dolphin/Source/Core/InputCommon/Src/UDPWiimote.cpp

436 lines
8.5 KiB
C++
Raw Normal View History

#include "UDPWiimote.h"
#ifdef _WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
#define sock_t SOCKET
#define ERRNO WSAGetLastError()
#undef EWOULDBLOCK
#define EWOULDBLOCK WSAEWOULDBLOCK
#define BAD_SOCK INVALID_SOCKET
#define close(x) closesocket(x)
#define cleanup do {noinst--; if (noinst==0) WSACleanup();} while (0)
#define blockingoff(sock) ioctlsocket(sock, FIONBIO, &iMode)
#define dataz char*
#ifdef _MSC_VER
#pragma comment (lib, "Ws2_32.lib")
#endif
#else
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <unistd.h>
#include <fcntl.h>
#define BAD_SOCK -1
#define ERRNO errno
#define cleanup noinst--
#define blockingoff(sock) fcntl(sock, F_SETFL, O_NONBLOCK)
#define dataz void*
#define sock_t int
#endif
#include "Thread.h"
#include "Timer.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <list>
#include <functional>
struct UDPWiimote::_d
{
std::thread thread;
std::list<sock_t> sockfds;
std::mutex termLock, mutex, nameMutex;
volatile bool exit;
sock_t bipv4_fd, bipv6_fd;
};
int UDPWiimote::noinst = 0;
UDPWiimote::UDPWiimote(const char *_port, const char * name, int _index) :
port(_port), displayName(name),
d(new _d) ,x(0),y(0),z(1.0f),naX(0),naY(0),naZ(-1.0f),nunX(0),nunY(0),
pointerX(1001.0f/2),pointerY(0),nunMask(0),mask(0),index(_index), int_port(atoi(_port))
{
static bool sranded=false;
if (!sranded)
{
srand((unsigned int)time(0));
sranded=true;
}
bcastMagic=rand() & 0xFFFF;
#ifdef _WIN32
u_long iMode = 1;
#endif
struct addrinfo hints, *servinfo, *p;
int rv;
#ifdef _WIN32
if (noinst==0)
{
WORD sockVersion;
WSADATA wsaData;
sockVersion = MAKEWORD(2, 2);
WSAStartup(sockVersion, &wsaData);
}
#endif
noinst++;
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_PASSIVE; // use my IP
if (!int_port)
{
cleanup;
err=-1;
return;
}
if ((rv = getaddrinfo(NULL, _port, &hints, &servinfo)) != 0)
{
cleanup;
err=-1;
return;
}
// loop through all the results and bind to everything we can
for(p = servinfo; p != NULL; p = p->ai_next)
{
sock_t sock;
if ((sock = socket(p->ai_family, p->ai_socktype, p->ai_protocol)) == BAD_SOCK)
{
continue;
}
if (bind(sock, p->ai_addr, (int)p->ai_addrlen) == -1)
{
close(sock);
continue;
}
d->sockfds.push_back(sock);
}
if (d->sockfds.empty())
{
cleanup;
err=-2;
return;
}
freeaddrinfo(servinfo);
err=0;
d->exit=false;
initBroadcastIPv4();
initBroadcastIPv6();
std::lock_guard<std::mutex> lk(d->termLock);
d->thread = std::thread(std::mem_fun(&UDPWiimote::mainThread), this);
return;
}
void UDPWiimote::mainThread()
{
std::unique_lock<std::mutex> lk(d->termLock);
Common::Timer time;
fd_set fds;
struct timeval timeout;
timeout.tv_sec=0;
timeout.tv_usec=0;
time.Update();
do
{
int maxfd=0;
FD_ZERO(&fds);
for (std::list<sock_t>::iterator i=d->sockfds.begin(); i!=d->sockfds.end(); i++)
{
FD_SET(*i,&fds);
#ifndef _WIN32
if (*i>=maxfd)
maxfd=(*i)+1;
#endif
}
u64 tleft=timeout.tv_sec*1000+timeout.tv_usec/1000;
u64 telapsed=time.GetTimeDifference();
time.Update();
if (tleft<=telapsed)
{
timeout.tv_sec=1;
timeout.tv_usec=500000;
broadcastPresence();
}
else
{
tleft-=telapsed;
timeout.tv_sec=(long)(tleft/1000);
timeout.tv_usec=(tleft%1000)*1000;
}
lk.unlock(); //VERY hacky. don't like it
if (d->exit) return;
int rt=select(maxfd,&fds,NULL,NULL,&timeout);
if (d->exit) return;
lk.lock();
if (d->exit) return;
if (rt)
{
for (std::list<sock_t>::iterator i=d->sockfds.begin(); i!=d->sockfds.end(); i++)
{
if (FD_ISSET(*i,&fds))
{
sock_t fd=*i;
u8 bf[64];
int size=60;
size_t addr_len;
struct sockaddr_storage their_addr;
addr_len = sizeof their_addr;
if ((size = recvfrom(fd,
(dataz)bf,
size , 0,(struct sockaddr *)&their_addr, (socklen_t*)&addr_len)) == -1)
{
ERROR_LOG(WIIMOTE,"UDPWii Packet error");
}
else
{
std::lock_guard<std::mutex> lkm(d->mutex);
if (pharsePacket(bf,size)==0)
{
//NOTICE_LOG(WIIMOTE,"UDPWII New pack");
}
else
{
//NOTICE_LOG(WIIMOTE,"UDPWII Wrong pack format... ignoring");
}
}
}
}
}
} while (!(d->exit));
}
UDPWiimote::~UDPWiimote()
{
d->exit = true;
{
std::lock_guard<std::mutex> lk(d->termLock);
d->thread.join();
}
for (std::list<sock_t>::iterator i=d->sockfds.begin(); i!=d->sockfds.end(); i++)
close(*i);
close(d->bipv4_fd);
close(d->bipv6_fd);
cleanup;
delete d;
}
#define ACCEL_FLAG (1 << 0)
#define BUTT_FLAG (1 << 1)
#define IR_FLAG (1 << 2)
#define NUN_FLAG (1 << 3)
#define NUNACCEL_FLAG (1 << 4)
int UDPWiimote::pharsePacket(u8 * bf, size_t size)
{
if (size < 3)
return -1;
if (bf[0] != 0xde)
return -1;
//if (bf[1]==0)
// time=0;
//if (bf[1]<time) //NOT LONGER NEEDED TO ALLOW MULTIPLE IPHONES ON A SINGLE PORT
// return -1;
//time=bf[1];
u32 *p=(u32*)(&bf[3]);
if (bf[2] & ACCEL_FLAG)
{
if ((size-(((u8*)p)-bf)) < 12)
return -1;
double ux,uy,uz;
ux=(double)((s32)ntohl(*p)); p++;
uy=(double)((s32)ntohl(*p)); p++;
uz=(double)((s32)ntohl(*p)); p++;
x=ux/1048576; //packet accel data
y=uy/1048576;
z=uz/1048576;
}
if (bf[2] & BUTT_FLAG)
{
if ((size-(((u8*)p)-bf)) < 4)
return -1;
mask=ntohl(*p); p++;
}
if (bf[2] & IR_FLAG)
{
if ((size-(((u8*)p)-bf)) < 8)
return -1;
pointerX=((double)((s32)ntohl(*p)))/1048576; p++;
pointerY=((double)((s32)ntohl(*p)))/1048576; p++;
}
if (bf[2] & NUN_FLAG)
{
if ((size-(((u8*)p)-bf)) < 9)
return -1;
nunMask=*((u8*)p); p=(u32*)(((u8*)p)+1);
nunX=((double)((s32)ntohl(*p)))/1048576; p++;
nunY=((double)((s32)ntohl(*p)))/1048576; p++;
}
if (bf[2] & NUNACCEL_FLAG)
{
if ((size-(((u8*)p)-bf)) < 12)
return -1;
double ux,uy,uz;
ux=(double)((s32)ntohl(*p)); p++;
uy=(double)((s32)ntohl(*p)); p++;
uz=(double)((s32)ntohl(*p)); p++;
naX=ux/1048576; //packet accel data
naY=uy/1048576;
naZ=uz/1048576;
}
return 0;
}
void UDPWiimote::initBroadcastIPv4()
{
d->bipv4_fd=socket(AF_INET, SOCK_DGRAM, 0);
if (d->bipv4_fd == BAD_SOCK)
{
WARN_LOG(WIIMOTE,"socket() failed");
return;
}
int broad=1;
if (setsockopt(d->bipv4_fd,SOL_SOCKET,SO_BROADCAST, (const dataz)(&broad), sizeof broad) == -1)
{
WARN_LOG(WIIMOTE,"setsockopt(SO_BROADCAST) failed");
return;
}
}
void UDPWiimote::broadcastIPv4(const void * data, size_t size)
{
struct sockaddr_in their_addr;
their_addr.sin_family = AF_INET;
their_addr.sin_port = htons(4431);
their_addr.sin_addr.s_addr = INADDR_BROADCAST;
memset(their_addr.sin_zero, '\0', sizeof their_addr.sin_zero);
int num;
if ((num=sendto(d->bipv4_fd,(const dataz)data,(int)size,0,(struct sockaddr *) &their_addr, sizeof their_addr)) == -1)
{
WARN_LOG(WIIMOTE,"sendto() failed");
return;
}
}
void UDPWiimote::initBroadcastIPv6()
{
//TODO: IPv6 support
}
void UDPWiimote::broadcastIPv6(const void * data, size_t size)
{
//TODO: IPv6 support
}
void UDPWiimote::broadcastPresence()
{
size_t slen;
u8 bf[512];
bf[0]=0xdf; //magic number
*((u16*)(&(bf[1])))=htons(bcastMagic); //unique per-wiimote 16-bit ID
bf[3]=(u8)index; //wiimote index
*((u16*)(&(bf[4])))=htons(int_port); //port
{
std::lock_guard<std::mutex> lk(d->nameMutex);
slen=displayName.size();
if (slen>=256)
slen=255;
bf[6]=(u8)slen; //display name size (max 255)
memcpy(&(bf[7]),displayName.c_str(),slen); //display name
}
broadcastIPv4(bf,7+slen);
broadcastIPv6(bf,7+slen);
}
void UDPWiimote::getAccel(float &_x, float &_y, float &_z)
{
std::lock_guard<std::mutex> lk(d->mutex);
_x=(float)x;
_y=(float)y;
_z=(float)z;
}
u32 UDPWiimote::getButtons()
{
u32 msk;
std::lock_guard<std::mutex> lk(d->mutex);
msk=mask;
return msk;
}
void UDPWiimote::getIR(float &_x, float &_y)
{
std::lock_guard<std::mutex> lk(d->mutex);
_x=(float)pointerX;
_y=(float)pointerY;
}
void UDPWiimote::getNunchuck(float &_x, float &_y, u8 &_mask)
{
std::lock_guard<std::mutex> lk(d->mutex);
_x=(float)nunX;
_y=(float)nunY;
_mask=nunMask;
}
void UDPWiimote::getNunchuckAccel(float &_x, float &_y, float &_z)
{
std::lock_guard<std::mutex> lk(d->mutex);
_x=(float)naX;
_y=(float)naY;
_z=(float)naZ;
}
const char * UDPWiimote::getPort()
{
return port.c_str();
}
void UDPWiimote::changeName(const char * name)
{
std::lock_guard<std::mutex> lk(d->nameMutex);
displayName=name;
}