dolphin/Source/Core/VideoCommon/ShaderCache.cpp

914 lines
29 KiB
C++
Raw Normal View History

2018-02-24 15:15:35 +00:00
// Copyright 2018 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/ShaderCache.h"
#include "Common/Assert.h"
#include "Common/MsgHandler.h"
#include "Core/Host.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexManagerBase.h"
std::unique_ptr<VideoCommon::ShaderCache> g_shader_cache;
namespace VideoCommon
{
ShaderCache::ShaderCache() = default;
ShaderCache::~ShaderCache() = default;
bool ShaderCache::Initialize()
{
m_api_type = g_ActiveConfig.backend_info.api_type;
m_host_config = ShaderHostConfig::GetCurrent();
m_efb_multisamples = g_ActiveConfig.iMultisamples;
// Create the async compiler, and start the worker threads.
m_async_shader_compiler = g_renderer->CreateAsyncShaderCompiler();
2018-02-24 15:15:35 +00:00
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderPrecompilerThreads());
// Load shader and UID caches.
if (g_ActiveConfig.bShaderCache)
{
LoadShaderCaches();
LoadPipelineUIDCache();
}
// Queue ubershader precompiling if required.
if (g_ActiveConfig.CanPrecompileUberShaders())
PrecompileUberShaders();
// Compile all known UIDs.
CompileMissingPipelines();
// Switch to the runtime shader compiler thread configuration.
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderCompilerThreads());
return true;
}
void ShaderCache::SetHostConfig(const ShaderHostConfig& host_config, u32 efb_multisamples)
{
if (m_host_config.bits == host_config.bits && m_efb_multisamples == efb_multisamples)
return;
m_host_config = host_config;
m_efb_multisamples = efb_multisamples;
Reload();
}
void ShaderCache::Reload()
{
m_async_shader_compiler->WaitUntilCompletion();
m_async_shader_compiler->RetrieveWorkItems();
InvalidateCachedPipelines();
ClearShaderCaches();
if (g_ActiveConfig.bShaderCache)
LoadShaderCaches();
// Switch to the precompiling shader configuration while we rebuild.
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderPrecompilerThreads());
// We don't need to explicitly recompile the individual ubershaders here, as the pipelines
// UIDs are still be in the map. Therefore, when these are rebuilt, the shaders will also
// be recompiled.
CompileMissingPipelines();
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderCompilerThreads());
}
void ShaderCache::RetrieveAsyncShaders()
{
m_async_shader_compiler->RetrieveWorkItems();
}
void ShaderCache::Shutdown()
{
m_async_shader_compiler->StopWorkerThreads();
m_async_shader_compiler->RetrieveWorkItems();
ClearShaderCaches();
ClearPipelineCaches();
}
const AbstractPipeline* ShaderCache::GetPipelineForUid(const GXPipelineConfig& uid)
{
auto it = m_gx_pipeline_cache.find(uid);
if (it != m_gx_pipeline_cache.end() && !it->second.second)
return it->second.first.get();
std::unique_ptr<AbstractPipeline> pipeline;
std::optional<AbstractPipelineConfig> pipeline_config = GetGXPipelineConfig(uid);
if (pipeline_config)
pipeline = g_renderer->CreatePipeline(*pipeline_config);
if (g_ActiveConfig.bShaderCache)
AppendGXPipelineUID(uid);
return InsertGXPipeline(uid, std::move(pipeline));
}
std::optional<const AbstractPipeline*>
ShaderCache::GetPipelineForUidAsync(const GXPipelineConfig& uid)
{
auto it = m_gx_pipeline_cache.find(uid);
if (it != m_gx_pipeline_cache.end())
{
if (!it->second.second)
return it->second.first.get();
else
return {};
}
auto vs_iter = m_vs_cache.shader_map.find(uid.vs_uid);
if (vs_iter == m_vs_cache.shader_map.end())
{
QueueVertexShaderCompile(uid.vs_uid);
return {};
}
else if (vs_iter->second.pending)
{
// VS is still compiling.
return {};
}
auto ps_iter = m_ps_cache.shader_map.find(uid.ps_uid);
if (ps_iter == m_ps_cache.shader_map.end())
{
QueuePixelShaderCompile(uid.ps_uid);
return {};
}
else if (ps_iter->second.pending)
{
// PS is still compiling.
return {};
}
if (NeedsGeometryShader(uid.gs_uid))
{
auto gs_iter = m_gs_cache.shader_map.find(uid.gs_uid);
if (gs_iter == m_gs_cache.shader_map.end())
CreateGeometryShader(uid.gs_uid);
}
// All shader stages are present, queue the pipeline compile.
if (g_ActiveConfig.bShaderCache)
AppendGXPipelineUID(uid);
QueuePipelineCompile(uid);
return {};
}
const AbstractPipeline* ShaderCache::GetUberPipelineForUid(const GXUberPipelineConfig& uid)
{
auto it = m_gx_uber_pipeline_cache.find(uid);
if (it != m_gx_uber_pipeline_cache.end() && !it->second.second)
return it->second.first.get();
std::unique_ptr<AbstractPipeline> pipeline;
std::optional<AbstractPipelineConfig> pipeline_config = GetGXUberPipelineConfig(uid);
if (pipeline_config)
pipeline = g_renderer->CreatePipeline(*pipeline_config);
return InsertGXUberPipeline(uid, std::move(pipeline));
}
void ShaderCache::WaitForAsyncCompiler(const std::string& msg)
{
m_async_shader_compiler->WaitUntilCompletion([&msg](size_t completed, size_t total) {
Host_UpdateProgressDialog(msg.c_str(), static_cast<int>(completed), static_cast<int>(total));
});
m_async_shader_compiler->RetrieveWorkItems();
Host_UpdateProgressDialog("", -1, -1);
}
template <ShaderStage stage, typename K, typename T>
static void LoadShaderCache(T& cache, APIType api_type, const char* type, bool include_gameid)
{
class CacheReader : public LinearDiskCacheReader<K, u8>
{
public:
CacheReader(T& cache_) : cache(cache_) {}
void Read(const K& key, const u8* value, u32 value_size)
{
auto shader = g_renderer->CreateShaderFromBinary(stage, value, value_size);
if (shader)
{
auto& entry = cache.shader_map[key];
entry.shader = std::move(shader);
entry.pending = false;
switch (stage)
{
case ShaderStage::Vertex:
INCSTAT(stats.numVertexShadersCreated);
INCSTAT(stats.numVertexShadersAlive);
break;
case ShaderStage::Pixel:
INCSTAT(stats.numPixelShadersCreated);
INCSTAT(stats.numPixelShadersAlive);
break;
default:
break;
}
}
}
private:
T& cache;
};
std::string filename = GetDiskShaderCacheFileName(api_type, type, include_gameid, true);
CacheReader reader(cache);
u32 count = cache.disk_cache.OpenAndRead(filename, reader);
INFO_LOG(VIDEO, "Loaded %u cached shaders from %s", count, filename.c_str());
}
template <typename T>
static void ClearShaderCache(T& cache)
{
cache.disk_cache.Sync();
cache.disk_cache.Close();
cache.shader_map.clear();
}
void ShaderCache::LoadShaderCaches()
{
// Ubershader caches, if present.
LoadShaderCache<ShaderStage::Vertex, UberShader::VertexShaderUid>(m_uber_vs_cache, m_api_type,
"uber-vs", false);
LoadShaderCache<ShaderStage::Pixel, UberShader::PixelShaderUid>(m_uber_ps_cache, m_api_type,
"uber-ps", false);
// We also share geometry shaders, as there aren't many variants.
if (m_host_config.backend_geometry_shaders)
LoadShaderCache<ShaderStage::Geometry, GeometryShaderUid>(m_gs_cache, m_api_type, "gs", false);
// Specialized shaders, gameid-specific.
LoadShaderCache<ShaderStage::Vertex, VertexShaderUid>(m_vs_cache, m_api_type, "specialized-vs",
true);
LoadShaderCache<ShaderStage::Pixel, PixelShaderUid>(m_ps_cache, m_api_type, "specialized-ps",
true);
}
void ShaderCache::ClearShaderCaches()
{
ClearShaderCache(m_vs_cache);
ClearShaderCache(m_gs_cache);
ClearShaderCache(m_ps_cache);
ClearShaderCache(m_uber_vs_cache);
ClearShaderCache(m_uber_ps_cache);
SETSTAT(stats.numPixelShadersCreated, 0);
SETSTAT(stats.numPixelShadersAlive, 0);
SETSTAT(stats.numVertexShadersCreated, 0);
SETSTAT(stats.numVertexShadersAlive, 0);
}
void ShaderCache::LoadPipelineUIDCache()
{
// We use the async compiler here to speed up startup time.
class CacheReader : public LinearDiskCacheReader<GXPipelineDiskCacheUid, u8>
{
public:
CacheReader(ShaderCache* shader_cache_) : shader_cache(shader_cache_) {}
void Read(const GXPipelineDiskCacheUid& key, const u8* data, u32 data_size)
{
GXPipelineConfig config = {};
config.vertex_format = VertexLoaderManager::GetOrCreateMatchingFormat(key.vertex_decl);
config.vs_uid = key.vs_uid;
config.gs_uid = key.gs_uid;
config.ps_uid = key.ps_uid;
config.rasterization_state.hex = key.rasterization_state_bits;
config.depth_state.hex = key.depth_state_bits;
config.blending_state.hex = key.blending_state_bits;
auto iter = shader_cache->m_gx_pipeline_cache.find(config);
if (iter != shader_cache->m_gx_pipeline_cache.end())
return;
auto& entry = shader_cache->m_gx_pipeline_cache[config];
entry.second = false;
}
private:
ShaderCache* shader_cache;
};
std::string filename = GetDiskShaderCacheFileName(m_api_type, "pipeline-uid", true, false, false);
CacheReader reader(this);
u32 count = m_gx_pipeline_uid_disk_cache.OpenAndRead(filename, reader);
INFO_LOG(VIDEO, "Read %u pipeline UIDs from %s", count, filename.c_str());
CompileMissingPipelines();
}
void ShaderCache::CompileMissingPipelines()
{
// Queue all uids with a null pipeline for compilation.
for (auto& it : m_gx_pipeline_cache)
{
if (!it.second.second)
QueuePipelineCompile(it.first);
}
for (auto& it : m_gx_uber_pipeline_cache)
{
if (!it.second.second)
QueueUberPipelineCompile(it.first);
}
WaitForAsyncCompiler(GetStringT("Compiling shaders..."));
}
void ShaderCache::InvalidateCachedPipelines()
{
// Set the pending flag to false, and destroy the pipeline.
for (auto& it : m_gx_pipeline_cache)
{
it.second.first.reset();
it.second.second = false;
}
for (auto& it : m_gx_uber_pipeline_cache)
{
it.second.first.reset();
it.second.second = false;
}
}
void ShaderCache::ClearPipelineCaches()
{
m_gx_pipeline_cache.clear();
m_gx_uber_pipeline_cache.clear();
}
std::unique_ptr<AbstractShader> ShaderCache::CompileVertexShader(const VertexShaderUid& uid) const
{
ShaderCode source_code = GenerateVertexShaderCode(m_api_type, m_host_config, uid.GetUidData());
return g_renderer->CreateShaderFromSource(ShaderStage::Vertex, source_code.GetBuffer().c_str(),
source_code.GetBuffer().size());
}
std::unique_ptr<AbstractShader>
ShaderCache::CompileVertexUberShader(const UberShader::VertexShaderUid& uid) const
{
ShaderCode source_code = UberShader::GenVertexShader(m_api_type, m_host_config, uid.GetUidData());
return g_renderer->CreateShaderFromSource(ShaderStage::Vertex, source_code.GetBuffer().c_str(),
source_code.GetBuffer().size());
}
std::unique_ptr<AbstractShader> ShaderCache::CompilePixelShader(const PixelShaderUid& uid) const
{
ShaderCode source_code = GeneratePixelShaderCode(m_api_type, m_host_config, uid.GetUidData());
return g_renderer->CreateShaderFromSource(ShaderStage::Pixel, source_code.GetBuffer().c_str(),
source_code.GetBuffer().size());
}
std::unique_ptr<AbstractShader>
ShaderCache::CompilePixelUberShader(const UberShader::PixelShaderUid& uid) const
{
ShaderCode source_code = UberShader::GenPixelShader(m_api_type, m_host_config, uid.GetUidData());
return g_renderer->CreateShaderFromSource(ShaderStage::Pixel, source_code.GetBuffer().c_str(),
source_code.GetBuffer().size());
}
const AbstractShader* ShaderCache::InsertVertexShader(const VertexShaderUid& uid,
std::unique_ptr<AbstractShader> shader)
{
auto& entry = m_vs_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_vs_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
INCSTAT(stats.numVertexShadersCreated);
INCSTAT(stats.numVertexShadersAlive);
entry.shader = std::move(shader);
}
return entry.shader.get();
}
const AbstractShader* ShaderCache::InsertVertexUberShader(const UberShader::VertexShaderUid& uid,
std::unique_ptr<AbstractShader> shader)
{
auto& entry = m_uber_vs_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_uber_vs_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
INCSTAT(stats.numVertexShadersCreated);
INCSTAT(stats.numVertexShadersAlive);
entry.shader = std::move(shader);
}
return entry.shader.get();
}
const AbstractShader* ShaderCache::InsertPixelShader(const PixelShaderUid& uid,
std::unique_ptr<AbstractShader> shader)
{
auto& entry = m_ps_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_ps_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
INCSTAT(stats.numPixelShadersCreated);
INCSTAT(stats.numPixelShadersAlive);
entry.shader = std::move(shader);
}
return entry.shader.get();
}
const AbstractShader* ShaderCache::InsertPixelUberShader(const UberShader::PixelShaderUid& uid,
std::unique_ptr<AbstractShader> shader)
{
auto& entry = m_uber_ps_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_uber_ps_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
INCSTAT(stats.numPixelShadersCreated);
INCSTAT(stats.numPixelShadersAlive);
entry.shader = std::move(shader);
}
return entry.shader.get();
}
const AbstractShader* ShaderCache::CreateGeometryShader(const GeometryShaderUid& uid)
{
ShaderCode source_code = GenerateGeometryShaderCode(m_api_type, m_host_config, uid.GetUidData());
std::unique_ptr<AbstractShader> shader = g_renderer->CreateShaderFromSource(
ShaderStage::Geometry, source_code.GetBuffer().c_str(), source_code.GetBuffer().size());
auto& entry = m_gs_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_gs_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
entry.shader = std::move(shader);
}
return entry.shader.get();
}
bool ShaderCache::NeedsGeometryShader(const GeometryShaderUid& uid) const
{
return m_host_config.backend_geometry_shaders && !uid.GetUidData()->IsPassthrough();
}
AbstractPipelineConfig ShaderCache::GetGXPipelineConfig(
const NativeVertexFormat* vertex_format, const AbstractShader* vertex_shader,
const AbstractShader* geometry_shader, const AbstractShader* pixel_shader,
const RasterizationState& rasterization_state, const DepthState& depth_state,
const BlendingState& blending_state)
{
AbstractPipelineConfig config = {};
config.usage = AbstractPipelineUsage::GX;
config.vertex_format = vertex_format;
config.vertex_shader = vertex_shader;
config.geometry_shader = geometry_shader;
config.pixel_shader = pixel_shader;
config.rasterization_state = rasterization_state;
config.depth_state = depth_state;
config.blending_state = blending_state;
config.framebuffer_state.color_texture_format = AbstractTextureFormat::RGBA8;
config.framebuffer_state.depth_texture_format = AbstractTextureFormat::D32F;
config.framebuffer_state.per_sample_shading = m_host_config.ssaa;
config.framebuffer_state.samples = m_efb_multisamples;
return config;
}
std::optional<AbstractPipelineConfig>
ShaderCache::GetGXPipelineConfig(const GXPipelineConfig& config)
{
const AbstractShader* vs;
auto vs_iter = m_vs_cache.shader_map.find(config.vs_uid);
if (vs_iter != m_vs_cache.shader_map.end() && !vs_iter->second.pending)
vs = vs_iter->second.shader.get();
else
vs = InsertVertexShader(config.vs_uid, CompileVertexShader(config.vs_uid));
const AbstractShader* ps;
auto ps_iter = m_ps_cache.shader_map.find(config.ps_uid);
if (ps_iter != m_ps_cache.shader_map.end() && !ps_iter->second.pending)
ps = ps_iter->second.shader.get();
else
ps = InsertPixelShader(config.ps_uid, CompilePixelShader(config.ps_uid));
if (!vs || !ps)
return {};
const AbstractShader* gs = nullptr;
if (NeedsGeometryShader(config.gs_uid))
{
auto gs_iter = m_gs_cache.shader_map.find(config.gs_uid);
if (gs_iter != m_gs_cache.shader_map.end() && !gs_iter->second.pending)
gs = gs_iter->second.shader.get();
else
gs = CreateGeometryShader(config.gs_uid);
if (!gs)
return {};
}
return GetGXPipelineConfig(config.vertex_format, vs, gs, ps, config.rasterization_state,
config.depth_state, config.blending_state);
}
std::optional<AbstractPipelineConfig>
ShaderCache::GetGXUberPipelineConfig(const GXUberPipelineConfig& config)
{
const AbstractShader* vs;
auto vs_iter = m_uber_vs_cache.shader_map.find(config.vs_uid);
if (vs_iter != m_uber_vs_cache.shader_map.end() && !vs_iter->second.pending)
vs = vs_iter->second.shader.get();
else
vs = InsertVertexUberShader(config.vs_uid, CompileVertexUberShader(config.vs_uid));
const AbstractShader* ps;
auto ps_iter = m_uber_ps_cache.shader_map.find(config.ps_uid);
if (ps_iter != m_uber_ps_cache.shader_map.end() && !ps_iter->second.pending)
ps = ps_iter->second.shader.get();
else
ps = InsertPixelUberShader(config.ps_uid, CompilePixelUberShader(config.ps_uid));
if (!vs || !ps)
return {};
const AbstractShader* gs = nullptr;
if (NeedsGeometryShader(config.gs_uid))
{
auto gs_iter = m_gs_cache.shader_map.find(config.gs_uid);
if (gs_iter != m_gs_cache.shader_map.end() && !gs_iter->second.pending)
gs = gs_iter->second.shader.get();
else
gs = CreateGeometryShader(config.gs_uid);
if (!gs)
return {};
}
return GetGXPipelineConfig(config.vertex_format, vs, gs, ps, config.rasterization_state,
config.depth_state, config.blending_state);
}
const AbstractPipeline* ShaderCache::InsertGXPipeline(const GXPipelineConfig& config,
std::unique_ptr<AbstractPipeline> pipeline)
{
auto& entry = m_gx_pipeline_cache[config];
entry.second = false;
if (!entry.first && pipeline)
entry.first = std::move(pipeline);
return entry.first.get();
}
const AbstractPipeline*
ShaderCache::InsertGXUberPipeline(const GXUberPipelineConfig& config,
std::unique_ptr<AbstractPipeline> pipeline)
{
auto& entry = m_gx_uber_pipeline_cache[config];
entry.second = false;
if (!entry.first && pipeline)
entry.first = std::move(pipeline);
return entry.first.get();
}
void ShaderCache::AppendGXPipelineUID(const GXPipelineConfig& config)
{
// Convert to disk format.
GXPipelineDiskCacheUid disk_uid = {};
disk_uid.vertex_decl = config.vertex_format->GetVertexDeclaration();
disk_uid.vs_uid = config.vs_uid;
disk_uid.gs_uid = config.gs_uid;
disk_uid.ps_uid = config.ps_uid;
disk_uid.rasterization_state_bits = config.rasterization_state.hex;
disk_uid.depth_state_bits = config.depth_state.hex;
disk_uid.blending_state_bits = config.blending_state.hex;
m_gx_pipeline_uid_disk_cache.Append(disk_uid, nullptr, 0);
}
void ShaderCache::QueueVertexShaderCompile(const VertexShaderUid& uid)
{
class VertexShaderWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
VertexShaderWorkItem(ShaderCache* shader_cache_, const VertexShaderUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
}
bool Compile() override
{
shader = shader_cache->CompileVertexShader(uid);
return true;
}
virtual void Retrieve() override { shader_cache->InsertVertexShader(uid, std::move(shader)); }
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractShader> shader;
VertexShaderUid uid;
};
m_vs_cache.shader_map[uid].pending = true;
auto wi = m_async_shader_compiler->CreateWorkItem<VertexShaderWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
void ShaderCache::QueueVertexUberShaderCompile(const UberShader::VertexShaderUid& uid)
{
class VertexUberShaderWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
VertexUberShaderWorkItem(ShaderCache* shader_cache_, const UberShader::VertexShaderUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
}
bool Compile() override
{
shader = shader_cache->CompileVertexUberShader(uid);
return true;
}
virtual void Retrieve() override
{
shader_cache->InsertVertexUberShader(uid, std::move(shader));
}
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractShader> shader;
UberShader::VertexShaderUid uid;
};
m_uber_vs_cache.shader_map[uid].pending = true;
auto wi = m_async_shader_compiler->CreateWorkItem<VertexUberShaderWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
void ShaderCache::QueuePixelShaderCompile(const PixelShaderUid& uid)
{
class PixelShaderWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
PixelShaderWorkItem(ShaderCache* shader_cache_, const PixelShaderUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
}
bool Compile() override
{
shader = shader_cache->CompilePixelShader(uid);
return true;
}
virtual void Retrieve() override { shader_cache->InsertPixelShader(uid, std::move(shader)); }
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractShader> shader;
PixelShaderUid uid;
};
m_ps_cache.shader_map[uid].pending = true;
auto wi = m_async_shader_compiler->CreateWorkItem<PixelShaderWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
void ShaderCache::QueuePixelUberShaderCompile(const UberShader::PixelShaderUid& uid)
{
class PixelUberShaderWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
PixelUberShaderWorkItem(ShaderCache* shader_cache_, const UberShader::PixelShaderUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
}
bool Compile() override
{
shader = shader_cache->CompilePixelUberShader(uid);
return true;
}
virtual void Retrieve() override
{
shader_cache->InsertPixelUberShader(uid, std::move(shader));
}
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractShader> shader;
UberShader::PixelShaderUid uid;
};
m_uber_ps_cache.shader_map[uid].pending = true;
auto wi = m_async_shader_compiler->CreateWorkItem<PixelUberShaderWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
void ShaderCache::QueuePipelineCompile(const GXPipelineConfig& uid)
{
class PipelineWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
PipelineWorkItem(ShaderCache* shader_cache_, const GXPipelineConfig& uid_,
const AbstractPipelineConfig& config_)
: shader_cache(shader_cache_), uid(uid_), config(config_)
{
}
bool Compile() override
{
pipeline = g_renderer->CreatePipeline(config);
return true;
}
virtual void Retrieve() override { shader_cache->InsertGXPipeline(uid, std::move(pipeline)); }
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractPipeline> pipeline;
GXPipelineConfig uid;
AbstractPipelineConfig config;
};
auto config = GetGXPipelineConfig(uid);
if (!config)
{
// One or more stages failed to compile.
InsertGXPipeline(uid, nullptr);
return;
}
auto wi = m_async_shader_compiler->CreateWorkItem<PipelineWorkItem>(this, uid, *config);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
m_gx_pipeline_cache[uid].second = true;
}
void ShaderCache::QueueUberPipelineCompile(const GXUberPipelineConfig& uid)
{
class UberPipelineWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
UberPipelineWorkItem(ShaderCache* shader_cache_, const GXUberPipelineConfig& uid_,
const AbstractPipelineConfig& config_)
: shader_cache(shader_cache_), uid(uid_), config(config_)
{
}
bool Compile() override
{
pipeline = g_renderer->CreatePipeline(config);
return true;
}
virtual void Retrieve() override
{
shader_cache->InsertGXUberPipeline(uid, std::move(pipeline));
}
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractPipeline> pipeline;
GXUberPipelineConfig uid;
AbstractPipelineConfig config;
};
auto config = GetGXUberPipelineConfig(uid);
if (!config)
{
// One or more stages failed to compile.
InsertGXUberPipeline(uid, nullptr);
return;
}
auto wi = m_async_shader_compiler->CreateWorkItem<UberPipelineWorkItem>(this, uid, *config);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
m_gx_uber_pipeline_cache[uid].second = true;
}
void ShaderCache::PrecompileUberShaders()
{
// Geometry shaders are required for the pipelines.
if (m_host_config.backend_geometry_shaders)
{
EnumerateGeometryShaderUids([&](const GeometryShaderUid& guid) {
auto iter = m_gs_cache.shader_map.find(guid);
if (iter == m_gs_cache.shader_map.end())
CreateGeometryShader(guid);
});
}
// Queue shader compiling.
UberShader::EnumerateVertexShaderUids([&](const UberShader::VertexShaderUid& vuid) {
auto iter = m_uber_vs_cache.shader_map.find(vuid);
if (iter == m_uber_vs_cache.shader_map.end())
QueueVertexUberShaderCompile(vuid);
});
UberShader::EnumeratePixelShaderUids([&](const UberShader::PixelShaderUid& puid) {
auto iter = m_uber_ps_cache.shader_map.find(puid);
if (iter == m_uber_ps_cache.shader_map.end())
QueuePixelUberShaderCompile(puid);
});
// Wait for shaders to finish compiling.
WaitForAsyncCompiler(GetStringT("Compiling uber shaders..."));
// Create a dummy vertex format with no attributes.
// All attributes will be enabled in GetUberVertexFormat.
PortableVertexDeclaration dummy_vertex_decl = {};
dummy_vertex_decl.position.components = 4;
dummy_vertex_decl.position.type = VAR_FLOAT;
dummy_vertex_decl.position.enable = true;
dummy_vertex_decl.stride = sizeof(float) * 4;
NativeVertexFormat* dummy_vertex_format =
VertexLoaderManager::GetUberVertexFormat(dummy_vertex_decl);
auto QueueDummyPipeline = [&](const UberShader::VertexShaderUid& vs_uid,
const GeometryShaderUid& gs_uid,
const UberShader::PixelShaderUid& ps_uid) {
GXUberPipelineConfig config;
config.vertex_format = dummy_vertex_format;
config.vs_uid = vs_uid;
config.gs_uid = gs_uid;
config.ps_uid = ps_uid;
config.rasterization_state = RenderState::GetNoCullRasterizationState();
config.depth_state = RenderState::GetNoDepthTestingDepthStencilState();
config.blending_state = RenderState::GetNoBlendingBlendState();
auto iter = m_gx_uber_pipeline_cache.find(config);
if (iter != m_gx_uber_pipeline_cache.end())
return;
auto& entry = m_gx_uber_pipeline_cache[config];
entry.second = false;
};
// Populate the pipeline configs with empty entries, these will be compiled afterwards.
UberShader::EnumerateVertexShaderUids([&](const UberShader::VertexShaderUid& vuid) {
UberShader::EnumeratePixelShaderUids([&](const UberShader::PixelShaderUid& puid) {
// UIDs must have compatible texgens, a mismatching combination will never be queried.
if (vuid.GetUidData()->num_texgens != puid.GetUidData()->num_texgens)
return;
EnumerateGeometryShaderUids([&](const GeometryShaderUid& guid) {
if (guid.GetUidData()->numTexGens != vuid.GetUidData()->num_texgens)
return;
QueueDummyPipeline(vuid, guid, puid);
});
});
});
}
std::string ShaderCache::GetUtilityShaderHeader() const
{
std::stringstream ss;
ss << "#define API_D3D " << (m_api_type == APIType::D3D ? 1 : 0) << "\n";
ss << "#define API_OPENGL " << (m_api_type == APIType::OpenGL ? 1 : 0) << "\n";
ss << "#define API_VULKAN " << (m_api_type == APIType::Vulkan ? 1 : 0) << "\n";
if (m_efb_multisamples > 1)
{
ss << "#define MSAA_ENABLED 1" << std::endl;
ss << "#define MSAA_SAMPLES " << m_efb_multisamples << std::endl;
if (m_host_config.ssaa)
ss << "#define SSAA_ENABLED 1" << std::endl;
}
ss << "#define EFB_LAYERS " << (m_host_config.stereo ? 2 : 1) << std::endl;
return ss.str();
}
} // namespace VideoCommon