Merge pull request #2041 from Sonicadvance1/AArch64_vertex_loader

[AArch64] Vertex loader and things
This commit is contained in:
Ryan Houdek 2015-02-17 00:51:51 -06:00
commit 3aa605236d
20 changed files with 873 additions and 89 deletions

View File

@ -188,7 +188,7 @@ static u32 LoadStoreExcEnc[][5] = {
void ARM64XEmitter::EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr) void ARM64XEmitter::EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr)
{ {
bool b64Bit = Is64Bit(Rt); bool b64Bit = Is64Bit(Rt);
s64 distance = (s64)ptr - (s64(m_code) + 8); s64 distance = (s64)ptr - (s64)m_code;
_assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %lx", __FUNCTION__, distance); _assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %lx", __FUNCTION__, distance);
@ -198,13 +198,13 @@ void ARM64XEmitter::EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr
Rt = DecodeReg(Rt); Rt = DecodeReg(Rt);
Write32((b64Bit << 31) | (0x34 << 24) | (op << 24) | \ Write32((b64Bit << 31) | (0x34 << 24) | (op << 24) | \
(distance << 5) | Rt); (((u32)distance << 5) & 0xFFFFE0) | Rt);
} }
void ARM64XEmitter::EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr) void ARM64XEmitter::EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr)
{ {
bool b64Bit = Is64Bit(Rt); bool b64Bit = Is64Bit(Rt);
s64 distance = (s64)ptr - (s64(m_code) + 8); s64 distance = (s64)ptr - (s64)m_code;
_assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %lx", __FUNCTION__, distance); _assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %lx", __FUNCTION__, distance);
@ -414,7 +414,7 @@ void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM
u32 offset = imm & 0x1FF; u32 offset = imm & 0x1FF;
_assert_msg_(DYNA_REC, imm < -256 || imm > 255, "%s: offset too large %d", __FUNCTION__, imm); _assert_msg_(DYNA_REC, !(imm < -256 || imm > 255), "%s: offset too large %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt); Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -433,7 +433,7 @@ void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn,
else if (size == 16) else if (size == 16)
imm >>= 1; imm >>= 1;
_assert_msg_(DYNA_REC, imm < 0, "%s(INDEX_UNSIGNED): offset must be positive", __FUNCTION__); _assert_msg_(DYNA_REC, imm >= 0, "%s(INDEX_UNSIGNED): offset must be positive %d", __FUNCTION__, imm);
_assert_msg_(DYNA_REC, !(imm & ~0xFFF), "%s(INDEX_UNSIGNED): offset too large %d", __FUNCTION__, imm); _assert_msg_(DYNA_REC, !(imm & ~0xFFF), "%s(INDEX_UNSIGNED): offset too large %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt); Rt = DecodeReg(Rt);
@ -540,6 +540,15 @@ void ARM64XEmitter::EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm)
((imm & 0x1FFFFC) << 3) | Rd); ((imm & 0x1FFFFC) << 3) | Rd);
} }
void ARM64XEmitter::EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
_assert_msg_(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Write32((size << 30) | (0b111 << 27) | (op << 22) | ((imm & 0x1FF) << 12) | (Rn << 5) | Rt);
}
// FixupBranch branching // FixupBranch branching
void ARM64XEmitter::SetJumpTarget(FixupBranch const& branch) void ARM64XEmitter::SetJumpTarget(FixupBranch const& branch)
{ {
@ -557,7 +566,7 @@ void ARM64XEmitter::SetJumpTarget(FixupBranch const& branch)
_assert_msg_(DYNA_REC, distance >= -0xFFFFF && distance < 0xFFFFF, "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance); _assert_msg_(DYNA_REC, distance >= -0xFFFFF && distance < 0xFFFFF, "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance);
bool b64Bit = Is64Bit(branch.reg); bool b64Bit = Is64Bit(branch.reg);
ARM64Reg reg = DecodeReg(branch.reg); ARM64Reg reg = DecodeReg(branch.reg);
inst = (b64Bit << 31) | (0x1A << 25) | (Not << 24) | (distance << 5) | reg; inst = (b64Bit << 31) | (0x1A << 25) | (Not << 24) | ((distance << 5) & 0xFFFFE0) | reg;
} }
break; break;
case 2: // B (conditional) case 2: // B (conditional)
@ -1006,6 +1015,10 @@ void ARM64XEmitter::SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{ {
EncodeData3SrcInst(2, Rd, Rn, Rm, Ra); EncodeData3SrcInst(2, Rd, Rn, Rm, Ra);
} }
void ARM64XEmitter::SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
SMADDL(Rd, Rn, Rm, SP);
}
void ARM64XEmitter::SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) void ARM64XEmitter::SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{ {
EncodeData3SrcInst(3, Rd, Rn, Rm, Ra); EncodeData3SrcInst(3, Rd, Rn, Rm, Ra);
@ -1420,6 +1433,45 @@ void ARM64XEmitter::PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
EncodeLoadStoreRegisterOffset(3, 2, Rt, Rn, Rm); EncodeLoadStoreRegisterOffset(3, 2, Rt, Rn, Rm);
} }
// Load/Store register (unscaled offset)
void ARM64XEmitter::STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
_assert_msg_(DYNA_REC, !Is64Bit(Rt), "%s must have a 64bit destination register!", __FUNCTION__);
EncodeLoadStoreUnscaled(2, 2, Rt, Rn, imm);
}
// Address of label/page PC-relative // Address of label/page PC-relative
void ARM64XEmitter::ADR(ARM64Reg Rd, s32 imm) void ARM64XEmitter::ADR(ARM64Reg Rd, s32 imm)
{ {
@ -1437,9 +1489,6 @@ void ARM64XEmitter::MOVI2R(ARM64Reg Rd, u64 imm, bool optimize)
BitSet32 upload_part(0); BitSet32 upload_part(0);
bool need_movz = false; bool need_movz = false;
if (!Is64Bit(Rd))
_assert_msg_(DYNA_REC, !(imm >> 32), "%s: immediate doesn't fit in 32bit register: %lx", __FUNCTION__, imm);
if (!imm) if (!imm)
{ {
// Zero immediate, just clear the register // Zero immediate, just clear the register
@ -1640,8 +1689,8 @@ void ARM64FloatEmitter::EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type,
if (type == INDEX_UNSIGNED) if (type == INDEX_UNSIGNED)
{ {
_assert_msg_(DYNA_REC, imm & (size - 1), "%s(INDEX_UNSIGNED) immediate offset must be aligned to size!", __FUNCTION__); _assert_msg_(DYNA_REC, !(imm & ((size - 1) >> 3)), "%s(INDEX_UNSIGNED) immediate offset must be aligned to size!", __FUNCTION__);
_assert_msg_(DYNA_REC, imm < 0, "%s(INDEX_UNSIGNED) immediate offset must be positive!", __FUNCTION__); _assert_msg_(DYNA_REC, imm >= 0, "%s(INDEX_UNSIGNED) immediate offset must be positive!", __FUNCTION__);
if (size == 16) if (size == 16)
imm >>= 1; imm >>= 1;
else if (size == 32) else if (size == 32)
@ -1654,7 +1703,7 @@ void ARM64FloatEmitter::EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type,
} }
else else
{ {
_assert_msg_(DYNA_REC, imm < -256 || imm > 255, "%s immediate offset must be within range of -256 to 256!", __FUNCTION__); _assert_msg_(DYNA_REC, !(imm < -256 || imm > 255), "%s immediate offset must be within range of -256 to 256!", __FUNCTION__);
encoded_imm = (imm & 0x1FF) << 2; encoded_imm = (imm & 0x1FF) << 2;
if (type == INDEX_POST) if (type == INDEX_POST)
encoded_imm |= 1; encoded_imm |= 1;
@ -1668,7 +1717,7 @@ void ARM64FloatEmitter::EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type,
void ARM64FloatEmitter::Emit2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) void ARM64FloatEmitter::Emit2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{ {
_assert_msg_(DYNA_REC, IsQuad(Rd), "%s only supports double and single registers!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsQuad(Rd), "%s only supports double and single registers!", __FUNCTION__);
Rd = DecodeReg(Rd); Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm); Rm = DecodeReg(Rm);
@ -1679,7 +1728,7 @@ void ARM64FloatEmitter::Emit2Source(bool M, bool S, u32 type, u32 opcode, ARM64R
void ARM64FloatEmitter::EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) void ARM64FloatEmitter::EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{ {
_assert_msg_(DYNA_REC, IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rd); bool quad = IsQuad(Rd);
Rd = DecodeReg(Rd); Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1700,7 +1749,7 @@ void ARM64FloatEmitter::EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd
void ARM64FloatEmitter::Emit2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) void ARM64FloatEmitter::Emit2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{ {
_assert_msg_(DYNA_REC, IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rd); bool quad = IsQuad(Rd);
Rd = DecodeReg(Rd); Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1711,7 +1760,7 @@ void ARM64FloatEmitter::Emit2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd,
void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn) void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn)
{ {
_assert_msg_(DYNA_REC, IsSingle(Rt), "%s doesn't support singles!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rt); bool quad = IsQuad(Rt);
Rt = DecodeReg(Rt); Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1722,7 +1771,7 @@ void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode,
void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm) void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm)
{ {
_assert_msg_(DYNA_REC, IsSingle(Rt), "%s doesn't support singles!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rt); bool quad = IsQuad(Rt);
Rt = DecodeReg(Rt); Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1734,7 +1783,7 @@ void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode,
void ARM64FloatEmitter::Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) void ARM64FloatEmitter::Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{ {
_assert_msg_(DYNA_REC, IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__);
Rd = DecodeReg(Rd); Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1744,7 +1793,7 @@ void ARM64FloatEmitter::Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64R
void ARM64FloatEmitter::EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) void ARM64FloatEmitter::EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{ {
_assert_msg_(DYNA_REC, !(Rn <= SP), "%s only supports GPR as source!", __FUNCTION__); _assert_msg_(DYNA_REC, Rn <= SP, "%s only supports GPR as source!", __FUNCTION__);
Rd = DecodeReg(Rd); Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1754,7 +1803,7 @@ void ARM64FloatEmitter::EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32
void ARM64FloatEmitter::EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm) void ARM64FloatEmitter::EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm)
{ {
_assert_msg_(DYNA_REC, IsQuad(Rn), "%s doesn't support vector!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsQuad(Rn), "%s doesn't support vector!", __FUNCTION__);
bool is_double = IsDouble(Rn); bool is_double = IsDouble(Rn);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1766,7 +1815,7 @@ void ARM64FloatEmitter::EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Re
void ARM64FloatEmitter::EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) void ARM64FloatEmitter::EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{ {
_assert_msg_(DYNA_REC, IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__);
bool is_double = IsDouble(Rd); bool is_double = IsDouble(Rd);
Rd = DecodeReg(Rd); Rd = DecodeReg(Rd);
@ -1779,7 +1828,7 @@ void ARM64FloatEmitter::EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd
void ARM64FloatEmitter::EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm) void ARM64FloatEmitter::EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{ {
_assert_msg_(DYNA_REC, IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rd); bool quad = IsQuad(Rd);
@ -1801,7 +1850,7 @@ void ARM64FloatEmitter::EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn,
void ARM64FloatEmitter::EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm) void ARM64FloatEmitter::EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm)
{ {
_assert_msg_(DYNA_REC, IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__);
bool is_double = !IsSingle(Rd); bool is_double = !IsSingle(Rd);
@ -1815,7 +1864,7 @@ void ARM64FloatEmitter::EmitShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM
{ {
bool quad = IsQuad(Rd); bool quad = IsQuad(Rd);
_assert_msg_(DYNA_REC, !immh, "%s bad encoding! Can't have zero immh", __FUNCTION__); _assert_msg_(DYNA_REC, immh, "%s bad encoding! Can't have zero immh", __FUNCTION__);
Rd = DecodeReg(Rd); Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1844,7 +1893,7 @@ void ARM64FloatEmitter::EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opc
void ARM64FloatEmitter::EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) void ARM64FloatEmitter::EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{ {
_assert_msg_(DYNA_REC, IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__); _assert_msg_(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__);
Rd = DecodeReg(Rd); Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn); Rn = DecodeReg(Rn);
@ -1853,6 +1902,27 @@ void ARM64FloatEmitter::EmitScalar1Source(bool M, bool S, u32 type, u32 opcode,
(opcode << 15) | (1 << 14) | (Rn << 5) | Rd); (opcode << 15) | (1 << 14) | (Rn << 5) | Rd);
} }
void ARM64FloatEmitter::EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
bool quad = IsQuad(Rd);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((quad << 30) | (U << 29) | (0b01111 << 24) | (size << 22) | (L << 21) | \
(Rm << 16) | (opcode << 12) | (H << 11) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
_assert_msg_(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Write32((size << 30) | (0b1111 << 26) | (op << 22) | ((imm & 0x1FF) << 12) | (Rn << 5) | Rt);
}
void ARM64FloatEmitter::LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm) void ARM64FloatEmitter::LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{ {
EmitLoadStoreImmediate(size, 1, type, Rt, Rn, imm); EmitLoadStoreImmediate(size, 1, type, Rt, Rn, imm);
@ -1862,6 +1932,75 @@ void ARM64FloatEmitter::STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s
EmitLoadStoreImmediate(size, 0, type, Rt, Rn, imm); EmitLoadStoreImmediate(size, 0, type, Rt, Rn, imm);
} }
// Loadstore unscaled
void ARM64FloatEmitter::LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
u32 encoded_size = 0;
u32 encoded_op = 0;
if (size == 8)
{
encoded_size = 0;
encoded_op = 1;
}
else if (size == 16)
{
encoded_size = 1;
encoded_op = 1;
}
else if (size == 32)
{
encoded_size = 2;
encoded_op = 1;
}
else if (size == 64)
{
encoded_size = 3;
encoded_op = 1;
}
else if (size == 128)
{
encoded_size = 0;
encoded_op = 3;
}
EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm);
}
void ARM64FloatEmitter::STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
u32 encoded_size = 0;
u32 encoded_op = 0;
if (size == 8)
{
encoded_size = 0;
encoded_op = 0;
}
else if (size == 16)
{
encoded_size = 1;
encoded_op = 0;
}
else if (size == 32)
{
encoded_size = 2;
encoded_op = 0;
}
else if (size == 64)
{
encoded_size = 3;
encoded_op = 0;
}
else if (size == 128)
{
encoded_size = 0;
encoded_op = 2;
}
EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm);
}
// Loadstore single structure // Loadstore single structure
void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn) void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn)
{ {
@ -2083,7 +2222,7 @@ void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Re
// Loadstore multiple structure // Loadstore multiple structure
void ARM64FloatEmitter::LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn) void ARM64FloatEmitter::LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn)
{ {
_assert_msg_(DYNA_REC, count == 0 || count > 4, "%s must have a count of 1 to 4 registers!", __FUNCTION__); _assert_msg_(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", __FUNCTION__);
u32 opcode = 0; u32 opcode = 0;
if (count == 1) if (count == 1)
opcode = 0b111; opcode = 0b111;
@ -2095,6 +2234,21 @@ void ARM64FloatEmitter::LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn)
opcode = 0b0010; opcode = 0b0010;
EmitLoadStoreMultipleStructure(size, 1, opcode, Rt, Rn); EmitLoadStoreMultipleStructure(size, 1, opcode, Rt, Rn);
} }
void ARM64FloatEmitter::ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", __FUNCTION__);
u32 opcode = 0;
if (count == 1)
opcode = 0b111;
else if (count == 2)
opcode = 0b1010;
else if (count == 3)
opcode = 0b0110;
else if (count == 4)
opcode = 0b0010;
EmitLoadStoreMultipleStructure(size, 0, opcode, Rt, Rn);
}
// Scalar - 1 Source // Scalar - 1 Source
void ARM64FloatEmitter::FABS(ARM64Reg Rd, ARM64Reg Rn) void ARM64FloatEmitter::FABS(ARM64Reg Rd, ARM64Reg Rn)
{ {
@ -2317,8 +2471,8 @@ void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 ind
void ARM64FloatEmitter::UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index) void ARM64FloatEmitter::UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
{ {
bool b64Bit = Is64Bit(Rd); bool b64Bit = Is64Bit(Rd);
_assert_msg_(DYNA_REC, Rd > SP, "%s destination must be a GPR!", __FUNCTION__); _assert_msg_(DYNA_REC, Rd < SP, "%s destination must be a GPR!", __FUNCTION__);
_assert_msg_(DYNA_REC, b64Bit && size != 64, "%s must have a size of 64 when destination is 64bit!", __FUNCTION__); _assert_msg_(DYNA_REC, !(b64Bit && size != 64), "%s must have a size of 64 when destination is 64bit!", __FUNCTION__);
u32 imm5 = 0; u32 imm5 = 0;
if (size == 8) if (size == 8)
@ -2347,8 +2501,8 @@ void ARM64FloatEmitter::UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
void ARM64FloatEmitter::SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index) void ARM64FloatEmitter::SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
{ {
bool b64Bit = Is64Bit(Rd); bool b64Bit = Is64Bit(Rd);
_assert_msg_(DYNA_REC, Rd > SP, "%s destination must be a GPR!", __FUNCTION__); _assert_msg_(DYNA_REC, Rd < SP, "%s destination must be a GPR!", __FUNCTION__);
_assert_msg_(DYNA_REC, size == 64, "%s doesn't support 64bit destination. Use UMOV!", __FUNCTION__); _assert_msg_(DYNA_REC, size != 64, "%s doesn't support 64bit destination. Use UMOV!", __FUNCTION__);
u32 imm5 = 0; u32 imm5 = 0;
if (size == 8) if (size == 8)
@ -2513,7 +2667,7 @@ void ARM64FloatEmitter::ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
// Shift by immediate // Shift by immediate
void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{ {
_assert_msg_(DYNA_REC, shift >= src_size, "%s shift amount must less than the element size!", __FUNCTION__); _assert_msg_(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!", __FUNCTION__);
u32 immh = 0; u32 immh = 0;
u32 immb = shift & 0xFFF; u32 immb = shift & 0xFFF;
@ -2534,7 +2688,7 @@ void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{ {
_assert_msg_(DYNA_REC, shift >= src_size, "%s shift amount must less than the element size!", __FUNCTION__); _assert_msg_(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!", __FUNCTION__);
u32 immh = 0; u32 immh = 0;
u32 immb = shift & 0xFFF; u32 immb = shift & 0xFFF;
@ -2555,7 +2709,7 @@ void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift) void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{ {
_assert_msg_(DYNA_REC, shift >= dest_size, "%s shift amount must less than the element size!", __FUNCTION__); _assert_msg_(DYNA_REC, shift < dest_size, "%s shift amount must less than the element size!", __FUNCTION__);
u32 immh = 0; u32 immh = 0;
u32 immb = shift & 0xFFF; u32 immb = shift & 0xFFF;
@ -2584,6 +2738,27 @@ void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn)
USHLL(src_size, Rd, Rn, 0); USHLL(src_size, Rd, Rn, 0);
} }
// vector x indexed element
void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index)
{
_assert_msg_(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __FUNCTION__);
bool L = false;
bool H = false;
if (size == 32)
{
L = index & 1;
H = (index >> 1) & 1;
}
else if (size == 64)
{
H = index == 1;
}
EmitVectorxElement(0, 2 | (size >> 6), L, 0b1001, H, Rd, Rn, Rm);
}
void ARM64FloatEmitter::ABI_PushRegisters(BitSet32 registers) void ARM64FloatEmitter::ABI_PushRegisters(BitSet32 registers)
{ {
for (auto it : registers) for (auto it : registers)

View File

@ -4,6 +4,8 @@
#pragma once #pragma once
#include <functional>
#include "Common/ArmCommon.h" #include "Common/ArmCommon.h"
#include "Common/BitSet.h" #include "Common/BitSet.h"
#include "Common/CodeBlock.h" #include "Common/CodeBlock.h"
@ -76,8 +78,8 @@ enum ARM64Reg
}; };
inline bool Is64Bit(ARM64Reg reg) { return reg & 0x20; } inline bool Is64Bit(ARM64Reg reg) { return reg & 0x20; }
inline bool IsSingle(ARM64Reg reg) { return reg & 0x40; } inline bool IsSingle(ARM64Reg reg) { return (reg & 0xC0) == 0x40; }
inline bool IsDouble(ARM64Reg reg) { return reg & 0x80; } inline bool IsDouble(ARM64Reg reg) { return (reg & 0xC0) == 0x80; }
inline bool IsQuad(ARM64Reg reg) { return (reg & 0xC0) == 0xC0; } inline bool IsQuad(ARM64Reg reg) { return (reg & 0xC0) == 0xC0; }
inline bool IsVector(ARM64Reg reg) { return (reg & 0xC0) != 0; } inline bool IsVector(ARM64Reg reg) { return (reg & 0xC0) != 0; }
inline ARM64Reg DecodeReg(ARM64Reg reg) { return (ARM64Reg)(reg & 0x1F); } inline ARM64Reg DecodeReg(ARM64Reg reg) { return (ARM64Reg)(reg & 0x1F); }
@ -332,6 +334,7 @@ private:
void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms); void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); void EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm); void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm);
void EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
protected: protected:
inline void Write32(u32 value) inline void Write32(u32 value)
@ -477,6 +480,7 @@ public:
void MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm); void SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra); void UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
@ -582,6 +586,17 @@ public:
void LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
// Load/Store register (unscaled offset)
void STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Load/Store pair // Load/Store pair
void LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); void LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
void LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm); void LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
@ -630,6 +645,10 @@ public:
void LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm); void STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Loadstore unscaled
void LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
void STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
// Loadstore single structure // Loadstore single structure
void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn); void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm); void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
@ -639,6 +658,7 @@ public:
// Loadstore multiple structure // Loadstore multiple structure
void LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn); void LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
void ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
// Scalar - 1 Source // Scalar - 1 Source
void FABS(ARM64Reg Rd, ARM64Reg Rn); void FABS(ARM64Reg Rd, ARM64Reg Rn);
@ -723,6 +743,9 @@ public:
void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn); void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn); void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
// vector x indexed element
void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index);
// ABI related // ABI related
void ABI_PushRegisters(BitSet32 registers); void ABI_PushRegisters(BitSet32 registers);
void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0)); void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0));
@ -748,6 +771,8 @@ private:
void EmitShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void EmitShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn); void EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn);
void EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn); void EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
void EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
}; };
class ARM64CodeBlock : public CodeBlock<ARM64XEmitter> class ARM64CodeBlock : public CodeBlock<ARM64XEmitter>
@ -756,7 +781,7 @@ private:
void PoisonMemory() override void PoisonMemory() override
{ {
u32* ptr = (u32*)region; u32* ptr = (u32*)region;
u32* maxptr = (u32*)region + region_size; u32* maxptr = (u32*)(region + region_size);
// If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything // If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything
// Less than optimal, but there would be nothing we could do but throw a runtime warning anyway. // Less than optimal, but there would be nothing we could do but throw a runtime warning anyway.
// AArch64: 0xD4200000 = BRK 0 // AArch64: 0xD4200000 = BRK 0

View File

@ -689,7 +689,7 @@ private:
void PoisonMemory() override void PoisonMemory() override
{ {
u32* ptr = (u32*)region; u32* ptr = (u32*)region;
u32* maxptr = (u32*)region + region_size; u32* maxptr = (u32*)(region + region_size);
// If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything // If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything
// Less than optimal, but there would be nothing we could do but throw a runtime warning anyway. // Less than optimal, but there would be nothing we could do but throw a runtime warning anyway.
// ARM: 0x01200070 = BKPT 0 // ARM: 0x01200070 = BKPT 0

View File

@ -137,7 +137,7 @@ u32 JitArm64::EmitBackpatchRoutine(ARM64XEmitter* emit, u32 flags, bool fastmem,
ARM64FloatEmitter float_emit(emit); ARM64FloatEmitter float_emit(emit);
if (flags & BackPatchInfo::FLAG_SIZE_F32) if (flags & BackPatchInfo::FLAG_SIZE_F32)
{ {
float_emit.FCVT(32, 64, Q0, RS); float_emit.FCVT(32, 64, D0, RS);
float_emit.REV32(8, D0, D0); float_emit.REV32(8, D0, D0);
trouble_offset = (emit->GetCodePtr() - code_base) / 4; trouble_offset = (emit->GetCodePtr() - code_base) / 4;
float_emit.STR(32, INDEX_UNSIGNED, D0, addr, 0); float_emit.STR(32, INDEX_UNSIGNED, D0, addr, 0);
@ -215,7 +215,7 @@ u32 JitArm64::EmitBackpatchRoutine(ARM64XEmitter* emit, u32 flags, bool fastmem,
ARM64FloatEmitter float_emit(emit); ARM64FloatEmitter float_emit(emit);
if (flags & BackPatchInfo::FLAG_SIZE_F32) if (flags & BackPatchInfo::FLAG_SIZE_F32)
{ {
float_emit.FCVT(32, 64, Q0, RS); float_emit.FCVT(32, 64, D0, RS);
float_emit.UMOV(32, W0, Q0, 0); float_emit.UMOV(32, W0, Q0, 0);
emit->MOVI2R(X30, (u64)&PowerPC::Write_U32); emit->MOVI2R(X30, (u64)&PowerPC::Write_U32);
emit->BLR(X30); emit->BLR(X30);

View File

@ -390,7 +390,7 @@ void JitArm64::stfXX(UGeckoInstruction inst)
} }
else if (accessSize == 32) else if (accessSize == 32)
{ {
m_float_emit.FCVT(32, 64, Q0, V0); m_float_emit.FCVT(32, 64, D0, EncodeRegToDouble(V0));
m_float_emit.REV32(8, D0, D0); m_float_emit.REV32(8, D0, D0);
m_float_emit.STR(32, INDEX_UNSIGNED, D0, X1, 0); m_float_emit.STR(32, INDEX_UNSIGNED, D0, X1, 0);
} }

View File

@ -46,14 +46,14 @@ u32 Arm64RegCache::GetUnlockedRegisterCount()
void Arm64RegCache::LockRegister(ARM64Reg host_reg) void Arm64RegCache::LockRegister(ARM64Reg host_reg)
{ {
auto reg = std::find(m_host_registers.begin(), m_host_registers.end(), host_reg); auto reg = std::find(m_host_registers.begin(), m_host_registers.end(), host_reg);
_assert_msg_(DYNA_REC, reg == m_host_registers.end(), "Don't try locking a register that isn't in the cache"); _assert_msg_(DYNA_REC, reg != m_host_registers.end(), "Don't try locking a register that isn't in the cache. Reg %d", host_reg);
reg->Lock(); reg->Lock();
} }
void Arm64RegCache::UnlockRegister(ARM64Reg host_reg) void Arm64RegCache::UnlockRegister(ARM64Reg host_reg)
{ {
auto reg = std::find(m_host_registers.begin(), m_host_registers.end(), host_reg); auto reg = std::find(m_host_registers.begin(), m_host_registers.end(), host_reg);
_assert_msg_(DYNA_REC, reg == m_host_registers.end(), "Don't try unlocking a register that isn't in the cache"); _assert_msg_(DYNA_REC, reg != m_host_registers.end(), "Don't try unlocking a register that isn't in the cache. Reg %d", host_reg);
reg->Unlock(); reg->Unlock();
} }

View File

@ -128,8 +128,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(addr_reg, (u64)&m_dequantizeTableS); MOVI2R(addr_reg, (u64)&m_dequantizeTableS);
ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
RET(X30); RET(X30);
} }
const u8* loadPairedS8Two = GetCodePtr(); const u8* loadPairedS8Two = GetCodePtr();
@ -142,8 +142,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(addr_reg, (u64)&m_dequantizeTableS); MOVI2R(addr_reg, (u64)&m_dequantizeTableS);
ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
RET(X30); RET(X30);
} }
const u8* loadPairedU16Two = GetCodePtr(); const u8* loadPairedU16Two = GetCodePtr();
@ -156,8 +156,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(addr_reg, (u64)&m_dequantizeTableS); MOVI2R(addr_reg, (u64)&m_dequantizeTableS);
ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
RET(X30); RET(X30);
} }
const u8* loadPairedS16Two = GetCodePtr(); const u8* loadPairedS16Two = GetCodePtr();
@ -170,8 +170,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(addr_reg, (u64)&m_dequantizeTableS); MOVI2R(addr_reg, (u64)&m_dequantizeTableS);
ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
RET(X30); RET(X30);
} }
@ -192,8 +192,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(addr_reg, (u64)&m_dequantizeTableS); MOVI2R(addr_reg, (u64)&m_dequantizeTableS);
ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
RET(X30); RET(X30);
} }
const u8* loadPairedS8One = GetCodePtr(); const u8* loadPairedS8One = GetCodePtr();
@ -206,8 +206,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(addr_reg, (u64)&m_dequantizeTableS); MOVI2R(addr_reg, (u64)&m_dequantizeTableS);
ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
RET(X30); RET(X30);
} }
const u8* loadPairedU16One = GetCodePtr(); const u8* loadPairedU16One = GetCodePtr();
@ -220,8 +220,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(addr_reg, (u64)&m_dequantizeTableS); MOVI2R(addr_reg, (u64)&m_dequantizeTableS);
ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
RET(X30); RET(X30);
} }
const u8* loadPairedS16One = GetCodePtr(); const u8* loadPairedS16One = GetCodePtr();
@ -234,8 +234,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(addr_reg, (u64)&m_dequantizeTableS); MOVI2R(addr_reg, (u64)&m_dequantizeTableS);
ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, addr_reg, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
RET(X30); RET(X30);
} }
@ -295,8 +295,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(X2, (u64)&m_quantizeTableS); MOVI2R(X2, (u64)&m_quantizeTableS);
ADD(scale_reg, X2, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, X2, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
float_emit.FCVTZU(32, D0, D0); float_emit.FCVTZU(32, D0, D0);
float_emit.XTN(16, D0, D0); float_emit.XTN(16, D0, D0);
float_emit.XTN(8, D0, D0); float_emit.XTN(8, D0, D0);
@ -326,8 +326,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(X2, (u64)&m_quantizeTableS); MOVI2R(X2, (u64)&m_quantizeTableS);
ADD(scale_reg, X2, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, X2, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
float_emit.FCVTZS(32, D0, D0); float_emit.FCVTZS(32, D0, D0);
float_emit.XTN(16, D0, D0); float_emit.XTN(16, D0, D0);
float_emit.XTN(8, D0, D0); float_emit.XTN(8, D0, D0);
@ -358,8 +358,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(X2, (u64)&m_quantizeTableS); MOVI2R(X2, (u64)&m_quantizeTableS);
ADD(scale_reg, X2, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, X2, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
float_emit.FCVTZU(32, D0, D0); float_emit.FCVTZU(32, D0, D0);
float_emit.XTN(16, D0, D0); float_emit.XTN(16, D0, D0);
float_emit.REV16(8, D0, D0); float_emit.REV16(8, D0, D0);
@ -388,8 +388,8 @@ void JitArm64AsmRoutineManager::GenerateCommon()
MOVI2R(X2, (u64)&m_quantizeTableS); MOVI2R(X2, (u64)&m_quantizeTableS);
ADD(scale_reg, X2, scale_reg, ArithOption(scale_reg, ST_LSL, 3)); ADD(scale_reg, X2, scale_reg, ArithOption(scale_reg, ST_LSL, 3));
float_emit.LD1R(32, D1, scale_reg); float_emit.LDR(32, INDEX_UNSIGNED, D1, scale_reg, 0);
float_emit.FMUL(32, D0, D0, D1); float_emit.FMUL(32, D0, D0, D1, 0);
float_emit.FCVTZS(32, D0, D0); float_emit.FCVTZS(32, D0, D0);
float_emit.XTN(16, D0, D0); float_emit.XTN(16, D0, D0);
float_emit.REV16(8, D0, D0); float_emit.REV16(8, D0, D0);

View File

@ -105,6 +105,12 @@ void Host_SetWiiMoteConnectionState(int _State) {}
void Host_ShowVideoConfig(void*, const std::string&, const std::string&) {} void Host_ShowVideoConfig(void*, const std::string&, const std::string&) {}
static bool MsgAlert(const char* caption, const char* text, bool /*yes_no*/, int /*Style*/)
{
__android_log_print(ANDROID_LOG_INFO, DOLPHIN_TAG, "%s:%s", caption, text);
return false;
}
#define DVD_BANNER_WIDTH 96 #define DVD_BANNER_WIDTH 96
#define DVD_BANNER_HEIGHT 32 #define DVD_BANNER_HEIGHT 32
std::vector<std::string> m_volume_names; std::vector<std::string> m_volume_names;
@ -344,6 +350,8 @@ JNIEXPORT void JNICALL Java_org_dolphinemu_dolphinemu_NativeLibrary_Run(JNIEnv *
OSD::AddCallback(OSD::OSD_INIT, ButtonManager::Init); OSD::AddCallback(OSD::OSD_INIT, ButtonManager::Init);
OSD::AddCallback(OSD::OSD_SHUTDOWN, ButtonManager::Shutdown); OSD::AddCallback(OSD::OSD_SHUTDOWN, ButtonManager::Shutdown);
RegisterMsgAlertHandler(&MsgAlert);
UICommon::Init(); UICommon::Init();
// No use running the loop when booting fails // No use running the loop when booting fails

View File

@ -174,9 +174,9 @@ void SWVertexLoader::LoadVertex()
// convert the vertex from the gc format to the videocommon (hardware optimized) format // convert the vertex from the gc format to the videocommon (hardware optimized) format
u8* old = g_video_buffer_read_ptr; u8* old = g_video_buffer_read_ptr;
int converted_vertices = m_CurrentLoader->RunVertices( int converted_vertices = m_CurrentLoader->RunVertices(
m_primitiveType, 1,
DataReader(g_video_buffer_read_ptr, nullptr), // src DataReader(g_video_buffer_read_ptr, nullptr), // src
DataReader(m_LoadedVertices.data(), m_LoadedVertices.data() + m_LoadedVertices.size()) // dst DataReader(m_LoadedVertices.data(), m_LoadedVertices.data() + m_LoadedVertices.size()), // dst
1, m_primitiveType
); );
g_video_buffer_read_ptr = old + m_CurrentLoader->m_VertexSize; g_video_buffer_read_ptr = old + m_CurrentLoader->m_VertexSize;

View File

@ -45,12 +45,11 @@ set(SRCS BoundingBox.cpp
set(LIBS core png) set(LIBS core png)
if(_M_X86) if(_M_X86)
set(SRCS ${SRCS} TextureDecoder_x64.cpp VertexLoaderX64.cpp) set(SRCS ${SRCS} TextureDecoder_x64.cpp VertexLoaderX64.cpp)
elseif(_M_ARM_64)
set(SRCS ${SRCS} VertexLoaderARM64.cpp TextureDecoder_Generic.cpp)
else() else()
set(SRCS ${SRCS} TextureDecoder_Generic.cpp) set(SRCS ${SRCS} TextureDecoder_Generic.cpp)
endif()
if(NOT ${CL} STREQUAL CL-NOTFOUND)
list(APPEND LIBS ${CL})
endif() endif()
if(LIBAV_FOUND OR WIN32) if(LIBAV_FOUND OR WIN32)

View File

@ -316,7 +316,7 @@ void VertexLoader::WriteCall(TPipelineFunction func)
m_PipelineStages[m_numPipelineStages++] = func; m_PipelineStages[m_numPipelineStages++] = func;
} }
int VertexLoader::RunVertices(int primitive, int count, DataReader src, DataReader dst) int VertexLoader::RunVertices(DataReader src, DataReader dst, int count, int primitive)
{ {
g_vertex_manager_write_ptr = dst.GetPointer(); g_vertex_manager_write_ptr = dst.GetPointer();
g_video_buffer_read_ptr = src.GetPointer(); g_video_buffer_read_ptr = src.GetPointer();

View File

@ -32,7 +32,7 @@ class VertexLoader : public VertexLoaderBase
public: public:
VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr); VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr);
int RunVertices(int primitive, int count, DataReader src, DataReader dst) override; int RunVertices(DataReader src, DataReader dst, int count, int primitive) override;
std::string GetName() const override { return "OldLoader"; } std::string GetName() const override { return "OldLoader"; }
bool IsInitialized() override { return true; } // This vertex loader supports all formats bool IsInitialized() override { return true; } // This vertex loader supports all formats

View File

@ -0,0 +1,541 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "VideoCommon/VertexLoaderARM64.h"
using namespace Arm64Gen;
ARM64Reg src_reg = X0;
ARM64Reg dst_reg = X1;
ARM64Reg count_reg = W2;
ARM64Reg skipped_reg = W17;
ARM64Reg scratch1_reg = W16;
ARM64Reg scratch2_reg = W15;
ARM64Reg scratch3_reg = W14;
ARM64Reg scratch4_reg = W13;
ARM64Reg saved_count = W12;
ARM64Reg stride_reg = X11;
ARM64Reg arraybase_reg = X10;
ARM64Reg scale_reg = X9;
static const float GC_ALIGNED16(scale_factors[]) =
{
1.0 / (1ULL << 0), 1.0 / (1ULL << 1), 1.0 / (1ULL << 2), 1.0 / (1ULL << 3),
1.0 / (1ULL << 4), 1.0 / (1ULL << 5), 1.0 / (1ULL << 6), 1.0 / (1ULL << 7),
1.0 / (1ULL << 8), 1.0 / (1ULL << 9), 1.0 / (1ULL << 10), 1.0 / (1ULL << 11),
1.0 / (1ULL << 12), 1.0 / (1ULL << 13), 1.0 / (1ULL << 14), 1.0 / (1ULL << 15),
1.0 / (1ULL << 16), 1.0 / (1ULL << 17), 1.0 / (1ULL << 18), 1.0 / (1ULL << 19),
1.0 / (1ULL << 20), 1.0 / (1ULL << 21), 1.0 / (1ULL << 22), 1.0 / (1ULL << 23),
1.0 / (1ULL << 24), 1.0 / (1ULL << 25), 1.0 / (1ULL << 26), 1.0 / (1ULL << 27),
1.0 / (1ULL << 28), 1.0 / (1ULL << 29), 1.0 / (1ULL << 30), 1.0 / (1ULL << 31),
};
VertexLoaderARM64::VertexLoaderARM64(const TVtxDesc& vtx_desc, const VAT& vtx_att)
: VertexLoaderBase(vtx_desc, vtx_att), m_float_emit(this)
{
if (!IsInitialized())
return;
AllocCodeSpace(4096);
ClearCodeSpace();
GenerateVertexLoader();
WriteProtect();
}
void VertexLoaderARM64::GetVertexAddr(int array, u64 attribute, ARM64Reg reg)
{
ADD(reg, src_reg, m_src_ofs);
if (attribute & MASK_INDEXED)
{
if (attribute == INDEX8)
{
LDRB(INDEX_UNSIGNED, scratch1_reg, reg, 0);
m_src_ofs += 1;
}
else
{
LDRH(INDEX_UNSIGNED, scratch1_reg, reg, 0);
m_src_ofs += 2;
REV16(scratch1_reg, scratch1_reg);
}
if (array == ARRAY_POSITION)
{
EOR(scratch2_reg, scratch1_reg, 0, attribute == INDEX8 ? 7 : 15); // 0xFF : 0xFFFF
m_skip_vertex = CBZ(scratch2_reg);
}
LDR(INDEX_UNSIGNED, scratch2_reg, stride_reg, array * 4);
MUL(scratch1_reg, scratch1_reg, scratch2_reg);
LDR(INDEX_UNSIGNED, EncodeRegTo64(scratch2_reg), arraybase_reg, array * 8);
ADD(EncodeRegTo64(reg), EncodeRegTo64(scratch1_reg), EncodeRegTo64(scratch2_reg));
}
}
s32 VertexLoaderARM64::GetAddressImm(int array, u64 attribute, Arm64Gen::ARM64Reg reg, u32 align)
{
if (attribute & MASK_INDEXED ||
(m_src_ofs > 255 && (m_src_ofs & (align - 1))))
GetVertexAddr(array, attribute, reg);
else
return m_src_ofs;
return -1;
}
int VertexLoaderARM64::ReadVertex(u64 attribute, int format, int count_in, int count_out, bool dequantize, u8 scaling_exponent, AttributeFormat* native_format, s32 offset)
{
ARM64Reg coords = count_in == 3 ? Q31 : D31;
ARM64Reg scale = count_in == 3 ? Q30 : D30;
int elem_size = 1 << (format / 2);
int load_bytes = elem_size * count_in;
int load_size = load_bytes == 1 ? 1 : load_bytes <= 2 ? 2 : load_bytes <= 4 ? 4 : load_bytes <= 8 ? 8 : 16;
load_size <<= 3;
elem_size <<= 3;
if (offset == -1)
{
if (count_in == 1)
m_float_emit.LDR(elem_size, INDEX_UNSIGNED, coords, EncodeRegTo64(scratch1_reg), 0);
else
m_float_emit.LD1(elem_size, 1, coords, EncodeRegTo64(scratch1_reg));
}
else if (offset & (load_size - 1)) // Not aligned - unscaled
{
m_float_emit.LDUR(load_size, coords, src_reg, offset);
}
else
{
m_float_emit.LDR(load_size, INDEX_UNSIGNED, coords, src_reg, offset);
}
if (format != FORMAT_FLOAT)
{
// Extend and convert to float
switch (format)
{
case FORMAT_UBYTE:
m_float_emit.UXTL(8, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
m_float_emit.UXTL(16, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
break;
case FORMAT_BYTE:
m_float_emit.SXTL(8, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
m_float_emit.SXTL(16, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
break;
case FORMAT_USHORT:
m_float_emit.REV16(8, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
m_float_emit.UXTL(16, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
break;
case FORMAT_SHORT:
m_float_emit.REV16(8, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
m_float_emit.SXTL(16, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
break;
}
m_float_emit.SCVTF(32, coords, coords);
if (dequantize && scaling_exponent)
{
m_float_emit.LDR(32, INDEX_UNSIGNED, scale, scale_reg, scaling_exponent * 4);
m_float_emit.FMUL(32, coords, coords, scale, 0);
}
}
else
{
m_float_emit.REV32(8, coords, coords);
}
const u32 write_size = count_out == 3 ? 128 : count_out * 32;
const u32 mask = count_out == 3 ? 0xF : count_out == 2 ? 0x7 : 0x3;
if (m_dst_ofs < 256)
{
m_float_emit.STUR(write_size, coords, dst_reg, m_dst_ofs);
}
else if (!(m_dst_ofs & mask))
{
m_float_emit.STR(write_size, INDEX_UNSIGNED, coords, dst_reg, m_dst_ofs);
}
else
{
ADD(EncodeRegTo64(scratch2_reg), dst_reg, m_dst_ofs);
m_float_emit.ST1(32, 1, coords, EncodeRegTo64(scratch2_reg));
}
native_format->components = count_out;
native_format->enable = true;
native_format->offset = m_dst_ofs;
native_format->type = VAR_FLOAT;
native_format->integer = false;
m_dst_ofs += sizeof(float) * count_out;
if (attribute == DIRECT)
m_src_ofs += load_bytes;
return load_bytes;
}
void VertexLoaderARM64::ReadColor(u64 attribute, int format, s32 offset)
{
int load_bytes = 0;
switch (format)
{
case FORMAT_24B_888:
case FORMAT_32B_888x:
case FORMAT_32B_8888:
if (offset == -1)
LDR(INDEX_UNSIGNED, scratch2_reg, EncodeRegTo64(scratch1_reg), 0);
else if (offset & 3) // Not aligned - unscaled
LDUR(scratch2_reg, src_reg, offset);
else
LDR(INDEX_UNSIGNED, scratch2_reg, src_reg, offset);
if (format != FORMAT_32B_8888)
ORR(scratch2_reg, scratch2_reg, 8, 7); // 0xFF000000
STR(INDEX_UNSIGNED, scratch2_reg, dst_reg, m_dst_ofs);
load_bytes = 3 + (format != FORMAT_24B_888);
break;
case FORMAT_16B_565:
// RRRRRGGG GGGBBBBB
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
if (offset == -1)
LDRH(INDEX_UNSIGNED, scratch3_reg, EncodeRegTo64(scratch1_reg), 0);
else if (offset & 1) // Not aligned - unscaled
LDURH(scratch2_reg, src_reg, offset);
else
LDRH(INDEX_UNSIGNED, scratch3_reg, src_reg, offset);
REV16(scratch3_reg, scratch3_reg);
// B
AND(scratch2_reg, scratch3_reg, 32, 4);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 3));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 5));
ORR(scratch1_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 16));
// G
UBFM(scratch2_reg, scratch3_reg, 5, 10);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 6));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 8));
// R
UBFM(scratch2_reg, scratch3_reg, 11, 15);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 3));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 2));
// A
ORR(scratch2_reg, scratch2_reg, 8, 7); // 0xFF000000
STR(INDEX_UNSIGNED, scratch1_reg, dst_reg, m_dst_ofs);
load_bytes = 2;
break;
case FORMAT_16B_4444:
// BBBBAAAA RRRRGGGG
// REV16 - RRRRGGGG BBBBAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
if (offset == -1)
LDRH(INDEX_UNSIGNED, scratch3_reg, EncodeRegTo64(scratch1_reg), 0);
else if (offset & 1) // Not aligned - unscaled
LDURH(scratch2_reg, src_reg, offset);
else
LDRH(INDEX_UNSIGNED, scratch3_reg, src_reg, offset);
// R
UBFM(scratch1_reg, scratch3_reg, 4, 7);
// G
AND(scratch2_reg, scratch3_reg, 32, 3);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 8));
// B
UBFM(scratch2_reg, scratch3_reg, 12, 15);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 16));
// A
UBFM(scratch2_reg, scratch3_reg, 8, 11);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 24));
// Final duplication
ORR(scratch1_reg, scratch1_reg, scratch1_reg, ArithOption(scratch1_reg, ST_LSL, 4));
STR(INDEX_UNSIGNED, scratch1_reg, dst_reg, m_dst_ofs);
load_bytes = 2;
break;
case FORMAT_24B_6666:
// RRRRRRGG GGGGBBBB BBAAAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
if (offset == -1)
LDR(INDEX_UNSIGNED, scratch3_reg, EncodeRegTo64(scratch1_reg), 0);
else if (offset & 3) // Not aligned - unscaled
LDUR(scratch2_reg, src_reg, offset);
else
LDR(INDEX_UNSIGNED, scratch3_reg, src_reg, m_src_ofs);
REV32(scratch3_reg, scratch3_reg);
// A
AND(scratch2_reg, scratch3_reg, 32, 5);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 6));
ORR(scratch1_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 24));
// B
UBFM(scratch2_reg, scratch3_reg, 6, 11);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 6));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 16));
// G
UBFM(scratch2_reg, scratch3_reg, 12, 17);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 6));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 8));
// R
UBFM(scratch2_reg, scratch3_reg, 18, 23);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 4));
STR(INDEX_UNSIGNED, scratch1_reg, dst_reg, m_dst_ofs);
load_bytes = 3;
break;
}
if (attribute == DIRECT)
m_src_ofs += load_bytes;
}
void VertexLoaderARM64::GenerateVertexLoader()
{
// R0 - Source pointer
// R1 - Destination pointer
// R2 - Count
// R30 - LR
//
// R0 return how many
//
// Registers we don't have to worry about saving
// R9-R17 are caller saved temporaries
// R18 is a temporary or platform specific register(iOS)
//
// VFP registers
// We can touch all except v8-v15
// If we need to use those, we need to retain the lower 64bits(!) of the register
MOV(skipped_reg, WSP);
MOV(saved_count, count_reg);
MOVI2R(stride_reg, (u64)&g_main_cp_state.array_strides);
MOVI2R(arraybase_reg, (u64)&cached_arraybases);
MOVI2R(scale_reg, (u64)&scale_factors);
const u8* loop_start = GetCodePtr();
if (m_VtxDesc.PosMatIdx)
{
LDRB(INDEX_UNSIGNED, scratch1_reg, src_reg, m_src_ofs);
AND(scratch1_reg, scratch1_reg, 0, 5);
STR(INDEX_UNSIGNED, scratch1_reg, dst_reg, m_dst_ofs);
m_native_components |= VB_HAS_POSMTXIDX;
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = m_dst_ofs;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
m_src_ofs += sizeof(u8);
m_dst_ofs += sizeof(u32);
}
u32 texmatidx_ofs[8];
const u64 tm[8] = {
m_VtxDesc.Tex0MatIdx, m_VtxDesc.Tex1MatIdx, m_VtxDesc.Tex2MatIdx, m_VtxDesc.Tex3MatIdx,
m_VtxDesc.Tex4MatIdx, m_VtxDesc.Tex5MatIdx, m_VtxDesc.Tex6MatIdx, m_VtxDesc.Tex7MatIdx,
};
for (int i = 0; i < 8; i++)
{
if (tm[i])
texmatidx_ofs[i] = m_src_ofs++;
}
// Position
{
int elem_size = 1 << (m_VtxAttr.PosFormat / 2);
int load_bytes = elem_size * (m_VtxAttr.PosElements + 2);
int load_size = load_bytes == 1 ? 1 : load_bytes <= 2 ? 2 : load_bytes <= 4 ? 4 : load_bytes <= 8 ? 8 : 16;
load_size <<= 3;
s32 offset = GetAddressImm(ARRAY_POSITION, m_VtxDesc.Position, EncodeRegTo64(scratch1_reg), load_size);
ReadVertex(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements + 2, 3,
m_VtxAttr.ByteDequant, m_VtxAttr.PosFrac, &m_native_vtx_decl.position, offset);
}
if (m_VtxDesc.Normal)
{
static const u8 map[8] = {7, 6, 15, 14};
u8 scaling_exponent = map[m_VtxAttr.NormalFormat];
s32 offset = -1;
for (int i = 0; i < (m_VtxAttr.NormalElements ? 3 : 1); i++)
{
if (!i || m_VtxAttr.NormalIndex3)
{
int elem_size = 1 << (m_VtxAttr.NormalFormat / 2);
int load_bytes = elem_size * 3;
int load_size = load_bytes == 1 ? 1 : load_bytes <= 2 ? 2 : load_bytes <= 4 ? 4 : load_bytes <= 8 ? 8 : 16;
offset = GetAddressImm(ARRAY_NORMAL, m_VtxDesc.Normal, EncodeRegTo64(scratch1_reg), load_size << 3);
if (offset == -1)
ADD(EncodeRegTo64(scratch1_reg), EncodeRegTo64(scratch1_reg), i * elem_size * 3);
else
offset += i * elem_size * 3;
}
int bytes_read = ReadVertex(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, 3, 3,
true, scaling_exponent, &m_native_vtx_decl.normals[i], offset);
if (offset == -1)
ADD(EncodeRegTo64(scratch1_reg), EncodeRegTo64(scratch1_reg), bytes_read);
else
offset += bytes_read;
}
m_native_components |= VB_HAS_NRM0;
if (m_VtxAttr.NormalElements)
m_native_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
const u64 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++)
{
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
if (col[i])
{
u32 align = 4;
if (m_VtxAttr.color[i].Comp == FORMAT_16B_565 ||
m_VtxAttr.color[i].Comp == FORMAT_16B_4444)
align = 2;
s32 offset = GetAddressImm(ARRAY_COLOR + i, col[i], EncodeRegTo64(scratch1_reg), align);
ReadColor(col[i], m_VtxAttr.color[i].Comp, offset);
m_native_components |= VB_HAS_COL0 << i;
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].enable = true;
m_native_vtx_decl.colors[i].offset = m_dst_ofs;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
m_dst_ofs += 4;
}
}
const u64 tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
for (int i = 0; i < 8; i++)
{
m_native_vtx_decl.texcoords[i].offset = m_dst_ofs;
m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
m_native_vtx_decl.texcoords[i].integer = false;
int elements = m_VtxAttr.texCoord[i].Elements + 1;
if (tc[i])
{
m_native_components |= VB_HAS_UV0 << i;
int elem_size = 1 << (m_VtxAttr.texCoord[i].Format / 2);
int load_bytes = elem_size * (elements + 2);
int load_size = load_bytes == 1 ? 1 : load_bytes <= 2 ? 2 : load_bytes <= 4 ? 4 : load_bytes <= 8 ? 8 : 16;
load_size <<= 3;
s32 offset = GetAddressImm(ARRAY_TEXCOORD0 + i, tc[i], EncodeRegTo64(scratch1_reg), load_size);
u8 scaling_exponent = m_VtxAttr.texCoord[i].Frac;
ReadVertex(tc[i], m_VtxAttr.texCoord[i].Format, elements, tm[i] ? 2 : elements,
m_VtxAttr.ByteDequant, scaling_exponent, &m_native_vtx_decl.texcoords[i], offset);
}
if (tm[i])
{
m_native_components |= VB_HAS_TEXMTXIDX0 << i;
m_native_vtx_decl.texcoords[i].components = 3;
m_native_vtx_decl.texcoords[i].enable = true;
m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
m_native_vtx_decl.texcoords[i].integer = false;
LDRB(INDEX_UNSIGNED, scratch2_reg, src_reg, texmatidx_ofs[i]);
m_float_emit.UCVTF(S31, scratch2_reg);
if (tc[i])
{
m_float_emit.STR(32, INDEX_UNSIGNED, D31, dst_reg, m_dst_ofs);
m_dst_ofs += sizeof(float);
}
else
{
m_native_vtx_decl.texcoords[i].offset = m_dst_ofs;
if (m_dst_ofs < 256)
{
STUR(SP, dst_reg, m_dst_ofs);
}
else if (!(m_dst_ofs & 7))
{
// If m_dst_ofs isn't 8byte aligned we can't store an 8byte zero register
// So store two 4byte zero registers
// The destination is always 4byte aligned
STR(INDEX_UNSIGNED, WSP, dst_reg, m_dst_ofs);
STR(INDEX_UNSIGNED, WSP, dst_reg, m_dst_ofs + 4);
}
else
{
STR(INDEX_UNSIGNED, SP, dst_reg, m_dst_ofs);
}
m_float_emit.STR(32, INDEX_UNSIGNED, D31, dst_reg, m_dst_ofs + 8);
m_dst_ofs += sizeof(float) * 3;
}
}
}
// Prepare for the next vertex.
ADD(dst_reg, dst_reg, m_dst_ofs);
const u8* cont = GetCodePtr();
ADD(src_reg, src_reg, m_src_ofs);
SUB(count_reg, count_reg, 1);
CBNZ(count_reg, loop_start);
if (m_VtxDesc.Position & MASK_INDEXED)
{
SUB(W0, saved_count, skipped_reg);
RET(X30);
SetJumpTarget(m_skip_vertex);
ADD(skipped_reg, skipped_reg, 1);
B(cont);
}
else
{
MOV(W0, saved_count);
RET(X30);
}
FlushIcache();
m_VertexSize = m_src_ofs;
m_native_vtx_decl.stride = m_dst_ofs;
}
int VertexLoaderARM64::RunVertices(DataReader src, DataReader dst, int count, int primitive)
{
m_numLoadedVertices += count;
return ((int (*)(u8* src, u8* dst, int count))region)(src.GetPointer(), dst.GetPointer(), count);
}

View File

@ -0,0 +1,29 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "Common/Arm64Emitter.h"
#include "VideoCommon/VertexLoaderBase.h"
class VertexLoaderARM64 : public VertexLoaderBase, public Arm64Gen::ARM64CodeBlock
{
public:
VertexLoaderARM64(const TVtxDesc& vtx_desc, const VAT& vtx_att);
protected:
std::string GetName() const override { return "VertexLoaderARM64"; }
bool IsInitialized() override { return true; }
int RunVertices(DataReader src, DataReader dst, int count, int primitive) override;
private:
u32 m_src_ofs = 0;
u32 m_dst_ofs = 0;
Arm64Gen::FixupBranch m_skip_vertex;
Arm64Gen::ARM64FloatEmitter m_float_emit;
void GetVertexAddr(int array, u64 attribute, Arm64Gen::ARM64Reg reg);
s32 GetAddressImm(int array, u64 attribute, Arm64Gen::ARM64Reg reg, u32 align);
int ReadVertex(u64 attribute, int format, int count_in, int count_out, bool dequantize, u8 scaling_exponent, AttributeFormat* native_format, s32 offset = -1);
void ReadColor(u64 attribute, int format, s32 offset);
void GenerateVertexLoader();
};

View File

@ -12,6 +12,8 @@
#ifdef _M_X86_64 #ifdef _M_X86_64
#include "VideoCommon/VertexLoaderX64.h" #include "VideoCommon/VertexLoaderX64.h"
#elif defined(_M_ARM_64)
#include "VideoCommon/VertexLoaderARM64.h"
#endif #endif
VertexLoaderBase::VertexLoaderBase(const TVtxDesc &vtx_desc, const VAT &vtx_attr) VertexLoaderBase::VertexLoaderBase(const TVtxDesc &vtx_desc, const VAT &vtx_attr)
@ -159,13 +161,13 @@ public:
delete b; delete b;
} }
int RunVertices(int primitive, int count, DataReader src, DataReader dst) override int RunVertices(DataReader src, DataReader dst, int count, int primitive) override
{ {
buffer_a.resize(count * a->m_native_vtx_decl.stride + 4); buffer_a.resize(count * a->m_native_vtx_decl.stride + 4);
buffer_b.resize(count * b->m_native_vtx_decl.stride + 4); buffer_b.resize(count * b->m_native_vtx_decl.stride + 4);
int count_a = a->RunVertices(primitive, count, src, DataReader(buffer_a.data(), buffer_a.data()+buffer_a.size())); int count_a = a->RunVertices(src, DataReader(buffer_a.data(), buffer_a.data()+buffer_a.size()), count, primitive);
int count_b = b->RunVertices(primitive, count, src, DataReader(buffer_b.data(), buffer_b.data()+buffer_b.size())); int count_b = b->RunVertices(src, DataReader(buffer_b.data(), buffer_b.data()+buffer_b.size()), count, primitive);
if (count_a != count_b) if (count_a != count_b)
ERROR_LOG(VIDEO, "The two vertex loaders have loaded a different amount of vertices (a: %d, b: %d).", count_a, count_b); ERROR_LOG(VIDEO, "The two vertex loaders have loaded a different amount of vertices (a: %d, b: %d).", count_a, count_b);
@ -208,6 +210,11 @@ VertexLoaderBase* VertexLoaderBase::CreateVertexLoader(const TVtxDesc& vtx_desc,
if (loader->IsInitialized()) if (loader->IsInitialized())
return loader; return loader;
delete loader; delete loader;
#elif defined(_M_ARM_64)
loader = new VertexLoaderARM64(vtx_desc, vtx_attr);
if (loader->IsInitialized())
return loader;
delete loader;
#endif #endif
// last try: The old VertexLoader // last try: The old VertexLoader

View File

@ -74,7 +74,7 @@ public:
static VertexLoaderBase* CreateVertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr); static VertexLoaderBase* CreateVertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr);
virtual ~VertexLoaderBase() {} virtual ~VertexLoaderBase() {}
virtual int RunVertices(int primitive, int count, DataReader src, DataReader dst) = 0; virtual int RunVertices(DataReader src, DataReader dst, int count, int primitive) = 0;
virtual bool IsInitialized() = 0; virtual bool IsInitialized() = 0;

View File

@ -164,7 +164,7 @@ int RunVertices(int vtx_attr_group, int primitive, int count, DataReader src, bo
DataReader dst = VertexManager::PrepareForAdditionalData(primitive, count, DataReader dst = VertexManager::PrepareForAdditionalData(primitive, count,
loader->m_native_vtx_decl.stride, cullall); loader->m_native_vtx_decl.stride, cullall);
count = loader->RunVertices(primitive, count, src, dst); count = loader->RunVertices(src, dst, count, primitive);
IndexGenerator::AddIndices(primitive, count); IndexGenerator::AddIndices(primitive, count);

View File

@ -457,7 +457,7 @@ bool VertexLoaderX64::IsInitialized()
return cpu_info.bSSSE3; return cpu_info.bSSSE3;
} }
int VertexLoaderX64::RunVertices(int primitive, int count, DataReader src, DataReader dst) int VertexLoaderX64::RunVertices(DataReader src, DataReader dst, int count, int primitive)
{ {
m_numLoadedVertices += count; m_numLoadedVertices += count;
return ((int (*)(u8* src, u8* dst, int count))region)(src.GetPointer(), dst.GetPointer(), count); return ((int (*)(u8* src, u8* dst, int count))region)(src.GetPointer(), dst.GetPointer(), count);

View File

@ -9,7 +9,7 @@ public:
protected: protected:
std::string GetName() const override { return "VertexLoaderX64"; } std::string GetName() const override { return "VertexLoaderX64"; }
bool IsInitialized() override; bool IsInitialized() override;
int RunVertices(int primitive, int count, DataReader src, DataReader dst) override; int RunVertices(DataReader src, DataReader dst, int count, int primitive) override;
private: private:
u32 m_src_ofs = 0; u32 m_src_ofs = 0;

View File

@ -105,7 +105,7 @@ TEST_F(VertexLoaderTest, PositionDirectFloatXYZ)
Input(0.0f); Input(0.0f); Input(1.0f); Input(0.0f); Input(0.0f); Input(1.0f);
// Convert 4 points. "7" -> primitive are points. // Convert 4 points. "7" -> primitive are points.
int count = loader->RunVertices(7, 4, src, dst); int count = loader->RunVertices(src, dst, 4, 7);
src.Skip(4 * loader->m_VertexSize); src.Skip(4 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride); dst.Skip(count * loader->m_native_vtx_decl.stride);
delete loader; delete loader;
@ -119,7 +119,7 @@ TEST_F(VertexLoaderTest, PositionDirectFloatXYZ)
Input(1.0f); Input(2.0f); Input(4.0f); Input(1.0f); Input(2.0f); Input(4.0f);
m_vtx_attr.g0.PosFrac = 1; m_vtx_attr.g0.PosFrac = 1;
loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr); loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr);
count = loader->RunVertices(7, 1, src, dst); count = loader->RunVertices(src, dst, 1, 7);
src.Skip(1 * loader->m_VertexSize); src.Skip(1 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride); dst.Skip(count * loader->m_native_vtx_decl.stride);
ExpectOut(1.0f); ExpectOut(2.0f); ExpectOut(4.0f); ExpectOut(1.0f); ExpectOut(2.0f); ExpectOut(4.0f);
@ -145,7 +145,7 @@ TEST_F(VertexLoaderTest, PositionDirectU16XY)
Input<u16>(12345); Input<u16>(54321); Input<u16>(12345); Input<u16>(54321);
// Convert 5 points. "7" -> primitive are points. // Convert 5 points. "7" -> primitive are points.
int count = loader->RunVertices(7, 5, src, dst); int count = loader->RunVertices(src, dst, 5, 7);
src.Skip(5 * loader->m_VertexSize); src.Skip(5 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride); dst.Skip(count * loader->m_native_vtx_decl.stride);
delete loader; delete loader;
@ -161,7 +161,7 @@ TEST_F(VertexLoaderTest, PositionDirectU16XY)
m_vtx_attr.g0.PosFrac = 1; m_vtx_attr.g0.PosFrac = 1;
m_vtx_attr.g0.ByteDequant = 1; m_vtx_attr.g0.ByteDequant = 1;
loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr); loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr);
count = loader->RunVertices(7, 1, src, dst); count = loader->RunVertices(src, dst, 1, 7);
src.Skip(1 * loader->m_VertexSize); src.Skip(1 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride); dst.Skip(count * loader->m_native_vtx_decl.stride);
ExpectOut(21.0f); ExpectOut(12.0f); ExpectOut(0.0f); ExpectOut(21.0f); ExpectOut(12.0f); ExpectOut(0.0f);
@ -182,7 +182,7 @@ TEST_F(VertexLoaderTest, PositionDirectFloatXYZSpeed)
for (int i = 0; i < 1000; ++i) for (int i = 0; i < 1000; ++i)
{ {
ResetPointers(); ResetPointers();
int count = loader->RunVertices(7, 100000, src, dst); int count = loader->RunVertices(src, dst, 100000, 7);
src.Skip(100000 * loader->m_VertexSize); src.Skip(100000 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride); dst.Skip(count * loader->m_native_vtx_decl.stride);
} }
@ -203,7 +203,7 @@ TEST_F(VertexLoaderTest, PositionDirectU16XYSpeed)
for (int i = 0; i < 1000; ++i) for (int i = 0; i < 1000; ++i)
{ {
ResetPointers(); ResetPointers();
int count = loader->RunVertices(7, 100000, src, dst); int count = loader->RunVertices(src, dst, 100000, 7);
src.Skip(100000 * loader->m_VertexSize); src.Skip(100000 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride); dst.Skip(count * loader->m_native_vtx_decl.stride);
} }
@ -267,7 +267,7 @@ TEST_F(VertexLoaderTest, LargeFloatVertexSpeed)
for (int i = 0; i < 100; ++i) for (int i = 0; i < 100; ++i)
{ {
ResetPointers(); ResetPointers();
int count = loader->RunVertices(7, 100000, src, dst); int count = loader->RunVertices(src, dst, 100000, 7);
src.Skip(100000 * loader->m_VertexSize); src.Skip(100000 * loader->m_VertexSize);
dst.Skip(count * loader->m_native_vtx_decl.stride); dst.Skip(count * loader->m_native_vtx_decl.stride);
} }