dolphin/Source/Plugins/Plugin_DSP_LLE-testing/Src/DSPInterpreter.cpp

1461 lines
32 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2009 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
// Additional copyrights go to Duddie and Tratax (c) 2004
#include "DSPInterpreter.h"
#include "Globals.h"
#include "gdsp_memory.h"
#include "gdsp_interpreter.h"
#include "gdsp_condition_codes.h"
#include "gdsp_registers.h"
#include "gdsp_opcodes_helper.h"
#include "gdsp_ext_op.h"
namespace DSPInterpreter {
void unknown(const UDSPInstruction& opc)
{
//_assert_msg_(MASTER_LOG, !g_dsp.exception_in_progress_hack, "assert while exception");
ERROR_LOG(DSPHLE, "LLE: Unrecognized opcode 0x%04x, pc 0x%04x", opc.hex, g_dsp.err_pc);
}
// test register and updates SR accordingly
void tsta(int reg)
{
s64 acc = dsp_get_long_acc(reg);
Update_SR_Register64(acc);
}
// Generic call implementation
void call(const UDSPInstruction& opc)
{
u16 dest = dsp_fetch_code();
if (CheckCondition(opc.hex & 0xf))
{
dsp_reg_store_stack(DSP_STACK_C, g_dsp.pc);
g_dsp.pc = dest;
}
}
// Generic callr implementation
void callr(const UDSPInstruction& opc)
{
u16 addr;
u8 reg;
if (CheckCondition(opc.hex & 0xf))
{
reg = (opc.hex >> 5) & 0x7;
addr = dsp_op_read_reg(reg);
dsp_reg_store_stack(DSP_STACK_C, g_dsp.pc);
g_dsp.pc = addr;
}
}
// Generic if implementation
void ifcc(const UDSPInstruction& opc)
{
if (!CheckCondition(opc.hex & 0xf))
{
// skip the next opcode - we have to lookup its size.
g_dsp.pc += opSize[dsp_peek_code()];
}
}
// Generic jmp implementation
void jcc(const UDSPInstruction& opc)
{
u16 dest = dsp_fetch_code();
if (CheckCondition(opc.hex & 0xf))
{
g_dsp.pc = dest;
}
}
// Generic jmpr implementation
void jmprcc(const UDSPInstruction& opc)
{
u8 reg;
if (CheckCondition(opc.hex & 0xf))
{
reg = (opc.hex >> 5) & 0x7;
g_dsp.pc = dsp_op_read_reg(reg);
}
}
// Generic ret implementation
void ret(const UDSPInstruction& opc)
{
if (CheckCondition(opc.hex & 0xf))
{
g_dsp.pc = dsp_reg_load_stack(DSP_STACK_C);
}
}
// FIXME inside
void rti(const UDSPInstruction& opc)
{
if ((opc.hex & 0xf) != 0xf)
{
// FIXME: Implement
ERROR_LOG(DSPHLE, "dsp rti opcode");
}
g_dsp.r[R_SR] = dsp_reg_load_stack(DSP_STACK_D);
g_dsp.pc = dsp_reg_load_stack(DSP_STACK_C);
g_dsp.exception_in_progress_hack = false;
}
// HALT
// 0000 0000 0020 0001
// Stops execution of DSP code. Sets bit DSP_CR_HALT in register DREG_CR.
void halt(const UDSPInstruction& opc)
{
g_dsp.cr |= 0x4;
g_dsp.pc = g_dsp.err_pc;
}
void loop(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x1f;
u16 cnt = g_dsp.r[reg];
u16 loop_pc = g_dsp.pc;
while (cnt--)
{
gdsp_loop_step();
g_dsp.pc = loop_pc;
}
// g_dsp.pc = loop_pc;
g_dsp.pc += opSize[dsp_peek_code()];
}
void loopi(const UDSPInstruction& opc)
{
u16 cnt = opc.hex & 0xff;
u16 loop_pc = g_dsp.pc;
while (cnt--)
{
gdsp_loop_step();
g_dsp.pc = loop_pc;
}
// g_dsp.pc = loop_pc;
g_dsp.pc += opSize[dsp_peek_code()];
}
void bloop(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x1f;
u16 cnt = g_dsp.r[reg];
u16 loop_pc = dsp_fetch_code();
if (cnt)
{
dsp_reg_store_stack(0, g_dsp.pc);
dsp_reg_store_stack(2, loop_pc);
dsp_reg_store_stack(3, cnt);
}
else
{
g_dsp.pc = loop_pc;
g_dsp.pc += opSize[dsp_peek_code()];
}
}
void bloopi(const UDSPInstruction& opc)
{
u16 cnt = opc.hex & 0xff;
u16 loop_pc = dsp_fetch_code();
if (cnt)
{
dsp_reg_store_stack(0, g_dsp.pc);
dsp_reg_store_stack(2, loop_pc);
dsp_reg_store_stack(3, cnt);
}
else
{
g_dsp.pc = loop_pc;
g_dsp.pc += opSize[dsp_peek_code()];
}
}
//-------------------------------------------------------------
void mrr(const UDSPInstruction& opc)
{
u8 sreg = opc.hex & 0x1f;
u8 dreg = (opc.hex >> 5) & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_op_write_reg(dreg, val);
}
// LRR $D, @$S
// 0001 1000 0ssd dddd
// Move value from data memory pointed by addressing register $S toregister $D.
// FIXME: Perform additional operation depending on destination register.
void lrr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 5) & 0x3;
u8 dreg = opc.hex & 0x1f;
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
dsp_op_write_reg(dreg, val);
}
// LRRD $D, @$S
// 0001 1000 1ssd dddd
// Move value from data memory pointed by addressing register $S toregister $D.
// Decrement register $S.
// FIXME: Perform additional operation depending on destination register.
void lrrd(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 5) & 0x3;
u8 dreg = opc.hex & 0x1f;
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
dsp_op_write_reg(dreg, val);
g_dsp.r[sreg]--;
}
// LRRI $D, @$S
// 0001 1001 0ssd dddd
// Move value from data memory pointed by addressing register $S to register $D.
// Increment register $S.
// FIXME: Perform additional operation depending on destination register.
void lrri(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 5) & 0x3;
u8 dreg = opc.hex & 0x1f;
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
dsp_op_write_reg(dreg, val);
g_dsp.r[sreg]++;
}
// LRRN $D, @$S
// 0001 1001 1ssd dddd
// Move value from data memory pointed by addressing register $S to register $D.
// Add indexing register $(0x4+S) to register $S.
// FIXME: Perform additional operation depending on destination register.
void lrrn(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 5) & 0x3;
u8 dreg = opc.hex & 0x1f;
u16 val = dsp_dmem_read(g_dsp.r[sreg]);
dsp_op_write_reg(dreg, val);
g_dsp.r[sreg] += g_dsp.r[sreg + 4];
}
// SRR @$D, $S
// 0001 1010 0dds ssss
// Store value from source register $S to a memory location pointed by
// addressing register $D.
// FIXME: Perform additional operation depending on source register.
void srr(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x3;
u8 sreg = opc.hex & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_dmem_write(g_dsp.r[dreg], val);
}
// SRRD @$D, $S
// 0001 1010 1dds ssss
// Store value from source register $S to a memory location pointed by
// addressing register $D. Decrement register $D.
// FIXME: Perform additional operation depending on source register.
void srrd(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x3;
u8 sreg = opc.hex & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_dmem_write(g_dsp.r[dreg], val);
g_dsp.r[dreg]--;
}
// SRRI @$D, $S
// 0001 1011 0dds ssss
// Store value from source register $S to a memory location pointed by
// addressing register $D. Increment register $D.
// FIXME: Perform additional operation depending on source register.
void srri(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x3;
u8 sreg = opc.hex & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_dmem_write(g_dsp.r[dreg], val);
g_dsp.r[dreg]++;
}
// SRRN @$D, $S
// 0001 1011 1dds ssss
// Store value from source register $S to a memory location pointed by
// addressing register $D. Add indexing register $(0x4+D) to register $D.
// FIXME: Perform additional operation depending on source register.
void srrn(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 5) & 0x3;
u8 sreg = opc.hex & 0x1f;
u16 val = dsp_op_read_reg(sreg);
dsp_dmem_write(g_dsp.r[dreg], val);
g_dsp.r[dreg] += g_dsp.r[dreg + 4];
}
// FIXME inside
void ilrr(const UDSPInstruction& opc)
{
u16 reg = opc.hex & 0x3;
u16 dreg = 0x1e + ((opc.hex >> 8) & 1);
// always to acc0 ?
g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]);
switch ((opc.hex >> 2) & 0x3)
{
case 0x0: // no change (ILRR)
break;
case 0x1: // post decrement (ILRRD?)
g_dsp.r[reg]--;
break;
case 0x2: // post increment (ILRRI)
g_dsp.r[reg]++;
break;
default:
// FIXME: Implement
ERROR_LOG(DSPHLE, "Unknown ILRR: 0x%04x\n", (opc.hex >> 2) & 0x3);
}
}
void lri(const UDSPInstruction& opc)
{
u8 reg = opc.hex & DSP_REG_MASK;
u16 imm = dsp_fetch_code();
dsp_op_write_reg(reg, imm);
}
void lris(const UDSPInstruction& opc)
{
u8 reg = ((opc.hex >> 8) & 0x7) + 0x18;
u16 imm = (s8)opc.hex;
dsp_op_write_reg(reg, imm);
}
void lr(const UDSPInstruction& opc)
{
u8 reg = opc.hex & DSP_REG_MASK;
u16 addr = dsp_fetch_code();
u16 val = dsp_dmem_read(addr);
dsp_op_write_reg(reg, val);
}
void sr(const UDSPInstruction& opc)
{
u8 reg = opc.hex & DSP_REG_MASK;
u16 addr = dsp_fetch_code();
u16 val = dsp_op_read_reg(reg);
dsp_dmem_write(addr, val);
}
void si(const UDSPInstruction& opc)
{
u16 addr = (s8)opc.hex;
u16 imm = dsp_fetch_code();
dsp_dmem_write(addr, imm);
}
void tstaxh(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 8) & 0x1;
s16 val = dsp_get_ax_h(reg);
Update_SR_Register16(val);
}
void clr(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 11) & 0x1;
dsp_set_long_acc(reg, 0);
Update_SR_Register64((s64)0); // really?
}
void clrp(const UDSPInstruction& opc)
{
g_dsp.r[0x14] = 0x0000;
g_dsp.r[0x15] = 0xfff0;
g_dsp.r[0x16] = 0x00ff;
g_dsp.r[0x17] = 0x0010;
}
void mulc(const UDSPInstruction& opc)
{
// math new prod
u8 sreg = (opc.hex >> 11) & 0x1;
u8 treg = (opc.hex >> 12) & 0x1;
s64 prod = dsp_get_acc_m(sreg) * dsp_get_ax_h(treg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void mulcmvz(const UDSPInstruction& opc)
{
s64 TempProd = dsp_get_long_prod();
// update prod
u8 sreg = (opc.hex >> 12) & 0x1;
s64 Prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_acc_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(Prod);
// update acc
u8 rreg = (opc.hex >> 8) & 0x1;
s64 acc = TempProd & ~0xffff; // clear lower 4 bytes
dsp_set_long_acc(rreg, acc);
}
void mulcmv(const UDSPInstruction& opc)
{
s64 TempProd = dsp_get_long_prod();
// update prod
u8 sreg = (opc.hex >> 12) & 0x1;
s64 Prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_acc_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(Prod);
// update acc
u8 rreg = (opc.hex >> 8) & 0x1;
dsp_set_long_acc(rreg, TempProd);
}
void cmpar(const UDSPInstruction& opc)
{
u8 rreg = ((opc.hex >> 12) & 0x1) + 0x1a;
u8 areg = (opc.hex >> 11) & 0x1;
// we compare
s64 rr = (s16)g_dsp.r[rreg];
rr <<= 16;
s64 ar = dsp_get_long_acc(areg);
Update_SR_Register64(ar - rr);
}
void cmp(const UDSPInstruction& opc)
{
s64 acc0 = dsp_get_long_acc(0);
s64 acc1 = dsp_get_long_acc(1);
Update_SR_Register64(acc0 - acc1);
}
void tst(const UDSPInstruction& opc)
{
tsta((opc.hex >> 11) & 0x1);
}
// ADDAXL $acD, $axS.l
// 0111 00sd xxxx xxxx
// Adds secondary accumulator $axS.l to accumulator register $acD.
void addaxl(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
s64 acx = dsp_get_ax_l(sreg);
acc += acx;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// ADDARN $arD, $ixS
// 0000 0000 0001 ssdd
// Adds indexing register $ixS to an addressing register $arD.
void addarn(const UDSPInstruction& opc)
{
u8 dreg = opc.hex & 0x3;
u8 sreg = (opc.hex >> 2) & 0x3;
g_dsp.r[dreg] += (s16)g_dsp.r[0x04 + sreg];
}
void mulcac(const UDSPInstruction& opc)
{
s64 TempProd = dsp_get_long_prod();
// update prod
u8 sreg = (opc.hex >> 12) & 0x1;
s64 Prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_acc_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(Prod);
// update acc
u8 rreg = (opc.hex >> 8) & 0x1;
dsp_set_long_acc(rreg, TempProd + g_dsp.r[rreg]);
}
void movr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + 0x18;
s64 acc = (s16)g_dsp.r[sreg];
acc <<= 16;
acc &= ~0xffff;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
void movax(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[0x1c + dreg] = g_dsp.r[0x18 + sreg];
g_dsp.r[0x1e + dreg] = g_dsp.r[0x1a + sreg];
if ((s16)g_dsp.r[0x1a + sreg] < 0)
{
g_dsp.r[0x10 + dreg] = 0xffff;
}
else
{
g_dsp.r[0x10 + dreg] = 0;
}
tsta(dreg);
}
void xorr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[0x1e + dreg] ^= g_dsp.r[0x1a + sreg];
tsta(dreg);
}
// ANDR $acD.m, $axS.h
// 0011 01sd xxxx xxxx
// Logic AND middle part of accumulator $acD.m with hight part of
// secondary accumulator $axS.h.
void andr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[0x1e + dreg] &= g_dsp.r[0x1a + sreg];
tsta(dreg);
}
void orr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[0x1e + dreg] |= g_dsp.r[0x1a + sreg];
tsta(dreg);
}
// ANDC $acD.m, $ac(1-D).m
// 0011 110d xxxx xxxx
// Logic AND middle part of accumulator $acD.m with middle part of
// accumulator $ax(1-D).m.s
void andc(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
u16 ac1 = dsp_get_acc_m(D);
u16 ac2 = dsp_get_acc_m(1 - D);
dsp_set_long_acc(D, ac1 & ac2);
if ((ac1 & ac2) == 0)
{
g_dsp.r[R_SR] |= 0x20; // 0x40?
}
else
{
g_dsp.r[R_SR] &= ~0x20; // 0x40?
}
}
//-------------------------------------------------------------
void nx(const UDSPInstruction& opc)
{
// This opcode is supposed to do nothing - it's used if you want to use
// an opcode extension but not do anything. At least according to duddie.
}
// FIXME inside
// Hermes switched andf and andcf, so check to make sure they are still correct
// ANDCF $acD.m, #I
// 0000 001r 1100 0000
// iiii iiii iiii iiii
// Set logic zero (LZ) flag in status register $sr if result of logic AND of
// accumulator mid part $acD.m with immediate value I is equal zero.
void andfc(const UDSPInstruction& opc)
{
if (opc.hex & 0xf)
{
// FIXME: Implement
ERROR_LOG(DSPHLE, "dsp_opc.hex_andfc");
}
u8 reg = (opc.hex >> 8) & 0x1;
u16 imm = dsp_fetch_code();
u16 val = dsp_get_acc_m(reg);
if ((val & imm) == imm)
{
g_dsp.r[R_SR] |= 0x40;
}
else
{
g_dsp.r[R_SR] &= ~0x40;
}
}
// FIXME inside
// Hermes switched andf and andcf, so check to make sure they are still correct
// ANDF $acD.m, #I
// 0000 001r 1010 0000
// iiii iiii iiii iiii
// Set logic zero (LZ) flag in status register $sr if result of logical AND
// operation of accumulator mid part $acD.m with immediate value I is equal
// immediate value I.
void andf(const UDSPInstruction& opc)
{
u8 reg;
u16 imm;
u16 val;
if (opc.hex & 0xf)
{
// FIXME: Implement
ERROR_LOG(DSPHLE, "dsp andf opcode");
}
reg = 0x1e + ((opc.hex >> 8) & 0x1);
imm = dsp_fetch_code();
val = g_dsp.r[reg];
if ((val & imm) == 0)
{
g_dsp.r[R_SR] |= 0x40;
}
else
{
g_dsp.r[R_SR] &= ~0x40;
}
}
void cmpi(const UDSPInstruction& opc)
{
int reg = (opc.hex >> 8) & 0x1;
// Immediate is considered to be at M level in the 40-bit accumulator.
s64 imm = (s64)(s16)dsp_fetch_code() << 16;
s64 val = dsp_get_long_acc(reg);
s64 res = val - imm;
Update_SR_Register64(res);
}
// FIXME inside
void xori(const UDSPInstruction& opc)
{
if (opc.hex & 0xf)
{
// FIXME: Implement
ERROR_LOG(DSPHLE, "dsp xori opcode");
}
u8 reg = 0x1e + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] ^= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
//FIXME inside
// ANDI $acD.m, #I
// 0000 001r 0100 0000
// iiii iiii iiii iiii
// Logic AND of accumulator mid part $acD.m with immediate value I.
void andi(const UDSPInstruction& opc)
{
if (opc.hex & 0xf)
{
// FIXME: Implement
ERROR_LOG(DSPHLE, "dsp andi opcode");
}
u8 reg = 0x1e + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] &= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
// F|RES: i am not sure if this shouldnt be the whole ACC
//
//FIXME inside
void ori(const UDSPInstruction& opc)
{
if (opc.hex & 0xf)
{
// FIXME: Implement
ERROR_LOG(DSPHLE, "dsp ori opcode");
return;
}
u8 reg = 0x1e + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] |= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
//-------------------------------------------------------------
// ADD $acD, $ac(1-D)
// 0100 110d xxxx xxxx
// Adds accumulator $ac(1-D) to accumulator register $acD.
void add(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc0 = dsp_get_long_acc(0);
s64 acc1 = dsp_get_long_acc(1);
s64 res = acc0 + acc1;
dsp_set_long_acc(areg, res);
Update_SR_Register64(res);
}
//-------------------------------------------------------------
// ADDP $acD
// 0100 111d xxxx xxxx
// Adds product register to accumulator register.
void addp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
acc += dsp_get_long_prod();
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
void cmpis(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
s64 val = (s8)opc.hex;
val <<= 16;
s64 res = acc - val;
Update_SR_Register64(res);
}
// ADDPAXZ $acD, $axS
// 1111 10sd xxxx xxxx
// Adds secondary accumulator $axS to product register and stores result
// in accumulator register. Low 16-bits of $acD ($acD.l) are set to 0.
void addpaxz(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
u8 sreg = (opc.hex >> 9) & 0x1;
s64 prod = dsp_get_long_prod() & ~0x0ffff;
s64 ax_h = dsp_get_long_acx(sreg);
s64 acc = (prod + ax_h) & ~0x0ffff;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
void movpz(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x01;
// overwrite acc and clear low part
s64 prod = dsp_get_long_prod();
s64 acc = prod & ~0xffff;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
void decm(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x01;
s64 sub = 0x10000;
s64 acc = dsp_get_long_acc(dreg);
acc -= sub;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
void dec(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x01;
s64 acc = dsp_get_long_acc(dreg) - 1;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
void incm(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 sub = 0x10000;
s64 acc = dsp_get_long_acc(dreg);
acc += sub;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
void inc(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
acc++;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
void neg(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc = 0 - acc;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// MOVNP $acD
// 0111 111d xxxx xxxx
// Moves negative of multiply product from $prod register to accumulator
// $acD register.
void movnp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
s64 acc = -prod;
dsp_set_long_acc(dreg, acc);
}
// MOV $acD, $ac(1-D)
// 0110 110d xxxx xxxx
// Moves accumulator $ax(1-D) to accumulator $axD.
void mov(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
u16 acc = dsp_get_acc_m(1 - D);
dsp_set_long_acc(D, acc);
}
// ADDAX $acD, $axS
// 0100 10sd xxxx xxxx
// Adds secondary accumulator $axS to accumulator register $acD.
void addax(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = (opc.hex >> 9) & 0x1;
s64 ax = dsp_get_long_acx(sreg);
s64 acc = dsp_get_long_acc(areg);
acc += ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// ADDR $acD, $(0x18+S)
// 0100 0ssd xxxx xxxx
// Adds register $(0x18+S) to accumulator $acD register.
void addr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + 0x18;
s64 ax = (s16)g_dsp.r[sreg];
ax <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
void subr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + 0x18;
s64 ax = (s16)g_dsp.r[sreg];
ax <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc -= ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
void subax(const UDSPInstruction& opc)
{
int regD = (opc.hex >> 8) & 0x1;
int regT = (opc.hex >> 9) & 0x1;
s64 Acc = dsp_get_long_acc(regD) - dsp_get_long_acx(regT);
dsp_set_long_acc(regD, Acc);
Update_SR_Register64(Acc);
}
// ADDIS $acD, #I
// 0000 010d iiii iiii
// Adds short immediate (8-bit sign extended) to mid accumulator $acD.hm.
void addis(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 Imm = (s8)opc.hex;
Imm <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += Imm;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// ADDI $amR, #I
// 0000 001r 0000 0000
// iiii iiii iiii iiii
// Adds immediate (16-bit sign extended) to mid accumulator $acD.hm.
void addi(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 sub = (s16)dsp_fetch_code();
sub <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += sub;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
void lsl16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc <<= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
void madd(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
prod += (s64)dsp_get_ax_l(sreg) * (s64)dsp_get_ax_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
}
void msub(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
prod -= (s64)dsp_get_ax_l(sreg) * (s64)dsp_get_ax_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
}
void lsr16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc >>= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
void asr16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 11) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc >>= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
void shifti(const UDSPInstruction& opc)
{
// direction: left
bool ShiftLeft = true;
u16 shift = opc.ushift;
if ((opc.negating) && (opc.shift < 0))
{
ShiftLeft = false;
shift = -opc.shift;
}
s64 acc;
u64 uacc;
if (opc.arithmetic)
{
// arithmetic shift
uacc = dsp_get_long_acc(opc.areg);
if (!ShiftLeft)
{
uacc >>= shift;
}
else
{
uacc <<= shift;
}
acc = uacc;
}
else
{
acc = dsp_get_long_acc(opc.areg);
if (!ShiftLeft)
{
acc >>= shift;
}
else
{
acc <<= shift;
}
}
dsp_set_long_acc(opc.areg, acc);
Update_SR_Register64(acc);
}
//-------------------------------------------------------------
// hcs give me this code!!
// More docs needed - the operation is really odd!
// Decrement Address Register
void dar(const UDSPInstruction& opc)
{
int reg = opc.hex & 0x3;
int temp = g_dsp.r[reg] + g_dsp.r[8];
if (temp <= 0x7ff) // ???
g_dsp.r[reg] = temp;
else
g_dsp.r[reg]--;
}
// hcs give me this code!!
// More docs needed - the operation is really odd!
// Increment Address Register
void iar(const UDSPInstruction& opc)
{
int reg = opc.hex & 0x3;
int temp = g_dsp.r[reg] + g_dsp.r[8];
if (temp <= 0x7ff) // ???
g_dsp.r[reg] = temp;
else
g_dsp.r[reg]++;
}
//-------------------------------------------------------------
void sbclr(const UDSPInstruction& opc)
{
u8 bit = (opc.hex & 0xff) + 6;
g_dsp.r[R_SR] &= ~(1 << bit);
}
void sbset(const UDSPInstruction& opc)
{
u8 bit = (opc.hex & 0xff) + 6;
g_dsp.r[R_SR] |= (1 << bit);
}
// FIXME inside
// No idea what most of this is supposed to do.
void srbith(const UDSPInstruction& opc)
{
switch ((opc.hex >> 8) & 0xf)
{
// M0 seems to be the default. M2 is used in functions in Zelda
// and then reset with M0 at the end. Like the other bits here, it's
// done around loops with lots of multiplications.
case 0xa: // M2
ERROR_LOG(DSPHLE, "M2");
break;
// FIXME: Both of these appear in the beginning of the Wind Waker
case 0xb: // M0
ERROR_LOG(DSPHLE, "M0");
break;
// 15-bit precision? clamping? no idea :(
// CLR15 seems to be the default.
case 0xc: // CLR15
ERROR_LOG(DSPHLE, "CLR15");
break;
case 0xd: // SET15
ERROR_LOG(DSPHLE, "SET15");
break;
// 40-bit precision? clamping? no idea :(
// 40 seems to be the default.
case 0xe: // SET40 (really, clear SR's 0x4000?) something about "set 40-bit operation"?
g_dsp.r[R_SR] &= ~(1 << 14);
ERROR_LOG(DSPHLE, "SET40");
break;
case 0xf: // SET16 (really, set SR's 0x4000?) something about "set 16-bit operation"?
// that doesnt happen on a real console << what does this comment mean?
g_dsp.r[R_SR] |= (1 << 14);
ERROR_LOG(DSPHLE, "SET16");
break;
default:
break;
}
}
//-------------------------------------------------------------
void movp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
s64 acc = prod;
dsp_set_long_acc(dreg, acc);
}
void mul(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 11) & 0x1;
s64 prod = (s64)dsp_get_ax_h(sreg) * (s64)dsp_get_ax_l(sreg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void mulac(const UDSPInstruction& opc)
{
// add old prod to acc
u8 rreg = (opc.hex >> 8) & 0x1;
s64 acR = dsp_get_long_acc(rreg) + dsp_get_long_prod();
dsp_set_long_acc(rreg, acR);
// math new prod
u8 sreg = (opc.hex >> 11) & 0x1;
s64 prod = dsp_get_ax_l(sreg) * dsp_get_ax_h(sreg) * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void mulmv(const UDSPInstruction& opc)
{
u8 rreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
s64 acc = prod;
dsp_set_long_acc(rreg, acc);
u8 areg = ((opc.hex >> 11) & 0x1) + 0x18;
u8 breg = ((opc.hex >> 11) & 0x1) + 0x1a;
s64 val1 = (s16)g_dsp.r[areg];
s64 val2 = (s16)g_dsp.r[breg];
prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void mulmvz(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 11) & 0x1;
u8 rreg = (opc.hex >> 8) & 0x1;
// overwrite acc and clear low part
s64 prod = dsp_get_long_prod();
s64 acc = prod & ~0xffff;
dsp_set_long_acc(rreg, acc);
// math prod
prod = (s64)g_dsp.r[0x18 + sreg] * (s64)g_dsp.r[0x1a + sreg] * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void mulx(const UDSPInstruction& opc)
{
u8 sreg = ((opc.hex >> 12) & 0x1);
u8 treg = ((opc.hex >> 11) & 0x1);
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void mulxac(const UDSPInstruction& opc)
{
// add old prod to acc
u8 rreg = (opc.hex >> 8) & 0x1;
s64 acR = dsp_get_long_acc(rreg) + dsp_get_long_prod();
dsp_set_long_acc(rreg, acR);
// math new prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void mulxmv(const UDSPInstruction& opc)
{
// add old prod to acc
u8 rreg = ((opc.hex >> 8) & 0x1);
s64 acR = dsp_get_long_prod();
dsp_set_long_acc(rreg, acR);
// math new prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void mulxmvz(const UDSPInstruction& opc)
{
// overwrite acc and clear low part
u8 rreg = (opc.hex >> 8) & 0x1;
s64 prod = dsp_get_long_prod();
s64 acc = prod & ~0xffff;
dsp_set_long_acc(rreg, acc);
// math prod
u8 sreg = (opc.hex >> 12) & 0x1;
u8 treg = (opc.hex >> 11) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
prod = val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
Update_SR_Register64(prod);
}
void sub(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
s64 Acc1 = dsp_get_long_acc(D);
s64 Acc2 = dsp_get_long_acc(1 - D);
Acc1 -= Acc2;
dsp_set_long_acc(D, Acc1);
}
//-------------------------------------------------------------
//
// --- Table E
//
//-------------------------------------------------------------
void maddx(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 treg = (opc.hex >> 8) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_get_long_prod();
prod += val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
}
void msubx(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 treg = (opc.hex >> 8) & 0x1;
s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_get_long_prod();
prod -= val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
}
void maddc(const UDSPInstruction& opc)
{
u32 sreg = (opc.hex >> 9) & 0x1;
u32 treg = (opc.hex >> 8) & 0x1;
s64 val1 = dsp_get_acc_m(sreg);
s64 val2 = dsp_get_ax_h(treg);
s64 prod = dsp_get_long_prod();
prod += val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
}
void msubc(const UDSPInstruction& opc)
{
u32 sreg = (opc.hex >> 9) & 0x1;
u32 treg = (opc.hex >> 8) & 0x1;
s64 val1 = dsp_get_acc_m(sreg);
s64 val2 = dsp_get_ax_h(treg);
s64 prod = dsp_get_long_prod();
prod -= val1 * val2 * GetMultiplyModifier();
dsp_set_long_prod(prod);
}
// SRS @M, $(0x18+S)
// 0010 1sss mmmm mmmm
// Store value from register $(0x18+S) to a memory pointed by address M.
// (8-bit sign extended).
// FIXME: Perform additional operation depending on destination register.
// Note: pc+=2 in doddie's doc seems wrong
void srs(const UDSPInstruction& opc)
{
u8 reg = ((opc.hex >> 8) & 0x7) + 0x18;
u16 addr = (s8)opc.hex;
dsp_dmem_write(addr, g_dsp.r[reg]);
}
// LRS $(0x18+D), @M
// 0010 0ddd mmmm mmmm
// Move value from data memory pointed by address M (8-bit sign
// extended) to register $(0x18+D).
// FIXME: Perform additional operation depending on destination register.
// Note: pc+=2 in doddie's doc seems wrong
void lrs(const UDSPInstruction& opc)
{
u8 reg = ((opc.hex >> 8) & 0x7) + 0x18;
u16 addr = (s8) opc.hex;
g_dsp.r[reg] = dsp_dmem_read(addr);
}
} // namespace