GPU / SoftRasterizer: Fix a build issue for Altivec-enabled code. (Related to commits c41a006 and 43d3883.)

This commit is contained in:
rogerman 2018-05-17 20:06:31 -07:00
parent 9c128460c4
commit c024a78a43
2 changed files with 2339 additions and 2319 deletions

View File

@ -1,41 +1,41 @@
/*
Copyright (C) 2006-2007 shash
Copyright (C) 2007-2018 DeSmuME team
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the this software. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef MATRIX_H
#define MATRIX_H
#include <math.h>
#include <string.h>
#include "types.h"
#include "mem.h"
#ifdef ENABLE_SSE
#include <xmmintrin.h>
#endif
#ifdef ENABLE_SSE2
#include <emmintrin.h>
/*
Copyright (C) 2006-2007 shash
Copyright (C) 2007-2018 DeSmuME team
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the this software. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef MATRIX_H
#define MATRIX_H
#include <math.h>
#include <string.h>
#include "types.h"
#include "mem.h"
#ifdef ENABLE_SSE
#include <xmmintrin.h>
#endif
#ifdef ENABLE_SSE2
#include <emmintrin.h>
#endif
#ifdef ENABLE_SSE4_1
#include "smmintrin.h"
#endif
#endif
enum MatrixMode
{
@ -46,8 +46,8 @@ enum MatrixMode
};
template<MatrixMode MODE>
struct MatrixStack
{
struct MatrixStack
{
static const size_t size = ((MODE == MATRIXMODE_PROJECTION) || (MODE == MATRIXMODE_TEXTURE)) ? 1 : 32;
static const MatrixMode type = MODE;
@ -55,7 +55,7 @@ struct MatrixStack
u32 position;
};
void MatrixInit(s32 (&mtx)[16]);
void MatrixInit(s32 (&mtx)[16]);
void MatrixInit(float (&mtx)[16]);
void MatrixIdentity(s32 (&mtx)[16]);
@ -70,29 +70,29 @@ void MatrixCopy(float (&mtxDst)[16], const float (&mtxSrc)[16]);
void MatrixCopy(float (&__restrict mtxDst)[16], const s32 (&__restrict mtxSrc)[16]);
int MatrixCompare(const s32 (&mtxDst)[16], const s32 (&mtxSrc)[16]);
int MatrixCompare(const float (&mtxDst)[16], const float (&mtxSrc)[16]);
int MatrixCompare(const float (&mtxDst)[16], const float (&mtxSrc)[16]);
s32 MatrixGetMultipliedIndex(const u32 index, const s32 (&mtxA)[16], const s32 (&mtxB)[16]);
float MatrixGetMultipliedIndex(const u32 index, const float (&mtxA)[16], const float (&mtxB)[16]);
template<MatrixMode MODE> void MatrixStackInit(MatrixStack<MODE> *stack);
template<MatrixMode MODE> s32* MatrixStackGet(MatrixStack<MODE> *stack);
void Vector2Copy(float *dst, const float *src);
void Vector2Add(float *dst, const float *src);
void Vector2Subtract(float *dst, const float *src);
float Vector2Dot(const float *a, const float *b);
float Vector2Cross(const float *a, const float *b);
float Vector3Dot(const float *a, const float *b);
void Vector3Cross(float* dst, const float *a, const float *b);
float Vector3Length(const float *a);
void Vector3Add(float *dst, const float *src);
void Vector3Subtract(float *dst, const float *src);
void Vector3Scale(float *dst, const float scale);
void Vector3Copy(float *dst, const float *src);
void Vector3Normalize(float *dst);
s32 MatrixGetMultipliedIndex(const u32 index, const s32 (&mtxA)[16], const s32 (&mtxB)[16]);
float MatrixGetMultipliedIndex(const u32 index, const float (&mtxA)[16], const float (&mtxB)[16]);
template<MatrixMode MODE> void MatrixStackInit(MatrixStack<MODE> *stack);
template<MatrixMode MODE> s32* MatrixStackGet(MatrixStack<MODE> *stack);
void Vector2Copy(float *dst, const float *src);
void Vector2Add(float *dst, const float *src);
void Vector2Subtract(float *dst, const float *src);
float Vector2Dot(const float *a, const float *b);
float Vector2Cross(const float *a, const float *b);
float Vector3Dot(const float *a, const float *b);
void Vector3Cross(float* dst, const float *a, const float *b);
float Vector3Length(const float *a);
void Vector3Add(float *dst, const float *src);
void Vector3Subtract(float *dst, const float *src);
void Vector3Scale(float *dst, const float scale);
void Vector3Copy(float *dst, const float *src);
void Vector3Normalize(float *dst);
void Vector4Copy(float *dst, const float *src);
@ -111,43 +111,43 @@ void MatrixMultVec3x3(const s32 (&__restrict mtx)[16], s32 (&__restrict vec)[4])
void MatrixTranslate(s32 (&__restrict mtx)[16], const s32 (&__restrict vec)[4]);
void MatrixScale(s32 (&__restrict mtx)[16], const s32 (&__restrict vec)[4]);
void MatrixMultiply(s32 (&__restrict mtxA)[16], const s32 (&__restrict mtxB)[16]);
//these functions are an unreliable, inaccurate floor.
//it should only be used for positive numbers
//this isnt as fast as it could be if we used a visual c++ intrinsic, but those appear not to be universally available
FORCEINLINE u32 u32floor(float f)
{
#ifdef ENABLE_SSE2
return (u32)_mm_cvtt_ss2si(_mm_set_ss(f));
#else
return (u32)f;
#endif
}
FORCEINLINE u32 u32floor(double d)
{
#ifdef ENABLE_SSE2
return (u32)_mm_cvttsd_si32(_mm_set_sd(d));
#else
return (u32)d;
#endif
}
//same as above but works for negative values too.
//be sure that the results are the same thing as floorf!
FORCEINLINE s32 s32floor(float f)
{
#ifdef ENABLE_SSE2
return _mm_cvtss_si32( _mm_add_ss(_mm_set_ss(-0.5f),_mm_add_ss(_mm_set_ss(f), _mm_set_ss(f))) ) >> 1;
#else
return (s32)floorf(f);
#endif
}
FORCEINLINE s32 s32floor(double d)
{
return s32floor((float)d);
}
// SIMD Functions
//these functions are an unreliable, inaccurate floor.
//it should only be used for positive numbers
//this isnt as fast as it could be if we used a visual c++ intrinsic, but those appear not to be universally available
FORCEINLINE u32 u32floor(float f)
{
#ifdef ENABLE_SSE2
return (u32)_mm_cvtt_ss2si(_mm_set_ss(f));
#else
return (u32)f;
#endif
}
FORCEINLINE u32 u32floor(double d)
{
#ifdef ENABLE_SSE2
return (u32)_mm_cvttsd_si32(_mm_set_sd(d));
#else
return (u32)d;
#endif
}
//same as above but works for negative values too.
//be sure that the results are the same thing as floorf!
FORCEINLINE s32 s32floor(float f)
{
#ifdef ENABLE_SSE2
return _mm_cvtss_si32( _mm_add_ss(_mm_set_ss(-0.5f),_mm_add_ss(_mm_set_ss(f), _mm_set_ss(f))) ) >> 1;
#else
return (s32)floorf(f);
#endif
}
FORCEINLINE s32 s32floor(double d)
{
return s32floor((float)d);
}
// SIMD Functions
//-------------
#if defined(ENABLE_AVX2)
@ -188,46 +188,46 @@ static void memset_u32_fast(void *dst, const u32 val)
const v256u32 val_vec256 = _mm256_set1_epi32(val);
MACRODO_N(ELEMENTCOUNT / (sizeof(v256u32) / sizeof(u32)), _mm256_store_si256(dst_vec256 + (X), val_vec256));
}
#elif defined(ENABLE_SSE2)
static void memset_u16(void *dst, const u16 val, const size_t elementCount)
{
v128u16 *dst_vec128 = (v128u16 *)dst;
#elif defined(ENABLE_SSE2)
static void memset_u16(void *dst, const u16 val, const size_t elementCount)
{
v128u16 *dst_vec128 = (v128u16 *)dst;
const size_t length_vec128 = elementCount / (sizeof(v128u16) / sizeof(u16));
const v128u16 val_vec128 = _mm_set1_epi16(val);
for (size_t i = 0; i < length_vec128; i++)
_mm_stream_si128(dst_vec128 + i, val_vec128);
}
template <size_t ELEMENTCOUNT>
static void memset_u16_fast(void *dst, const u16 val)
{
const v128u16 val_vec128 = _mm_set1_epi16(val);
for (size_t i = 0; i < length_vec128; i++)
_mm_stream_si128(dst_vec128 + i, val_vec128);
}
template <size_t ELEMENTCOUNT>
static void memset_u16_fast(void *dst, const u16 val)
{
v128u16 *dst_vec128 = (v128u16 *)dst;
const v128u16 val_vec128 = _mm_set1_epi16(val);
MACRODO_N(ELEMENTCOUNT / (sizeof(v128u16) / sizeof(u16)), _mm_store_si128(dst_vec128 + (X), val_vec128));
}
static void memset_u32(void *dst, const u32 val, const size_t elementCount)
{
v128u32 *dst_vec128 = (v128u32 *)dst;
const size_t length_vec128 = elementCount / (sizeof(v128u32) / sizeof(u32));
const v128u32 val_vec128 = _mm_set1_epi32(val);
for (size_t i = 0; i < length_vec128; i++)
_mm_stream_si128(dst_vec128 + i, val_vec128);
}
template <size_t ELEMENTCOUNT>
static void memset_u32_fast(void *dst, const u32 val)
{
const v128u16 val_vec128 = _mm_set1_epi16(val);
MACRODO_N(ELEMENTCOUNT / (sizeof(v128u16) / sizeof(u16)), _mm_store_si128(dst_vec128 + (X), val_vec128));
}
static void memset_u32(void *dst, const u32 val, const size_t elementCount)
{
v128u32 *dst_vec128 = (v128u32 *)dst;
const v128u32 val_vec128 = _mm_set1_epi32(val);
MACRODO_N(ELEMENTCOUNT / (sizeof(v128u32) / sizeof(u32)), _mm_store_si128(dst_vec128 + (X), val_vec128));
}
const size_t length_vec128 = elementCount / (sizeof(v128u32) / sizeof(u32));
const v128u32 val_vec128 = _mm_set1_epi32(val);
for (size_t i = 0; i < length_vec128; i++)
_mm_stream_si128(dst_vec128 + i, val_vec128);
}
template <size_t ELEMENTCOUNT>
static void memset_u32_fast(void *dst, const u32 val)
{
v128u32 *dst_vec128 = (v128u32 *)dst;
const v128u32 val_vec128 = _mm_set1_epi32(val);
MACRODO_N(ELEMENTCOUNT / (sizeof(v128u32) / sizeof(u32)), _mm_store_si128(dst_vec128 + (X), val_vec128));
}
#elif defined(ENABLE_ALTIVEC)
@ -236,7 +236,7 @@ static void memset_u16(void *dst, const u16 val, const size_t elementCount)
v128u16 *dst_vec128 = (v128u16 *)dst;
const size_t length_vec128 = elementCount / (sizeof(v128u16) / sizeof(u16));
const v128u16 val_vec128 = vec_splat_u16(val);
const v128u16 val_vec128 = (v128u16){val,val,val,val,val,val,val,val};
for (size_t i = 0; i < length_vec128; i++)
vec_st(val_vec128, 0, dst_vec128 + i);
}
@ -246,7 +246,7 @@ static void memset_u16_fast(void *dst, const u16 val)
{
v128u16 *dst_vec128 = (v128u16 *)dst;
const v128u16 val_vec128 = vec_splat_u16(val);
const v128u16 val_vec128 = (v128u16){val,val,val,val,val,val,val,val};
MACRODO_N(ELEMENTCOUNT / (sizeof(v128u16) / sizeof(u16)), vec_st(val_vec128, 0, dst_vec128 + (X)));
}
@ -255,7 +255,7 @@ static void memset_u32(void *dst, const u32 val, const size_t elementCount)
v128u32 *dst_vec128 = (v128u32 *)dst;
const size_t length_vec128 = elementCount / (sizeof(v128u32) / sizeof(u32));
const v128u32 val_vec128 = vec_splat_u32(val);
const v128u32 val_vec128 = (v128u32){val,val,val,val};
for (size_t i = 0; i < length_vec128; i++)
vec_st(val_vec128, 0, dst_vec128 + i);
}
@ -265,68 +265,68 @@ static void memset_u32_fast(void *dst, const u32 val)
{
v128u32 *dst_vec128 = (v128u32 *)dst;
const v128u32 val_vec128 = vec_splat_u32(val);
const v128u32 val_vec128 = (v128u32){val,val,val,val};
MACRODO_N(ELEMENTCOUNT / (sizeof(v128u32) / sizeof(u32)), vec_st(val_vec128, 0, dst_vec128 + (X)));
}
#else // No SIMD
static void memset_u16(void *dst, const u16 val, const size_t elementCount)
{
#ifdef HOST_64
u64 *dst_u64 = (u64 *)dst;
const u64 val_u64 = ((u64)val << 48) | ((u64)val << 32) | ((u64)val << 16) | (u64)val;
const size_t length_u64 = elementCount / (sizeof(val_u64) / sizeof(val));
for (size_t i = 0; i < length_u64; i++)
dst_u64[i] = val_u64;
#else
for (size_t i = 0; i < elementCount; i++)
((u16 *)dst)[i] = val;
#endif
}
template <size_t ELEMENTCOUNT>
static void memset_u16_fast(void *dst, const u16 val)
{
#ifdef HOST_64
u64 *dst_u64 = (u64 *)dst;
const u64 val_u64 = ((u64)val << 48) | ((u64)val << 32) | ((u64)val << 16) | (u64)val;
MACRODO_N(ELEMENTCOUNT / (sizeof(val_u64) / sizeof(val)), (dst_u64[(X)] = val_u64));
#else
for (size_t i = 0; i < ELEMENTCOUNT; i++)
((u16 *)dst)[i] = val;
#endif
}
static void memset_u32(void *dst, const u32 val, const size_t elementCount)
{
#ifdef HOST_64
u64 *dst_u64 = (u64 *)dst;
const u64 val_u64 = ((u64)val << 32) | (u64)val;
const size_t length_u64 = elementCount / (sizeof(val_u64) / sizeof(val));
for (size_t i = 0; i < length_u64; i++)
dst_u64[i] = val_u64;
#else
for (size_t i = 0; i < elementCount; i++)
((u32 *)dst)[i] = val;
#endif
}
template <size_t ELEMENTCOUNT>
static void memset_u32_fast(void *dst, const u32 val)
{
#ifdef HOST_64
u64 *dst_u64 = (u64 *)dst;
const u64 val_u64 = ((u64)val << 32) | (u64)val;
MACRODO_N(ELEMENTCOUNT / (sizeof(val_u64) / sizeof(val)), (dst_u64[(X)] = val_u64));
#else
for (size_t i = 0; i < ELEMENTCOUNT; i++)
((u16 *)dst)[i] = val;
#endif
}
#endif // SIMD Functions
#endif // MATRIX_H
#else // No SIMD
static void memset_u16(void *dst, const u16 val, const size_t elementCount)
{
#ifdef HOST_64
u64 *dst_u64 = (u64 *)dst;
const u64 val_u64 = ((u64)val << 48) | ((u64)val << 32) | ((u64)val << 16) | (u64)val;
const size_t length_u64 = elementCount / (sizeof(val_u64) / sizeof(val));
for (size_t i = 0; i < length_u64; i++)
dst_u64[i] = val_u64;
#else
for (size_t i = 0; i < elementCount; i++)
((u16 *)dst)[i] = val;
#endif
}
template <size_t ELEMENTCOUNT>
static void memset_u16_fast(void *dst, const u16 val)
{
#ifdef HOST_64
u64 *dst_u64 = (u64 *)dst;
const u64 val_u64 = ((u64)val << 48) | ((u64)val << 32) | ((u64)val << 16) | (u64)val;
MACRODO_N(ELEMENTCOUNT / (sizeof(val_u64) / sizeof(val)), (dst_u64[(X)] = val_u64));
#else
for (size_t i = 0; i < ELEMENTCOUNT; i++)
((u16 *)dst)[i] = val;
#endif
}
static void memset_u32(void *dst, const u32 val, const size_t elementCount)
{
#ifdef HOST_64
u64 *dst_u64 = (u64 *)dst;
const u64 val_u64 = ((u64)val << 32) | (u64)val;
const size_t length_u64 = elementCount / (sizeof(val_u64) / sizeof(val));
for (size_t i = 0; i < length_u64; i++)
dst_u64[i] = val_u64;
#else
for (size_t i = 0; i < elementCount; i++)
((u32 *)dst)[i] = val;
#endif
}
template <size_t ELEMENTCOUNT>
static void memset_u32_fast(void *dst, const u32 val)
{
#ifdef HOST_64
u64 *dst_u64 = (u64 *)dst;
const u64 val_u64 = ((u64)val << 32) | (u64)val;
MACRODO_N(ELEMENTCOUNT / (sizeof(val_u64) / sizeof(val)), (dst_u64[(X)] = val_u64));
#else
for (size_t i = 0; i < ELEMENTCOUNT; i++)
((u16 *)dst)[i] = val;
#endif
}
#endif // SIMD Functions
#endif // MATRIX_H

File diff suppressed because it is too large Load Diff