dolphin/Source/Plugins/Plugin_VideoOGL/Src/VertexLoader.cpp

708 lines
27 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Globals.h"
#include <fstream>
#include <assert.h>
#include "Common.h"
#include "Config.h"
#include "ImageWrite.h"
#include "Profiler.h"
#include "StringUtil.h"
#include "Render.h"
#include "VertexShader.h"
#include "VertexManager.h"
#include "VertexLoaderManager.h"
#include "VertexLoader.h"
#include "BPStructs.h"
#include "DataReader.h"
#include "VertexShaderManager.h"
#include "PixelShaderManager.h"
#include "TextureMngr.h"
#include <fstream>
NativeVertexFormat *g_nativeVertexFmt;
//these don't need to be saved
static float posScale;
static int colElements[2];
static float tcScaleU[8];
static float tcScaleV[8];
static int tcIndex;
static int colIndex;
#ifndef _WIN32
#undef inline
#define inline
#endif
// ==============================================================================
// Direct
// ==============================================================================
static u8 s_curposmtx;
static u8 s_curtexmtx[8];
static int s_texmtxwrite = 0;
static int s_texmtxread = 0;
void LOADERDECL PosMtx_ReadDirect_UByte(const void *_p)
{
s_curposmtx = DataReadU8()&0x3f;
PRIM_LOG("posmtx: %d, ", s_curposmtx);
}
void LOADERDECL PosMtx_Write(const void *_p)
{
*VertexManager::s_pCurBufferPointer++ = s_curposmtx;
//*VertexManager::s_pCurBufferPointer++ = 0;
//*VertexManager::s_pCurBufferPointer++ = 0;
//*VertexManager::s_pCurBufferPointer++ = 0;
}
void LOADERDECL TexMtx_ReadDirect_UByte(const void *_p)
{
s_curtexmtx[s_texmtxread] = DataReadU8()&0x3f;
PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]);
s_texmtxread++;
}
void LOADERDECL TexMtx_Write_Float(const void *_p)
{
*(float*)VertexManager::s_pCurBufferPointer = (float)s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 4;
}
void LOADERDECL TexMtx_Write_Float2(const void *_p)
{
((float*)VertexManager::s_pCurBufferPointer)[0] = 0;
((float*)VertexManager::s_pCurBufferPointer)[1] = (float)s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 8;
}
void LOADERDECL TexMtx_Write_Short3(const void *_p)
{
((s16*)VertexManager::s_pCurBufferPointer)[0] = 0;
((s16*)VertexManager::s_pCurBufferPointer)[1] = 0;
((s16*)VertexManager::s_pCurBufferPointer)[2] = s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 6;
}
#include "VertexLoader_Position.h"
#include "VertexLoader_Normal.h"
#include "VertexLoader_Color.h"
#include "VertexLoader_TextCoord.h"
VertexLoader::VertexLoader()
{
m_VertexSize = 0;
m_AttrDirty = AD_DIRTY;
m_numPipelineStages = 0;
VertexLoader_Normal::Init();
}
VertexLoader::~VertexLoader()
{
}
int VertexLoader::ComputeVertexSize()
{
if (m_AttrDirty == AD_CLEAN) {
// Compare the 33 desc bits.
if (m_VtxDesc.Hex0 == g_VtxDesc.Hex0 &&
(m_VtxDesc.Hex1 & 1) == (g_VtxDesc.Hex1 & 1))
return m_VertexSize;
m_VtxDesc.Hex = g_VtxDesc.Hex;
}
else {
// Attributes are dirty so we have to recompute everything anyway.
m_VtxDesc.Hex = g_VtxDesc.Hex;
}
m_AttrDirty = AD_DIRTY;
m_VertexSize = 0;
// Position Matrix Index
if (m_VtxDesc.PosMatIdx)
m_VertexSize += 1;
// Texture matrix indices
if (m_VtxDesc.Tex0MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex1MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex2MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex3MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex4MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex5MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex6MatIdx) m_VertexSize += 1;
if (m_VtxDesc.Tex7MatIdx) m_VertexSize += 1;
switch (m_VtxDesc.Position) {
case NOT_PRESENT: {_assert_("Vertex descriptor without position!");} break;
case DIRECT:
{
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE:
case FORMAT_BYTE: m_VertexSize += m_VtxAttr.PosElements?3:2; break;
case FORMAT_USHORT:
case FORMAT_SHORT: m_VertexSize += m_VtxAttr.PosElements?6:4; break;
case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.PosElements?12:8; break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
m_VertexSize += 1;
break;
case INDEX16:
m_VertexSize += 2;
break;
}
VertexLoader_Normal::index3 = m_VtxAttr.NormalIndex3 ? true : false;
if (m_VtxDesc.Normal != NOT_PRESENT)
m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
// Colors
int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++) {
switch (col[i])
{
case NOT_PRESENT:
break;
case DIRECT:
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: m_VertexSize += 2; break;
case FORMAT_24B_888: m_VertexSize += 3; break;
case FORMAT_32B_888x: m_VertexSize += 4; break;
case FORMAT_16B_4444: m_VertexSize += 2; break;
case FORMAT_24B_6666: m_VertexSize += 3; break;
case FORMAT_32B_8888: m_VertexSize += 4; break;
default: _assert_(0); break;
}
break;
case INDEX8:
m_VertexSize += 1;
break;
case INDEX16:
m_VertexSize += 2;
break;
}
}
// TextureCoord
int tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
for (int i = 0; i < 8; i++) {
switch (tc[i]) {
case NOT_PRESENT:
break;
case DIRECT:
{
switch (m_VtxAttr.texCoord[i].Format)
{
case FORMAT_UBYTE:
case FORMAT_BYTE: m_VertexSize += m_VtxAttr.texCoord[i].Elements?2:1; break;
case FORMAT_USHORT:
case FORMAT_SHORT: m_VertexSize += m_VtxAttr.texCoord[i].Elements?4:2; break;
case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.texCoord[i].Elements?8:4; break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
m_VertexSize += 1;
break;
case INDEX16:
m_VertexSize += 2;
break;
}
}
return m_VertexSize;
}
void VertexLoader::CompileVertexTranslator()
{
if (m_AttrDirty == AD_CLEAN)
{
// Check if local cached desc (in this VL) matches global desc
if (m_VtxDesc.Hex0 == g_VtxDesc.Hex0 &&
(m_VtxDesc.Hex1 & 1) == (g_VtxDesc.Hex1 & 1))
{
return; // same
}
}
else
{
m_AttrDirty = AD_CLEAN;
}
m_VtxDesc.Hex = g_VtxDesc.Hex;
// Reset pipeline
m_numPipelineStages = 0;
// It's a bit ugly that we poke inside m_NativeFmt in this function. Planning to fix this.
m_NativeFmt.m_VBStridePad = 0;
m_NativeFmt.m_VBVertexStride = 0;
m_NativeFmt.m_components = 0;
// m_VBVertexStride for texmtx and posmtx is computed later when writing.
// Position Matrix Index
if (m_VtxDesc.PosMatIdx) {
m_PipelineStages[m_numPipelineStages++] = PosMtx_ReadDirect_UByte;
m_NativeFmt.m_components |= VB_HAS_POSMTXIDX;
}
if (m_VtxDesc.Tex0MatIdx) {m_NativeFmt.m_components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex1MatIdx) {m_NativeFmt.m_components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex2MatIdx) {m_NativeFmt.m_components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex3MatIdx) {m_NativeFmt.m_components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex4MatIdx) {m_NativeFmt.m_components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex5MatIdx) {m_NativeFmt.m_components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex6MatIdx) {m_NativeFmt.m_components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex7MatIdx) {m_NativeFmt.m_components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); }
// Position
if (m_VtxDesc.Position != NOT_PRESENT)
m_NativeFmt.m_VBVertexStride += 12;
switch (m_VtxDesc.Position) {
case NOT_PRESENT: {_assert_msg_(0, "Vertex descriptor without position!", "WTF?");} break;
case DIRECT:
{
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadDirect_UByte); break;
case FORMAT_BYTE: WriteCall(Pos_ReadDirect_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadDirect_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadDirect_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadDirect_Float); break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadIndex8_UByte); break; //WTF?
case FORMAT_BYTE: WriteCall(Pos_ReadIndex8_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadIndex8_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadIndex8_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadIndex8_Float); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadIndex16_UByte); break;
case FORMAT_BYTE: WriteCall(Pos_ReadIndex16_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadIndex16_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadIndex16_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadIndex16_Float); break;
default: _assert_(0); break;
}
break;
}
// Normals
if (m_VtxDesc.Normal != NOT_PRESENT) {
VertexLoader_Normal::index3 = m_VtxAttr.NormalIndex3 ? true : false;
TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
if (pFunc == 0)
{
char temp[256];
sprintf(temp,"%i %i %i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
g_VideoInitialize.pSysMessage("VertexLoader_Normal::GetFunction returned zero!");
}
WriteCall(pFunc);
int sizePro = 0;
switch (m_VtxAttr.NormalFormat)
{
case FORMAT_UBYTE: sizePro=1; break;
case FORMAT_BYTE: sizePro=1; break;
case FORMAT_USHORT: sizePro=2; break;
case FORMAT_SHORT: sizePro=2; break;
case FORMAT_FLOAT: sizePro=4; break;
default: _assert_(0); break;
}
m_NativeFmt.m_VBVertexStride += sizePro * 3 * (m_VtxAttr.NormalElements?3:1);
int numNormals = (m_VtxAttr.NormalElements == 1) ? NRM_THREE : NRM_ONE;
m_NativeFmt.m_components |= VB_HAS_NRM0;
if (numNormals == NRM_THREE)
m_NativeFmt.m_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
// Colors
int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++) {
SetupColor(i, col[i], m_VtxAttr.color[i].Comp, m_VtxAttr.color[i].Elements);
if (col[i] != NOT_PRESENT)
m_NativeFmt.m_VBVertexStride += 4;
}
// TextureCoord
int tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
// Texture matrix indices (remove if corresponding texture coordinate isn't enabled)
for (int i = 0; i < 8; i++) {
SetupTexCoord(i, tc[i], m_VtxAttr.texCoord[i].Format, m_VtxAttr.texCoord[i].Elements, m_VtxAttr.texCoord[i].Frac);
if (m_NativeFmt.m_components & (VB_HAS_TEXMTXIDX0 << i)) {
if (tc[i] != NOT_PRESENT) {
// if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index
WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2);
m_NativeFmt.m_VBVertexStride += 12;
}
else {
WriteCall(TexMtx_Write_Short3);
m_NativeFmt.m_VBVertexStride += 6; // still include the texture coordinate, but this time as 6 bytes
m_NativeFmt.m_components |= VB_HAS_UV0 << i; // have to include since using now
}
}
else {
if (tc[i] != NOT_PRESENT)
m_NativeFmt.m_VBVertexStride += 4 * (m_VtxAttr.texCoord[i].Elements ? 2 : 1);
}
if (tc[i] == NOT_PRESENT) {
// if there's more tex coords later, have to write a dummy call
int j = i + 1;
for (; j < 8; ++j) {
if (tc[j] != NOT_PRESENT) {
WriteCall(TexCoord_Read_Dummy); // important to get indices right!
break;
}
}
if (j == 8 && !((m_NativeFmt.m_components&VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL<<(i+1)))) // no more tex coords and tex matrices, so exit loop
break;
}
}
if (m_VtxDesc.PosMatIdx) {
WriteCall(PosMtx_Write);
m_NativeFmt.m_VBVertexStride += 1;
}
m_NativeFmt.Initialize(m_VtxDesc, m_VtxAttr);
}
void VertexLoader::SetupColor(int num, int mode, int format, int elements)
{
// if COL0 not present, then embed COL1 into COL0
if (num == 1 && !(m_NativeFmt.m_components & VB_HAS_COL0))
num = 0;
m_NativeFmt.m_components |= VB_HAS_COL0 << num;
switch (mode)
{
case NOT_PRESENT:
m_NativeFmt.m_components &= ~(VB_HAS_COL0 << num);
break;
case DIRECT:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadDirect_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadDirect_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadDirect_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadDirect_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadDirect_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadDirect_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX8:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break;
default: _assert_(0); break;
}
break;
}
}
void VertexLoader::SetupTexCoord(int num, int mode, int format, int elements, int _iFrac)
{
m_NativeFmt.m_components |= VB_HAS_UV0 << num;
switch (mode)
{
case NOT_PRESENT:
m_NativeFmt.m_components &= ~(VB_HAS_UV0 << num);
break;
case DIRECT:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadDirect_UByte2:TexCoord_ReadDirect_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadDirect_Byte2:TexCoord_ReadDirect_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadDirect_UShort2:TexCoord_ReadDirect_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadDirect_Short2:TexCoord_ReadDirect_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadDirect_Float2:TexCoord_ReadDirect_Float1); break;
default: _assert_(0); break;
}
break;
case INDEX8:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex8_UByte2:TexCoord_ReadIndex8_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex8_Byte2:TexCoord_ReadIndex8_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex8_UShort2:TexCoord_ReadIndex8_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex8_Short2:TexCoord_ReadIndex8_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex8_Float2:TexCoord_ReadIndex8_Float1); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex16_UByte2:TexCoord_ReadIndex16_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex16_Byte2:TexCoord_ReadIndex16_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex16_UShort2:TexCoord_ReadIndex16_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex16_Short2:TexCoord_ReadIndex16_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex16_Float2:TexCoord_ReadIndex16_Float1); break;
default: _assert_(0);
}
break;
}
}
void VertexLoader::WriteCall(TPipelineFunction func)
{
m_PipelineStages[m_numPipelineStages++] = func;
}
void VertexLoader::RunVertices(int primitive, int count)
{
DVSTARTPROFILE();
// Flush if our vertex format is different from the currently set.
// TODO - this check should be moved.
if (g_nativeVertexFmt != NULL && g_nativeVertexFmt != &m_NativeFmt)
{
VertexManager::Flush();
// Also move the Set() here?
}
g_nativeVertexFmt = &m_NativeFmt;
// This has dirty handling - won't actually recompute unless necessary.
ComputeVertexSize();
if (bpmem.genMode.cullmode == 3 && primitive < 5)
{
// if cull mode is none, ignore triangles and quads
DataSkip(count * m_VertexSize);
return;
}
// This has dirty handling - won't actually recompute unless necessary.
CompileVertexTranslator();
VertexManager::EnableComponents(m_NativeFmt.m_components);
// Load position and texcoord scale factors.
// Hm, this could be done when the VtxAttr is set, instead.
posScale = shiftLookup[m_VtxAttr.PosFrac];
if (m_NativeFmt.m_components & VB_HAS_UVALL) {
for (int i = 0; i < 8; i++) {
tcScaleU[i] = shiftLookup[m_VtxAttr.texCoord[i].Frac];
tcScaleV[i] = shiftLookup[m_VtxAttr.texCoord[i].Frac];
}
}
for (int i = 0; i < 2; i++)
colElements[i] = m_VtxAttr.color[i].Elements;
// if strips or fans, make sure all vertices can fit in buffer, otherwise flush
int granularity = 1;
switch (primitive) {
case 3: // strip
case 4: // fan
if (VertexManager::GetRemainingSize() < 3 * m_NativeFmt.m_VBVertexStride )
VertexManager::Flush();
break;
case 6: // line strip
if (VertexManager::GetRemainingSize() < 2 * m_NativeFmt.m_VBVertexStride )
VertexManager::Flush();
break;
case 0: // quads
granularity = 4;
break;
case 2: // tris
granularity = 3;
break;
case 5: // lines
granularity = 2;
break;
}
int startv = 0, extraverts = 0;
for (int v = 0; v < count; v++)
{
if ((v % granularity) == 0)
{
if (VertexManager::GetRemainingSize() < granularity*m_NativeFmt.m_VBVertexStride) {
// This buffer full - break current primitive and flush, to switch to the next buffer.
u8* plastptr = VertexManager::s_pCurBufferPointer;
if (v - startv > 0)
VertexManager::AddVertices(primitive, v - startv + extraverts);
VertexManager::Flush();
// Why does this need to be so complicated?
switch (primitive) {
case 3: // triangle strip, copy last two vertices
// a little trick since we have to keep track of signs
if (v & 1) {
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-2*m_NativeFmt.m_VBVertexStride, m_NativeFmt.m_VBVertexStride);
memcpy_gc(VertexManager::s_pCurBufferPointer+m_NativeFmt.m_VBVertexStride, plastptr-m_NativeFmt.m_VBVertexStride*2, 2*m_NativeFmt.m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_NativeFmt.m_VBVertexStride*3;
extraverts = 3;
}
else {
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_NativeFmt.m_VBVertexStride*2, m_NativeFmt.m_VBVertexStride*2);
VertexManager::s_pCurBufferPointer += m_NativeFmt.m_VBVertexStride*2;
extraverts = 2;
}
break;
case 4: // tri fan, copy first and last vert
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_NativeFmt.m_VBVertexStride*(v-startv+extraverts), m_NativeFmt.m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_NativeFmt.m_VBVertexStride;
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_NativeFmt.m_VBVertexStride, m_NativeFmt.m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_NativeFmt.m_VBVertexStride;
extraverts = 2;
break;
case 6: // line strip
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_NativeFmt.m_VBVertexStride, m_NativeFmt.m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_NativeFmt.m_VBVertexStride;
extraverts = 1;
break;
default:
extraverts = 0;
break;
}
startv = v;
}
}
tcIndex = 0;
colIndex = 0;
s_texmtxwrite = s_texmtxread = 0;
RunPipelineOnce();
VertexManager::s_pCurBufferPointer += m_NativeFmt.m_VBStridePad;
PRIM_LOG("\n");
}
if (startv < count)
VertexManager::AddVertices(primitive, count - startv + extraverts);
}
void VertexLoader::RunPipelineOnce() const
{
for (int i = 0; i < m_numPipelineStages; i++)
m_PipelineStages[i](&m_VtxAttr);
}
void VertexLoader::SetVAT_group0(u32 _group0)
{
// ignore frac bits - we don't need to recompute if all that's changed was the frac bits.
if ((m_group0.Hex & ~VAT_0_FRACBITS) != (_group0 & ~VAT_0_FRACBITS)) {
m_AttrDirty = AD_VAT_DIRTY;
}
m_group0.Hex = _group0;
m_VtxAttr.PosElements = m_group0.PosElements;
m_VtxAttr.PosFormat = m_group0.PosFormat;
m_VtxAttr.PosFrac = m_group0.PosFrac;
m_VtxAttr.NormalElements = m_group0.NormalElements;
m_VtxAttr.NormalFormat = m_group0.NormalFormat;
m_VtxAttr.color[0].Elements = m_group0.Color0Elements;
m_VtxAttr.color[0].Comp = m_group0.Color0Comp;
m_VtxAttr.color[1].Elements = m_group0.Color1Elements;
m_VtxAttr.color[1].Comp = m_group0.Color1Comp;
m_VtxAttr.texCoord[0].Elements = m_group0.Tex0CoordElements;
m_VtxAttr.texCoord[0].Format = m_group0.Tex0CoordFormat;
m_VtxAttr.texCoord[0].Frac = m_group0.Tex0Frac;
m_VtxAttr.ByteDequant = m_group0.ByteDequant;
m_VtxAttr.NormalIndex3 = m_group0.NormalIndex3;
};
void VertexLoader::SetVAT_group1(u32 _group1)
{
if ((m_group1.Hex & ~VAT_1_FRACBITS) != (_group1 & ~VAT_1_FRACBITS)) {
m_AttrDirty = AD_VAT_DIRTY;
}
m_group1.Hex = _group1;
m_VtxAttr.texCoord[1].Elements = m_group1.Tex1CoordElements;
m_VtxAttr.texCoord[1].Format = m_group1.Tex1CoordFormat;
m_VtxAttr.texCoord[1].Frac = m_group1.Tex1Frac;
m_VtxAttr.texCoord[2].Elements = m_group1.Tex2CoordElements;
m_VtxAttr.texCoord[2].Format = m_group1.Tex2CoordFormat;
m_VtxAttr.texCoord[2].Frac = m_group1.Tex2Frac;
m_VtxAttr.texCoord[3].Elements = m_group1.Tex3CoordElements;
m_VtxAttr.texCoord[3].Format = m_group1.Tex3CoordFormat;
m_VtxAttr.texCoord[3].Frac = m_group1.Tex3Frac;
m_VtxAttr.texCoord[4].Elements = m_group1.Tex4CoordElements;
m_VtxAttr.texCoord[4].Format = m_group1.Tex4CoordFormat;
};
void VertexLoader::SetVAT_group2(u32 _group2)
{
if ((m_group2.Hex & ~VAT_2_FRACBITS) != (_group2 & ~VAT_2_FRACBITS)) {
m_AttrDirty = AD_VAT_DIRTY;
}
m_group2.Hex = _group2;
m_VtxAttr.texCoord[4].Frac = m_group2.Tex4Frac;
m_VtxAttr.texCoord[5].Elements = m_group2.Tex5CoordElements;
m_VtxAttr.texCoord[5].Format = m_group2.Tex5CoordFormat;
m_VtxAttr.texCoord[5].Frac = m_group2.Tex5Frac;
m_VtxAttr.texCoord[6].Elements = m_group2.Tex6CoordElements;
m_VtxAttr.texCoord[6].Format = m_group2.Tex6CoordFormat;
m_VtxAttr.texCoord[6].Frac = m_group2.Tex6Frac;
m_VtxAttr.texCoord[7].Elements = m_group2.Tex7CoordElements;
m_VtxAttr.texCoord[7].Format = m_group2.Tex7CoordFormat;
m_VtxAttr.texCoord[7].Frac = m_group2.Tex7Frac;
};