower, but considering
the slow loop the flags are being checked in from the GPU thread, I
doubt it's noticeable.
Also, this uses sequentially consistent rather than release/acquire
memory order, which might be slightly slower, especially on ARM...
something to improve in Event/Flag, really.
This shouldn't affect functionality. I'm not sure if the breakpoint
distinction is actually necessary (my commit messages from the old
dc-netplay last year claim that breakpoints are broken anyway, but I
don't remember why), but I don't actually need to change this part of
the code (yet), so I'll stick with the trimmings change for now.
While we're at it, support a bunch of float load/store variants that weren't
implemented in the JIT. Might not have a big speed impact on typical games but
they're used at least a bit in povray and luabench.
694 -> 644 seconds on povray.