VideoBackends:Vulkan: Use VMA for staging buffers

This commit is contained in:
Robin Kertels 2022-10-07 23:37:16 +02:00
parent 3ffbf94b2a
commit 0532f4a05a
No known key found for this signature in database
GPG Key ID: 3824904F14D40757
5 changed files with 92 additions and 103 deletions

View File

@ -546,6 +546,14 @@ void CommandBufferManager::DeferDeviceMemoryDestruction(VkDeviceMemory object)
[object]() { vkFreeMemory(g_vulkan_context->GetDevice(), object, nullptr); });
}
void CommandBufferManager::DeferBufferDestruction(VkBuffer buffer, VmaAllocation alloc)
{
CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources();
cmd_buffer_resources.cleanup_resources.push_back([buffer, alloc]() {
vmaDestroyBuffer(g_vulkan_context->GetMemoryAllocator(), buffer, alloc);
});
}
void CommandBufferManager::DeferFramebufferDestruction(VkFramebuffer object)
{
CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources();

View File

@ -89,6 +89,7 @@ public:
void DeferBufferDestruction(VkBuffer object);
void DeferBufferViewDestruction(VkBufferView object);
void DeferDeviceMemoryDestruction(VkDeviceMemory object);
void DeferBufferDestruction(VkBuffer buffer, VmaAllocation alloc);
void DeferFramebufferDestruction(VkFramebuffer object);
void DeferImageDestruction(VkImage object);
void DeferImageViewDestruction(VkImageView object);

View File

@ -10,12 +10,13 @@
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/DriverDetails.h"
namespace Vulkan
{
StagingBuffer::StagingBuffer(STAGING_BUFFER_TYPE type, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize size, bool coherent)
: m_type(type), m_buffer(buffer), m_memory(memory), m_size(size), m_coherent(coherent)
StagingBuffer::StagingBuffer(STAGING_BUFFER_TYPE type, VkBuffer buffer, VmaAllocation alloc,
VkDeviceSize size, char* map_ptr)
: m_type(type), m_buffer(buffer), m_alloc(alloc), m_size(size), m_map_pointer(map_ptr)
{
}
@ -25,8 +26,7 @@ StagingBuffer::~StagingBuffer()
if (m_map_pointer)
Unmap();
g_command_buffer_mgr->DeferDeviceMemoryDestruction(m_memory);
g_command_buffer_mgr->DeferBufferDestruction(m_buffer);
g_command_buffer_mgr->DeferBufferDestruction(m_buffer, m_alloc);
}
void StagingBuffer::BufferMemoryBarrier(VkCommandBuffer command_buffer, VkBuffer buffer,
@ -51,49 +51,21 @@ void StagingBuffer::BufferMemoryBarrier(VkCommandBuffer command_buffer, VkBuffer
&buffer_info, 0, nullptr);
}
bool StagingBuffer::Map(VkDeviceSize offset, VkDeviceSize size)
bool StagingBuffer::Map()
{
m_map_offset = offset;
if (size == VK_WHOLE_SIZE)
m_map_size = m_size - offset;
else
m_map_size = size;
ASSERT(!m_map_pointer);
ASSERT(m_map_offset + m_map_size <= m_size);
void* map_pointer;
VkResult res = vkMapMemory(g_vulkan_context->GetDevice(), m_memory, m_map_offset, m_map_size, 0,
&map_pointer);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkMapMemory failed: ");
return false;
}
m_map_pointer = reinterpret_cast<char*>(map_pointer);
// The staging buffer is permanently mapped and VMA handles the mapping for us
return true;
}
void StagingBuffer::Unmap()
{
ASSERT(m_map_pointer);
vkUnmapMemory(g_vulkan_context->GetDevice(), m_memory);
m_map_pointer = nullptr;
m_map_offset = 0;
m_map_size = 0;
// The staging buffer is permanently mapped and VMA handles the unmapping for us
}
void StagingBuffer::FlushCPUCache(VkDeviceSize offset, VkDeviceSize size)
{
ASSERT(offset >= m_map_offset);
if (m_coherent)
return;
VkMappedMemoryRange range = {VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, nullptr, m_memory,
offset - m_map_offset, size};
vkFlushMappedMemoryRanges(g_vulkan_context->GetDevice(), 1, &range);
// vmaFlushAllocation checks whether the allocation uses a coherent memory type internally
vmaFlushAllocation(g_vulkan_context->GetMemoryAllocator(), m_alloc, offset, size);
}
void StagingBuffer::InvalidateGPUCache(VkCommandBuffer command_buffer,
@ -101,7 +73,9 @@ void StagingBuffer::InvalidateGPUCache(VkCommandBuffer command_buffer,
VkPipelineStageFlagBits dest_pipeline_stage,
VkDeviceSize offset, VkDeviceSize size)
{
if (m_coherent)
VkMemoryPropertyFlags flags = 0;
vmaGetAllocationMemoryProperties(g_vulkan_context->GetMemoryAllocator(), m_alloc, &flags);
if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) [[likely]]
return;
ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE));
@ -114,7 +88,9 @@ void StagingBuffer::PrepareForGPUWrite(VkCommandBuffer command_buffer,
VkPipelineStageFlagBits dst_pipeline_stage,
VkDeviceSize offset, VkDeviceSize size)
{
if (m_coherent)
VkMemoryPropertyFlags flags = 0;
vmaGetAllocationMemoryProperties(g_vulkan_context->GetMemoryAllocator(), m_alloc, &flags);
if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) [[likely]]
return;
ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE));
@ -126,7 +102,9 @@ void StagingBuffer::FlushGPUCache(VkCommandBuffer command_buffer, VkAccessFlagBi
VkPipelineStageFlagBits src_pipeline_stage, VkDeviceSize offset,
VkDeviceSize size)
{
if (m_coherent)
VkMemoryPropertyFlags flags = 0;
vmaGetAllocationMemoryProperties(g_vulkan_context->GetMemoryAllocator(), m_alloc, &flags);
if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) [[likely]]
return;
ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE));
@ -136,39 +114,32 @@ void StagingBuffer::FlushGPUCache(VkCommandBuffer command_buffer, VkAccessFlagBi
void StagingBuffer::InvalidateCPUCache(VkDeviceSize offset, VkDeviceSize size)
{
ASSERT(offset >= m_map_offset);
if (m_coherent)
return;
VkMappedMemoryRange range = {VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, nullptr, m_memory,
offset - m_map_offset, size};
vkInvalidateMappedMemoryRanges(g_vulkan_context->GetDevice(), 1, &range);
// vmaInvalidateAllocation checks whether the allocation uses a coherent memory type internally
vmaInvalidateAllocation(g_vulkan_context->GetMemoryAllocator(), m_alloc, offset, size);
}
void StagingBuffer::Read(VkDeviceSize offset, void* data, size_t size, bool invalidate_caches)
{
ASSERT((offset + size) <= m_size);
ASSERT(offset >= m_map_offset && size <= (m_map_size + (offset - m_map_offset)));
if (invalidate_caches)
InvalidateCPUCache(offset, size);
memcpy(data, m_map_pointer + (offset - m_map_offset), size);
memcpy(data, m_map_pointer + offset, size);
}
void StagingBuffer::Write(VkDeviceSize offset, const void* data, size_t size,
bool invalidate_caches)
{
ASSERT((offset + size) <= m_size);
ASSERT(offset >= m_map_offset && size <= (m_map_size + (offset - m_map_offset)));
memcpy(m_map_pointer + (offset - m_map_offset), data, size);
memcpy(m_map_pointer + offset, data, size);
if (invalidate_caches)
FlushCPUCache(offset, size);
}
bool StagingBuffer::AllocateBuffer(STAGING_BUFFER_TYPE type, VkDeviceSize size,
VkBufferUsageFlags usage, VkBuffer* out_buffer,
VkDeviceMemory* out_memory, bool* out_coherent)
VmaAllocation* out_alloc, char** out_map_ptr)
{
VkBufferCreateInfo buffer_create_info = {
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType
@ -180,46 +151,60 @@ bool StagingBuffer::AllocateBuffer(STAGING_BUFFER_TYPE type, VkDeviceSize size,
0, // uint32_t queueFamilyIndexCount
nullptr // const uint32_t* pQueueFamilyIndices
};
VkResult res =
vkCreateBuffer(g_vulkan_context->GetDevice(), &buffer_create_info, nullptr, out_buffer);
if (res != VK_SUCCESS)
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.flags =
VMA_ALLOCATION_CREATE_MAPPED_BIT | VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT;
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO;
alloc_create_info.pool = VK_NULL_HANDLE;
alloc_create_info.pUserData = nullptr;
alloc_create_info.priority = 0.0;
alloc_create_info.preferredFlags = 0;
alloc_create_info.requiredFlags = 0;
if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_CACHED_READBACK_MEMORY)) [[unlikely]]
{
LOG_VULKAN_ERROR(res, "vkCreateBuffer failed: ");
return false;
// If there is no memory type that is both CACHED and COHERENT,
// pick the one that is COHERENT
alloc_create_info.usage = VMA_MEMORY_USAGE_UNKNOWN;
alloc_create_info.requiredFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
alloc_create_info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
}
VkMemoryRequirements requirements;
vkGetBufferMemoryRequirements(g_vulkan_context->GetDevice(), *out_buffer, &requirements);
u32 type_index;
if (type == STAGING_BUFFER_TYPE_UPLOAD)
type_index = g_vulkan_context->GetUploadMemoryType(requirements.memoryTypeBits, out_coherent);
else
type_index = g_vulkan_context->GetReadbackMemoryType(requirements.memoryTypeBits, out_coherent);
{
if (type == STAGING_BUFFER_TYPE_UPLOAD)
alloc_create_info.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
else
alloc_create_info.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
}
VmaAllocationInfo alloc_info;
VkResult res = vmaCreateBuffer(g_vulkan_context->GetMemoryAllocator(), &buffer_create_info,
&alloc_create_info, out_buffer, out_alloc, &alloc_info);
if (type == STAGING_BUFFER_TYPE_UPLOAD)
{
VkMemoryPropertyFlags flags = 0;
vmaGetMemoryTypeProperties(g_vulkan_context->GetMemoryAllocator(), alloc_info.memoryType,
&flags);
if (!(flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
{
WARN_LOG_FMT(VIDEO, "Vulkan: Failed to find a coherent memory type for uploads, this will "
"affect performance.");
}
}
*out_map_ptr = reinterpret_cast<char*>(alloc_info.pMappedData);
VkMemoryAllocateInfo memory_allocate_info = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
requirements.size, // VkDeviceSize allocationSize
type_index // uint32_t memoryTypeIndex
};
res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_allocate_info, nullptr, out_memory);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), *out_buffer, nullptr);
return false;
}
res = vkBindBufferMemory(g_vulkan_context->GetDevice(), *out_buffer, *out_memory, 0);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkBindBufferMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), *out_buffer, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), *out_memory, nullptr);
LOG_VULKAN_ERROR(res, "vmaCreateBuffer failed: ");
return false;
}
VkMemoryPropertyFlags flags = 0;
vmaGetAllocationMemoryProperties(g_vulkan_context->GetMemoryAllocator(), *out_alloc, &flags);
return true;
}
@ -227,12 +212,12 @@ std::unique_ptr<StagingBuffer> StagingBuffer::Create(STAGING_BUFFER_TYPE type, V
VkBufferUsageFlags usage)
{
VkBuffer buffer;
VkDeviceMemory memory;
bool coherent;
if (!AllocateBuffer(type, size, usage, &buffer, &memory, &coherent))
VmaAllocation alloc;
char* map_ptr;
if (!AllocateBuffer(type, size, usage, &buffer, &alloc, &map_ptr))
return nullptr;
return std::make_unique<StagingBuffer>(type, buffer, memory, size, coherent);
return std::make_unique<StagingBuffer>(type, buffer, alloc, size, map_ptr);
}
} // namespace Vulkan

View File

@ -13,8 +13,8 @@ namespace Vulkan
class StagingBuffer
{
public:
StagingBuffer(STAGING_BUFFER_TYPE type, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize size,
bool coherent);
StagingBuffer(STAGING_BUFFER_TYPE type, VkBuffer buffer, VmaAllocation allocation,
VkDeviceSize size, char* map_ptr);
virtual ~StagingBuffer();
STAGING_BUFFER_TYPE GetType() const { return m_type; }
@ -23,9 +23,7 @@ public:
bool IsMapped() const { return m_map_pointer != nullptr; }
const char* GetMapPointer() const { return m_map_pointer; }
char* GetMapPointer() { return m_map_pointer; }
VkDeviceSize GetMapOffset() const { return m_map_offset; }
VkDeviceSize GetMapSize() const { return m_map_size; }
bool Map(VkDeviceSize offset = 0, VkDeviceSize size = VK_WHOLE_SIZE);
bool Map();
void Unmap();
// Upload part 1: Prepare from device read from the CPU side
@ -60,7 +58,7 @@ public:
// Allocates the resources needed to create a staging buffer.
static bool AllocateBuffer(STAGING_BUFFER_TYPE type, VkDeviceSize size, VkBufferUsageFlags usage,
VkBuffer* out_buffer, VkDeviceMemory* out_memory, bool* out_coherent);
VkBuffer* out_buffer, VmaAllocation* out_alloc, char** out_map_ptr);
// Wrapper for creating an barrier on a buffer
static void BufferMemoryBarrier(VkCommandBuffer command_buffer, VkBuffer buffer,
@ -72,12 +70,9 @@ public:
protected:
STAGING_BUFFER_TYPE m_type;
VkBuffer m_buffer;
VkDeviceMemory m_memory;
VmaAllocation m_alloc;
VkDeviceSize m_size;
bool m_coherent;
char* m_map_pointer = nullptr;
VkDeviceSize m_map_offset = 0;
VkDeviceSize m_map_size = 0;
};
} // namespace Vulkan

View File

@ -741,10 +741,10 @@ std::unique_ptr<VKStagingTexture> VKStagingTexture::Create(StagingTextureType ty
}
VkBuffer buffer;
VkDeviceMemory memory;
bool coherent;
if (!StagingBuffer::AllocateBuffer(buffer_type, buffer_size, buffer_usage, &buffer, &memory,
&coherent))
VmaAllocation alloc;
char* map_ptr;
if (!StagingBuffer::AllocateBuffer(buffer_type, buffer_size, buffer_usage, &buffer, &alloc,
&map_ptr))
{
return nullptr;
}
@ -759,7 +759,7 @@ std::unique_ptr<VKStagingTexture> VKStagingTexture::Create(StagingTextureType ty
}
std::unique_ptr<StagingBuffer> staging_buffer =
std::make_unique<StagingBuffer>(buffer_type, buffer, memory, buffer_size, coherent);
std::make_unique<StagingBuffer>(buffer_type, buffer, alloc, buffer_size, map_ptr);
std::unique_ptr<VKStagingTexture> staging_tex =
std::make_unique<VKStagingTexture>(PrivateTag{}, type, config, std::move(staging_buffer),
linear_image, linear_image_device_memory);