dolphin/Source/Core/VideoBackends/Vulkan/VKTexture.cpp

697 lines
32 KiB
C++
Raw Normal View History

// Copyright 2017 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <cstddef>
#include <cstring>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/FramebufferManager.h"
#include "VideoBackends/Vulkan/StagingBuffer.h"
#include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/Texture2D.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VKTexture.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/ImageWrite.h"
#include "VideoCommon/TextureConfig.h"
namespace Vulkan
{
VKTexture::VKTexture(const TextureConfig& tex_config, std::unique_ptr<Texture2D> texture,
VkFramebuffer framebuffer)
: AbstractTexture(tex_config), m_texture(std::move(texture)), m_framebuffer(framebuffer)
{
}
std::unique_ptr<VKTexture> VKTexture::Create(const TextureConfig& tex_config)
{
// Determine image usage, we need to flag as an attachment if it can be used as a rendertarget.
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT;
if (tex_config.rendertarget)
usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// Allocate texture object
VkFormat vk_format = Util::GetVkFormatForHostTextureFormat(tex_config.format);
auto texture =
Texture2D::Create(tex_config.width, tex_config.height, tex_config.levels, tex_config.layers,
vk_format, static_cast<VkSampleCountFlagBits>(tex_config.samples),
VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL, usage);
if (!texture)
{
return nullptr;
}
// If this is a render target (for efb copies), allocate a framebuffer
VkFramebuffer framebuffer = VK_NULL_HANDLE;
if (tex_config.rendertarget)
{
VkImageView framebuffer_attachments[] = {texture->GetView()};
VkRenderPass render_pass =
g_object_cache->GetRenderPass(texture->GetFormat(), VK_FORMAT_UNDEFINED, tex_config.samples,
VK_ATTACHMENT_LOAD_OP_DONT_CARE);
VkFramebufferCreateInfo framebuffer_info = {
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
nullptr,
0,
render_pass,
static_cast<u32>(ArraySize(framebuffer_attachments)),
framebuffer_attachments,
texture->GetWidth(),
texture->GetHeight(),
texture->GetLayers()};
VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
&framebuffer);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
return nullptr;
}
if (!IsDepthFormat(tex_config.format))
{
// Clear render targets before use to prevent reading uninitialized memory.
VkClearColorValue clear_value = {{0.0f, 0.0f, 0.0f, 1.0f}};
VkImageSubresourceRange clear_range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, tex_config.levels, 0,
tex_config.layers};
texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdClearColorImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), texture->GetImage(),
texture->GetLayout(), &clear_value, 1, &clear_range);
}
else
{
// Clear render targets before use to prevent reading uninitialized memory.
VkClearDepthStencilValue clear_value = {0.0f, 0};
VkImageSubresourceRange clear_range = {Util::GetImageAspectForFormat(vk_format), 0,
tex_config.levels, 0, tex_config.layers};
texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdClearDepthStencilImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
texture->GetImage(), texture->GetLayout(), &clear_value, 1,
&clear_range);
}
}
return std::unique_ptr<VKTexture>(new VKTexture(tex_config, std::move(texture), framebuffer));
}
VKTexture::~VKTexture()
{
// Texture is automatically cleaned up, however, we don't want to leave it bound.
g_renderer->UnbindTexture(this);
if (m_framebuffer != VK_NULL_HANDLE)
g_command_buffer_mgr->DeferFramebufferDestruction(m_framebuffer);
}
Texture2D* VKTexture::GetRawTexIdentifier() const
{
return m_texture.get();
}
VkFramebuffer VKTexture::GetFramebuffer() const
{
return m_framebuffer;
}
void VKTexture::CopyRectangleFromTexture(const AbstractTexture* src,
const MathUtil::Rectangle<int>& src_rect, u32 src_layer,
u32 src_level, const MathUtil::Rectangle<int>& dst_rect,
u32 dst_layer, u32 dst_level)
{
Texture2D* src_texture = static_cast<const VKTexture*>(src)->GetRawTexIdentifier();
2018-04-12 12:18:04 +00:00
ASSERT_MSG(VIDEO,
static_cast<u32>(src_rect.GetWidth()) <= src_texture->GetWidth() &&
static_cast<u32>(src_rect.GetHeight()) <= src_texture->GetHeight(),
"Source rect is too large for CopyRectangleFromTexture");
2018-04-12 12:18:04 +00:00
ASSERT_MSG(VIDEO,
static_cast<u32>(dst_rect.GetWidth()) <= m_config.width &&
static_cast<u32>(dst_rect.GetHeight()) <= m_config.height,
"Dest rect is too large for CopyRectangleFromTexture");
VkImageCopy image_copy = {
{VK_IMAGE_ASPECT_COLOR_BIT, src_level, src_layer, src_texture->GetLayers()},
{src_rect.left, src_rect.top, 0},
{VK_IMAGE_ASPECT_COLOR_BIT, dst_level, dst_layer, m_config.layers},
{dst_rect.left, dst_rect.top, 0},
{static_cast<uint32_t>(src_rect.GetWidth()), static_cast<uint32_t>(src_rect.GetHeight()), 1}};
// Must be called outside of a render pass.
StateTracker::GetInstance()->EndRenderPass();
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyImage(g_command_buffer_mgr->GetCurrentCommandBuffer(), src_texture->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_texture->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
// Ensure both textures remain in the SHADER_READ_ONLY layout so they can be bound.
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void VKTexture::ScaleRectangleFromTexture(const AbstractTexture* source,
const MathUtil::Rectangle<int>& src_rect,
const MathUtil::Rectangle<int>& dst_rect)
{
Texture2D* src_texture = static_cast<const VKTexture*>(source)->GetRawTexIdentifier();
// Can't do this within a game render pass.
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->SetPendingRebind();
// Can't render to a non-rendertarget (no framebuffer).
ASSERT_MSG(VIDEO, m_config.rendertarget,
"Destination texture for partial copy is not a rendertarget");
// Render pass expects dst_texture to be in COLOR_ATTACHMENT_OPTIMAL state.
// src_texture should already be in SHADER_READ_ONLY state, but transition in case (XFB).
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
VkRenderPass render_pass = g_object_cache->GetRenderPass(
m_texture->GetFormat(), VK_FORMAT_UNDEFINED, 1, VK_ATTACHMENT_LOAD_OP_DONT_CARE);
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD), render_pass,
g_shader_cache->GetPassthroughVertexShader(),
g_shader_cache->GetPassthroughGeometryShader(),
TextureCache::GetInstance()->GetCopyShader());
VkRect2D region = {
{dst_rect.left, dst_rect.top},
{static_cast<u32>(dst_rect.GetWidth()), static_cast<u32>(dst_rect.GetHeight())}};
draw.BeginRenderPass(m_framebuffer, region);
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler());
draw.DrawQuad(dst_rect.left, dst_rect.top, dst_rect.GetWidth(), dst_rect.GetHeight(),
src_rect.left, src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
static_cast<int>(src_texture->GetWidth()),
static_cast<int>(src_texture->GetHeight()));
draw.EndRenderPass();
// Ensure both textures remain in the SHADER_READ_ONLY layout so they can be bound.
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void VKTexture::ResolveFromTexture(const AbstractTexture* src, const MathUtil::Rectangle<int>& rect,
u32 layer, u32 level)
{
const VKTexture* srcentry = static_cast<const VKTexture*>(src);
DEBUG_ASSERT(m_config.samples == 1 && m_config.width == srcentry->m_config.width &&
m_config.height == srcentry->m_config.height && srcentry->m_config.samples > 1);
DEBUG_ASSERT(rect.left + rect.GetWidth() <= static_cast<int>(srcentry->m_config.width) &&
rect.top + rect.GetHeight() <= static_cast<int>(srcentry->m_config.height));
// Resolving is considered to be a transfer operation.
StateTracker::GetInstance()->EndRenderPass();
VkImageLayout old_src_layout = srcentry->m_texture->GetLayout();
srcentry->m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageResolve resolve = {
{VK_IMAGE_ASPECT_COLOR_BIT, level, layer, 1}, // srcSubresource
{rect.left, rect.top, 0}, // srcOffset
{VK_IMAGE_ASPECT_COLOR_BIT, level, layer, 1}, // dstSubresource
{rect.left, rect.top, 0}, // dstOffset
{static_cast<u32>(rect.GetWidth()), static_cast<u32>(rect.GetHeight()), 1} // extent
};
vkCmdResolveImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
srcentry->m_texture->GetImage(), srcentry->m_texture->GetLayout(),
m_texture->GetImage(), m_texture->GetLayout(), 1, &resolve);
// Restore old source texture layout. Destination is assumed to be bound as a shader resource.
srcentry->m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
old_src_layout);
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void VKTexture::Load(u32 level, u32 width, u32 height, u32 row_length, const u8* buffer,
size_t buffer_size)
{
// Can't copy data larger than the texture extents.
width = std::max(1u, std::min(width, m_texture->GetWidth() >> level));
height = std::max(1u, std::min(height, m_texture->GetHeight() >> level));
// We don't care about the existing contents of the texture, so we could the image layout to
// VK_IMAGE_LAYOUT_UNDEFINED here. However, under section 2.2.1, Queue Operation of the Vulkan
// specification, it states:
//
// Command buffer submissions to a single queue must always adhere to command order and
// API order, but otherwise may overlap or execute out of order.
//
// Therefore, if a previous frame's command buffer is still sampling from this texture, and we
// overwrite it without a pipeline barrier, a texture sample could occur in parallel with the
// texture upload/copy. I'm not sure if any drivers currently take advantage of this, but we
// should insert an explicit pipeline barrier just in case (done by TransitionToLayout).
//
// We transition to TRANSFER_DST, ready for the image copy, and leave the texture in this state.
// When the last mip level is uploaded, we transition to SHADER_READ_ONLY, ready for use. This is
// because we can't transition in a render pass, and we don't necessarily know when this texture
// is going to be used.
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// For unaligned textures, we can save some memory in the transfer buffer by skipping the rows
// that lie outside of the texture's dimensions.
u32 upload_alignment = static_cast<u32>(g_vulkan_context->GetBufferImageGranularity());
u32 block_size = Util::GetBlockSize(m_texture->GetFormat());
u32 num_rows = Common::AlignUp(height, block_size) / block_size;
size_t source_pitch = CalculateStrideForFormat(m_config.format, row_length);
size_t upload_size = source_pitch * num_rows;
std::unique_ptr<StagingBuffer> temp_buffer;
VkBuffer upload_buffer;
VkDeviceSize upload_buffer_offset;
// Does this texture data fit within the streaming buffer?
if (upload_size <= STAGING_TEXTURE_UPLOAD_THRESHOLD &&
upload_size <= MAXIMUM_TEXTURE_UPLOAD_BUFFER_SIZE)
{
StreamBuffer* stream_buffer = TextureCache::GetInstance()->GetTextureUploadBuffer();
if (!stream_buffer->ReserveMemory(upload_size, upload_alignment))
{
// Execute the command buffer first.
WARN_LOG(VIDEO, "Executing command list while waiting for space in texture upload buffer");
Util::ExecuteCurrentCommandsAndRestoreState(false);
// Try allocating again. This may cause a fence wait.
if (!stream_buffer->ReserveMemory(upload_size, upload_alignment))
PanicAlert("Failed to allocate space in texture upload buffer");
}
// Copy to the streaming buffer.
upload_buffer = stream_buffer->GetBuffer();
upload_buffer_offset = stream_buffer->GetCurrentOffset();
std::memcpy(stream_buffer->GetCurrentHostPointer(), buffer, upload_size);
stream_buffer->CommitMemory(upload_size);
}
else
{
// Create a temporary staging buffer that is destroyed after the image is copied.
temp_buffer = StagingBuffer::Create(STAGING_BUFFER_TYPE_UPLOAD, upload_size,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
if (!temp_buffer || !temp_buffer->Map())
{
PanicAlert("Failed to allocate staging texture for large texture upload.");
return;
}
upload_buffer = temp_buffer->GetBuffer();
upload_buffer_offset = 0;
temp_buffer->Write(0, buffer, upload_size, true);
temp_buffer->Unmap();
}
// Copy from the streaming buffer to the actual image.
VkBufferImageCopy image_copy = {
upload_buffer_offset, // VkDeviceSize bufferOffset
row_length, // uint32_t bufferRowLength
0, // uint32_t bufferImageHeight
{VK_IMAGE_ASPECT_COLOR_BIT, level, 0, 1}, // VkImageSubresourceLayers imageSubresource
{0, 0, 0}, // VkOffset3D imageOffset
{width, height, 1} // VkExtent3D imageExtent
};
vkCmdCopyBufferToImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), upload_buffer,
m_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&image_copy);
// Last mip level? We shouldn't be doing any further uploads now, so transition for rendering.
if (level == (m_config.levels - 1))
{
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
}
VKStagingTexture::VKStagingTexture(StagingTextureType type, const TextureConfig& config,
std::unique_ptr<StagingBuffer> buffer)
: AbstractStagingTexture(type, config), m_staging_buffer(std::move(buffer))
{
}
VKStagingTexture::~VKStagingTexture()
{
if (m_needs_flush)
VKStagingTexture::Flush();
}
std::unique_ptr<VKStagingTexture> VKStagingTexture::Create(StagingTextureType type,
const TextureConfig& config)
{
size_t stride = config.GetStride();
size_t buffer_size = stride * static_cast<size_t>(config.height);
STAGING_BUFFER_TYPE buffer_type;
VkImageUsageFlags buffer_usage;
if (type == StagingTextureType::Readback)
{
buffer_type = STAGING_BUFFER_TYPE_READBACK;
buffer_usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
else if (type == StagingTextureType::Upload)
{
buffer_type = STAGING_BUFFER_TYPE_UPLOAD;
buffer_usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
}
else
{
buffer_type = STAGING_BUFFER_TYPE_READBACK;
buffer_usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
VkBuffer buffer;
VkDeviceMemory memory;
bool coherent;
if (!StagingBuffer::AllocateBuffer(buffer_type, buffer_size, buffer_usage, &buffer, &memory,
&coherent))
{
return nullptr;
}
std::unique_ptr<StagingBuffer> staging_buffer =
std::make_unique<StagingBuffer>(buffer_type, buffer, memory, buffer_size, coherent);
std::unique_ptr<VKStagingTexture> staging_tex = std::unique_ptr<VKStagingTexture>(
new VKStagingTexture(type, config, std::move(staging_buffer)));
// Use persistent mapping.
if (!staging_tex->m_staging_buffer->Map())
return nullptr;
staging_tex->m_map_pointer = staging_tex->m_staging_buffer->GetMapPointer();
staging_tex->m_map_stride = stride;
return staging_tex;
}
void VKStagingTexture::CopyFromTexture(const AbstractTexture* src,
const MathUtil::Rectangle<int>& src_rect, u32 src_layer,
u32 src_level, const MathUtil::Rectangle<int>& dst_rect)
{
ASSERT(m_type == StagingTextureType::Readback || m_type == StagingTextureType::Mutable);
ASSERT(src_rect.GetWidth() == dst_rect.GetWidth() &&
src_rect.GetHeight() == dst_rect.GetHeight());
ASSERT(src_rect.left >= 0 && static_cast<u32>(src_rect.right) <= src->GetConfig().width &&
src_rect.top >= 0 && static_cast<u32>(src_rect.bottom) <= src->GetConfig().height);
ASSERT(dst_rect.left >= 0 && static_cast<u32>(dst_rect.right) <= m_config.width &&
dst_rect.top >= 0 && static_cast<u32>(dst_rect.bottom) <= m_config.height);
Texture2D* src_tex = static_cast<const VKTexture*>(src)->GetRawTexIdentifier();
CopyFromTexture(src_tex, src_rect, src_layer, src_level, dst_rect);
}
void VKStagingTexture::CopyFromTexture(Texture2D* src, const MathUtil::Rectangle<int>& src_rect,
u32 src_layer, u32 src_level,
const MathUtil::Rectangle<int>& dst_rect)
{
if (m_needs_flush)
{
// Drop copy before reusing it.
g_command_buffer_mgr->RemoveFencePointCallback(this);
m_flush_fence = VK_NULL_HANDLE;
m_needs_flush = false;
}
VkImageLayout old_layout = src->GetLayout();
src->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Issue the image->buffer copy, but delay it for now.
VkBufferImageCopy image_copy = {};
VkImageAspectFlags aspect =
Util::IsDepthFormat(src->GetFormat()) ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
image_copy.bufferOffset =
static_cast<VkDeviceSize>(static_cast<size_t>(dst_rect.top) * m_config.GetStride() +
static_cast<size_t>(dst_rect.left) * m_texel_size);
image_copy.bufferRowLength = static_cast<u32>(m_config.width);
image_copy.bufferImageHeight = 0;
image_copy.imageSubresource = {aspect, src_level, src_layer, 1};
image_copy.imageOffset = {src_rect.left, src_rect.top, 0};
image_copy.imageExtent = {static_cast<u32>(src_rect.GetWidth()),
static_cast<u32>(src_rect.GetHeight()), 1u};
vkCmdCopyImageToBuffer(g_command_buffer_mgr->GetCurrentCommandBuffer(), src->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_staging_buffer->GetBuffer(), 1,
&image_copy);
// Restore old source texture layout.
src->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_layout);
m_needs_flush = true;
g_command_buffer_mgr->AddFencePointCallback(this,
[this](VkCommandBuffer buf, VkFence fence) {
ASSERT(m_needs_flush);
if (m_flush_fence != VK_NULL_HANDLE)
return;
m_flush_fence = fence;
},
[this](VkFence fence) {
if (m_flush_fence != fence)
return;
m_flush_fence = VK_NULL_HANDLE;
m_needs_flush = false;
g_command_buffer_mgr->RemoveFencePointCallback(
this);
m_staging_buffer->InvalidateCPUCache();
});
}
void VKStagingTexture::CopyToTexture(const MathUtil::Rectangle<int>& src_rect, AbstractTexture* dst,
const MathUtil::Rectangle<int>& dst_rect, u32 dst_layer,
u32 dst_level)
{
ASSERT(m_type == StagingTextureType::Upload || m_type == StagingTextureType::Mutable);
ASSERT(src_rect.GetWidth() == dst_rect.GetWidth() &&
src_rect.GetHeight() == dst_rect.GetHeight());
ASSERT(src_rect.left >= 0 && static_cast<u32>(src_rect.right) <= m_config.width &&
src_rect.top >= 0 && static_cast<u32>(src_rect.bottom) <= m_config.height);
ASSERT(dst_rect.left >= 0 && static_cast<u32>(dst_rect.right) <= dst->GetConfig().width &&
dst_rect.top >= 0 && static_cast<u32>(dst_rect.bottom) <= dst->GetConfig().height);
if (m_needs_flush)
{
// Drop copy before reusing it.
g_command_buffer_mgr->RemoveFencePointCallback(this);
m_flush_fence = VK_NULL_HANDLE;
m_needs_flush = false;
}
// Flush caches before copying.
m_staging_buffer->FlushCPUCache();
Texture2D* dst_tex = static_cast<const VKTexture*>(dst)->GetRawTexIdentifier();
VkImageLayout old_layout = dst_tex->GetLayout();
dst_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Issue the image->buffer copy, but delay it for now.
VkBufferImageCopy image_copy = {};
image_copy.bufferOffset =
static_cast<VkDeviceSize>(static_cast<size_t>(src_rect.top) * m_config.GetStride() +
static_cast<size_t>(src_rect.left) * m_texel_size);
image_copy.bufferRowLength = static_cast<u32>(m_config.width);
image_copy.bufferImageHeight = 0;
image_copy.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, dst_level, dst_layer, 1};
image_copy.imageOffset = {dst_rect.left, dst_rect.top, 0};
image_copy.imageExtent = {static_cast<u32>(dst_rect.GetWidth()),
static_cast<u32>(dst_rect.GetHeight()), 1u};
vkCmdCopyBufferToImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
m_staging_buffer->GetBuffer(), dst_tex->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
// Restore old source texture layout.
dst_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_layout);
m_needs_flush = true;
g_command_buffer_mgr->AddFencePointCallback(this,
[this](VkCommandBuffer buf, VkFence fence) {
ASSERT(m_needs_flush);
if (m_flush_fence != VK_NULL_HANDLE)
return;
m_flush_fence = fence;
},
[this](VkFence fence) {
if (m_flush_fence != fence)
return;
m_flush_fence = VK_NULL_HANDLE;
m_needs_flush = false;
g_command_buffer_mgr->RemoveFencePointCallback(
this);
});
}
bool VKStagingTexture::Map()
{
// Always mapped.
return true;
}
void VKStagingTexture::Unmap()
{
// Always mapped.
}
void VKStagingTexture::Flush()
{
if (!m_needs_flush)
return;
// Either of the below two calls will cause the callback to fire.
g_command_buffer_mgr->RemoveFencePointCallback(this);
if (m_flush_fence != VK_NULL_HANDLE)
{
// WaitForFence should fire the callback.
g_command_buffer_mgr->WaitForFence(m_flush_fence);
m_flush_fence = VK_NULL_HANDLE;
}
else
{
// We don't have a fence, and are pending. That means the readback is in the current
// command buffer, and must execute it to populate the staging texture.
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
}
m_needs_flush = false;
// For readback textures, invalidate the CPU cache as there is new data there.
if (m_type == StagingTextureType::Readback || m_type == StagingTextureType::Mutable)
m_staging_buffer->InvalidateCPUCache();
}
VKFramebuffer::VKFramebuffer(const VKTexture* color_attachment, const VKTexture* depth_attachment,
u32 width, u32 height, u32 layers, u32 samples, VkFramebuffer fb,
VkRenderPass load_render_pass, VkRenderPass discard_render_pass,
VkRenderPass clear_render_pass)
: AbstractFramebuffer(
color_attachment ? color_attachment->GetFormat() : AbstractTextureFormat::Undefined,
depth_attachment ? depth_attachment->GetFormat() : AbstractTextureFormat::Undefined,
width, height, layers, samples),
m_color_attachment(color_attachment), m_depth_attachment(depth_attachment), m_fb(fb),
m_load_render_pass(load_render_pass), m_discard_render_pass(discard_render_pass),
m_clear_render_pass(clear_render_pass)
{
}
VKFramebuffer::~VKFramebuffer()
{
g_command_buffer_mgr->DeferFramebufferDestruction(m_fb);
}
std::unique_ptr<VKFramebuffer> VKFramebuffer::Create(const VKTexture* color_attachment,
const VKTexture* depth_attachment)
{
if (!ValidateConfig(color_attachment, depth_attachment))
return nullptr;
const VkFormat vk_color_format =
color_attachment ? color_attachment->GetRawTexIdentifier()->GetFormat() : VK_FORMAT_UNDEFINED;
const VkFormat vk_depth_format =
depth_attachment ? depth_attachment->GetRawTexIdentifier()->GetFormat() : VK_FORMAT_UNDEFINED;
const VKTexture* either_attachment = color_attachment ? color_attachment : depth_attachment;
const u32 width = either_attachment->GetWidth();
const u32 height = either_attachment->GetHeight();
const u32 layers = either_attachment->GetLayers();
const u32 samples = either_attachment->GetSamples();
std::array<VkImageView, 2> attachment_views{};
u32 num_attachments = 0;
if (color_attachment)
attachment_views[num_attachments++] = color_attachment->GetRawTexIdentifier()->GetView();
if (depth_attachment)
attachment_views[num_attachments++] = depth_attachment->GetRawTexIdentifier()->GetView();
VkRenderPass load_render_pass = g_object_cache->GetRenderPass(
vk_color_format, vk_depth_format, samples, VK_ATTACHMENT_LOAD_OP_LOAD);
VkRenderPass discard_render_pass = g_object_cache->GetRenderPass(
vk_color_format, vk_depth_format, samples, VK_ATTACHMENT_LOAD_OP_DONT_CARE);
VkRenderPass clear_render_pass = g_object_cache->GetRenderPass(
vk_color_format, vk_depth_format, samples, VK_ATTACHMENT_LOAD_OP_CLEAR);
if (load_render_pass == VK_NULL_HANDLE || discard_render_pass == VK_NULL_HANDLE ||
clear_render_pass == VK_NULL_HANDLE)
{
return nullptr;
}
VkFramebufferCreateInfo framebuffer_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
nullptr,
0,
load_render_pass,
num_attachments,
attachment_views.data(),
width,
height,
layers};
VkFramebuffer fb;
VkResult res =
vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr, &fb);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
return nullptr;
}
return std::make_unique<VKFramebuffer>(color_attachment, depth_attachment, width, height, layers,
samples, fb, load_render_pass, discard_render_pass,
clear_render_pass);
}
void VKFramebuffer::TransitionForRender() const
{
if (m_color_attachment)
{
m_color_attachment->GetRawTexIdentifier()->TransitionToLayout(
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
if (m_depth_attachment)
{
m_depth_attachment->GetRawTexIdentifier()->TransitionToLayout(
g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
}
}
void VKFramebuffer::TransitionForSample() const
{
if (StateTracker::GetInstance()->GetFramebuffer() == m_fb)
StateTracker::GetInstance()->EndRenderPass();
if (m_color_attachment)
{
m_color_attachment->GetRawTexIdentifier()->TransitionToLayout(
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
if (m_depth_attachment)
{
m_depth_attachment->GetRawTexIdentifier()->TransitionToLayout(
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
}
} // namespace Vulkan