dolphin/Source/Core/DSPCore/Src/DSPIntExtOps.cpp

477 lines
16 KiB
C++
Raw Normal View History

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "DSPIntUtil.h"
#include "DSPMemoryMap.h"
#include "DSPIntExtOps.h"
// Extended opcodes do not exist on their own. These opcodes can only be
// attached to opcodes that allow extending (8 lower bits of opcode not used by
// opcode). Extended opcodes do not modify program counter $pc register.
// Most of the suffixes increment or decrement one or more addressing registers
// (the first four, ARx). The increment/decrement is either 1, or the
// corresponding "index" register (the second four, IXx). The addressing
// registers will wrap in odd ways, dictated by the corresponding wrapping
// register, WP0-3.
// The following should be applied as a decrement (and is applied by
// dsp_decrement_addr_reg):
// ar[i] = (ar[i] & wp[i]) == 0 ? ar[i] | wp[i] : ar[i] - 1;
// I have not found the corresponding algorithms for increments yet.
// It's gotta be fairly simple though. See R3123, R3125 in Google Code.
// (May have something to do with (ar[i] ^ wp[i]) == 0)
namespace DSPInterpreter
{
namespace Ext
{
inline bool IsSameMemArea(u16 a, u16 b)
{
//LM: tested on WII
if ((a>>10)==(b>>10))
return true;
else
return false;
}
// DR $arR
// xxxx xxxx 0000 01rr
// Decrement addressing register $arR.
void dr(const UDSPInstruction& opc) {
writeToBackLog(0, opc.hex & 0x3, dsp_decrement_addr_reg(opc.hex & 0x3));
}
// IR $arR
// xxxx xxxx 0000 10rr
// Increment addressing register $arR.
void ir(const UDSPInstruction& opc) {
writeToBackLog(0, opc.hex & 0x3, dsp_increment_addr_reg(opc.hex & 0x3));
}
// NR $arR
// xxxx xxxx 0000 11rr
// Add corresponding indexing register $ixR to addressing register $arR.
void nr(const UDSPInstruction& opc) {
u8 reg = opc.hex & 0x3;
writeToBackLog(0, reg, dsp_increase_addr_reg(reg, (s16)g_dsp.r[DSP_REG_IX0 + reg]));
}
// MV $axD, $acS.l
// xxxx xxxx 0001 ddss
// Move value of $acS.l to the $axD.l.
void mv(const UDSPInstruction& opc)
{
u8 sreg = opc.hex & 0x3;
u8 dreg = ((opc.hex >> 2) & 0x3);
writeToBackLog(0, dreg + DSP_REG_AXL0, g_dsp.r[sreg + DSP_REG_ACL0]);
}
// S @$D, $acD.l
// xxxx xxxx 001s s0dd
// Store value of $(acS.l) in the memory pointed by register $D.
// Post increment register $D.
void s(const UDSPInstruction& opc)
{
u8 dreg = opc.hex & 0x3;
u8 sreg = ((opc.hex >> 3) & 0x3) + DSP_REG_ACL0;
dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]);
writeToBackLog(0, dreg, dsp_increment_addr_reg(dreg));
}
// SN @$D, $acD.l
// xxxx xxxx 001s s1dd
// Store value of register $acS in the memory pointed by register $D.
// Add indexing register $ixD to register $D.
void sn(const UDSPInstruction& opc)
{
u8 dreg = opc.hex & 0x3;
u8 sreg = ((opc.hex >> 3) & 0x3) + DSP_REG_ACL0;
dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]);
writeToBackLog(0, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg]));
}
// L axD.l, @$S
// xxxx xxxx 01dd d0ss
// Load $axD with value from memory pointed by register $S.
// Post increment register $S.
void l(const UDSPInstruction& opc)
{
u8 sreg = opc.hex & 0x3;
u8 dreg = ((opc.hex >> 3) & 0x7) + DSP_REG_AXL0;
// 40bit sign extension if target is acm.D (important for zelda type ucodes)
if ((dreg >= DSP_REG_ACM0) && (g_dsp.r[DSP_REG_SR] & SR_40_MODE_BIT))
{
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
writeToBackLog(0, dreg - DSP_REG_ACM0 + DSP_REG_ACH0, (val & 0x8000) ? 0xFFFF : 0x0000);
writeToBackLog(1, dreg, val);
writeToBackLog(2, dreg - DSP_REG_ACM0 + DSP_REG_ACL0, 0);
writeToBackLog(3, sreg, dsp_increment_addr_reg(sreg));
}
else
{
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg]));
writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg));
}
}
// LN axD.l, @$S
// xxxx xxxx 01dd d0ss
// Load $axD with value from memory pointed by register $S.
// Add indexing register register $ixS to register $S.
void ln(const UDSPInstruction& opc)
{
u8 sreg = opc.hex & 0x3;
u8 dreg = ((opc.hex >> 3) & 0x7) + DSP_REG_AXL0;
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg]));
writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]));
}
// LS $axD.l, $acS.m
// xxxx xxxx 10dd 000s
// Load register $axD.l with value from memory pointed by register
// $ar0. Store value from register $acS.m to memory location pointed by
// register $ar3. Increment both $ar0 and $ar3.
void ls(const UDSPInstruction& opc)
{
u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0;
u8 sreg = DSP_REG_AR3;
u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0;
dsp_dmem_write(g_dsp.r[sreg], g_dsp.r[areg]);
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0]));
writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg));
writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0));
}
// LSN $acD.l, $acS.m
// xxxx xxxx 10dd 010s
// Load register $acD.l with value from memory pointed by register
// $ar0. Store value from register $acS.m to memory location pointed by
// register $ar3. Add corresponding indexing register $ix0 to addressing
// register $ar0 and increment $ar3.
void lsn(const UDSPInstruction& opc)
{
u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0;
u8 sreg = DSP_REG_AR3;
u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0;
dsp_dmem_write(g_dsp.r[sreg], g_dsp.r[areg]);
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0]));
writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg));
writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0]));
}
// LSM $acD.l, $acS.m
// xxxx xxxx 10dd 100s
// Load register $acD.l with value from memory pointed by register
// $ar0. Store value from register $acS.m to memory location pointed by
// register $ar3. Add corresponding indexing register $ix3 to addressing
// register $ar3 and increment $ar0.
void lsm(const UDSPInstruction& opc)
{
u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0;
u8 sreg = DSP_REG_AR3;
u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0;
dsp_dmem_write(g_dsp.r[sreg], g_dsp.r[areg]);
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0]));
writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]));
writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0));
}
// LSMN $acD.l, $acS.m
// xxxx xxxx 10dd 110s
// Load register $acD.l with value from memory pointed by register
// $ar0. Store value from register $acS.m to memory location pointed by
// register $ar3. Add corresponding indexing register $ix0 to addressing
// register $ar0 and add corresponding indexing register $ix3 to addressing
// register $ar3.
void lsnm(const UDSPInstruction& opc)
{
u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0;
u8 sreg = DSP_REG_AR3;
u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0;
dsp_dmem_write(g_dsp.r[sreg], g_dsp.r[areg]);
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0]));
writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]));
writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0]));
}
// SL $acS.m, $acD.l
// xxxx xxxx 10dd 001s
// Store value from register $acS.m to memory location pointed by register
// $ar0. Load register $acD.l with value from memory pointed by register
// $ar3. Increment both $ar0 and $ar3.
void sl(const UDSPInstruction& opc)
{
u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0;
u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0;
const u8 sreg = DSP_REG_AR3;
dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[areg]);
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg]));
writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg));
writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0));
}
// SLN $acS.m, $acD.l
// xxxx xxxx 10dd 011s
// Store value from register $acS.m to memory location pointed by register
// $ar0. Load register $acD.l with value from memory pointed by register
// $ar3. Add corresponding indexing register $ix0 to addressing register $ar0
// and increment $ar3.
void sln(const UDSPInstruction& opc)
{
u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0;
u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0;
const u8 sreg = DSP_REG_AR3;
dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[areg]);
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg]));
writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg));
writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0]));
}
// SLM $acS.m, $acD.l
// xxxx xxxx 10dd 101s
// Store value from register $acS.m to memory location pointed by register
// $ar0. Load register $acD.l with value from memory pointed by register
// $ar3. Add corresponding indexing register $ix3 to addressing register $ar3
// and increment $ar0.
void slm(const UDSPInstruction& opc)
{
u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0;
u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0;
const u8 sreg = DSP_REG_AR3;
dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[areg]);
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg]));
writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]));
writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0));
}
// SLMN $acS.m, $acD.l
// xxxx xxxx 10dd 111s
// Store value from register $acS.m to memory location pointed by register
// $ar0. Load register $acD.l with value from memory pointed by register
// $ar3. Add corresponding indexing register $ix0 to addressing register $ar0
// and add corresponding indexing register $ix3 to addressing register $ar3.
void slnm(const UDSPInstruction& opc)
{
u8 areg = (opc.hex & 0x1) + DSP_REG_ACM0;
u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0;
const u8 sreg = DSP_REG_AR3;
dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[areg]);
writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg]));
writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]));
writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0]));
}
// Not in duddie's doc
// LD $ax0.d $ax1.r @$arS
// xxxx xxxx 11dr 00ss
void ld(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x1;
u8 rreg = (opc.hex >> 4) & 0x1;
u8 sreg = opc.hex & 0x3;
if (sreg != DSP_REG_AR3) {
writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg]));
if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3]))
writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg]));
else
writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3]));
writeToBackLog(2, sreg, dsp_increment_addr_reg(sreg));
} else {
writeToBackLog(0, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg]));
if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3]))
writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg]));
else
writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3]));
writeToBackLog(2, dreg, dsp_increment_addr_reg(dreg));
}
writeToBackLog(3, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3));
}
// Not in duddie's doc
// LDN $ax0.d $ax1.r @$arS
// xxxx xxxx 11dr 01ss
void ldn(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x1;
u8 rreg = (opc.hex >> 4) & 0x1;
u8 sreg = opc.hex & 0x3;
if (sreg != DSP_REG_AR3) {
writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg]));
if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3]))
writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg]));
else
writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3]));
writeToBackLog(2, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]));
} else {
writeToBackLog(0, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg]));
if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3]))
writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg]));
else
writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3]));
writeToBackLog(2, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg]));
}
writeToBackLog(3, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3));
}
// Not in duddie's doc
// LDM $ax0.d $ax1.r @$arS
// xxxx xxxx 11dr 10ss
void ldm(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x1;
u8 rreg = (opc.hex >> 4) & 0x1;
u8 sreg = opc.hex & 0x3;
if (sreg != DSP_REG_AR3) {
writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg]));
if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3]))
writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg]));
else
writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3]));
writeToBackLog(2, sreg, dsp_increment_addr_reg(sreg));
} else {
writeToBackLog(0, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg]));
if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3]))
writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg]));
else
writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3]));
writeToBackLog(2, dreg, dsp_increment_addr_reg(dreg));
}
writeToBackLog(3, DSP_REG_AR3,
dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX0 + DSP_REG_AR3]));
}
// Not in duddie's doc
// LDNM $ax0.d $ax1.r @$arS
// xxxx xxxx 11dr 11ss
void ldnm(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x1;
u8 rreg = (opc.hex >> 4) & 0x1;
u8 sreg = opc.hex & 0x3;
if (sreg != DSP_REG_AR3) {
writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg]));
if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3]))
writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg]));
else
writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3]));
writeToBackLog(2, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]));
} else {
writeToBackLog(0, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg]));
if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3]))
writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg]));
else
writeToBackLog(1, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3]));
writeToBackLog(2, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg]));
}
writeToBackLog(3, DSP_REG_AR3,
dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX0 + DSP_REG_AR3]));
}
void nop(const UDSPInstruction& opc)
{
}
} // end namespace ext
} // end namespace DSPInterpeter
// The ext ops are calculated in parallel with the actual op. That means that
// both the main op and the ext op see the same register state as input. The
// output is simple as long as the main and ext ops don't change the same
// register. If they do the output is the bitwise or of the result of both the
// main and ext ops.
// The ext op are writing their output into the backlog which is
// being applied to the real registers after the main op was executed
void applyWriteBackLog()
{
// always make sure to have an extra entry at the end w/ -1 to avoid
// infinitive loops
for (int i = 0; writeBackLogIdx[i] != -1; i++) {
dsp_op_write_reg(writeBackLogIdx[i], g_dsp.r[writeBackLogIdx[i]] | writeBackLog[i]);
// Clear back log
writeBackLogIdx[i] = -1;
}
}
// This function is being called in the main op after all input regs were read
// and before it writes into any regs. This way we can always use bitwise or to
// apply the ext command output, because if the main op didn't change the value
// then 0 | ext output = ext output and if it did then bitwise or is still the
// right thing to do
void zeroWriteBackLog()
{
// always make sure to have an extra entry at the end w/ -1 to avoid
// infinitive loops
for (int i = 0; writeBackLogIdx[i] != -1; i++)
dsp_op_write_reg(writeBackLogIdx[i], 0);
}