Implemented the lighting formula used by the DS + shininess table + fixed gfx3d_glGetDirectionalMatrix (I'm REALLY astonished that nobody ever seen how this function was incorrectly coded)
This commit is contained in:
parent
ab7c20492b
commit
bae065318f
|
@ -23,6 +23,7 @@
|
|||
// plugin responsible only for drawing primitives.
|
||||
|
||||
#include <algorithm>
|
||||
#include <math.h>
|
||||
#include "debug.h"
|
||||
#include "gfx3d.h"
|
||||
#include "matrix.h"
|
||||
|
@ -115,6 +116,9 @@ static u32 lightColor[4] = {0,0,0,0};
|
|||
static u32 lightDirection[4] = {0,0,0,0};
|
||||
//material state:
|
||||
static u16 dsDiffuse, dsAmbient, dsSpecular, dsEmission;
|
||||
/* Shininess */
|
||||
static float shininessTable[128] = {0};
|
||||
static int shininessInd = 0;
|
||||
|
||||
|
||||
//-----------cached things:
|
||||
|
@ -126,7 +130,8 @@ static u32 envMode=0;
|
|||
static u32 lightMask=0;
|
||||
//other things:
|
||||
static int texCoordinateTransform = 0;
|
||||
static float cacheLightDirection[4][4];
|
||||
static ALIGN(16) float cacheLightDirection[4][4];
|
||||
static ALIGN(16) float cacheHalfVector[4][4];
|
||||
//------------------
|
||||
|
||||
#define RENDER_FRONT_SURFACE 0x80
|
||||
|
@ -701,7 +706,13 @@ void gfx3d_glMaterial1(unsigned long val)
|
|||
|
||||
void gfx3d_glShininess (unsigned long val)
|
||||
{
|
||||
//INFO("Shininess=%i\n",val);
|
||||
shininessTable[shininessInd++] = ((val & 0xFF) / 256.0f);
|
||||
shininessTable[shininessInd++] = (((val >> 8) & 0xFF) / 256.0f);
|
||||
shininessTable[shininessInd++] = (((val >> 16) & 0xFF) / 256.0f);
|
||||
shininessTable[shininessInd++] = (((val >> 24) & 0xFF) / 256.0f);
|
||||
|
||||
if(shininessInd >= 128)
|
||||
shininessInd = 0;
|
||||
}
|
||||
|
||||
void gfx3d_UpdateToonTable(void* toonTable)
|
||||
|
@ -752,6 +763,8 @@ void gfx3d_glTexCoord(unsigned long val)
|
|||
}
|
||||
}
|
||||
|
||||
#define vec3dot(a, b) (((a[0]) * (b[0])) + ((a[1]) * (b[1])) + ((a[2]) * (b[2])))
|
||||
|
||||
void gfx3d_glNormal(unsigned long v)
|
||||
{
|
||||
int i,c;
|
||||
|
@ -759,11 +772,6 @@ void gfx3d_glNormal(unsigned long v)
|
|||
normalTable[(v>>10)&1023],
|
||||
normalTable[(v>>20)&1023]};
|
||||
|
||||
//find the line of sight vector
|
||||
//TODO - only do this when the projection matrix changes
|
||||
ALIGN(16) float lineOfSight[4] = { 0, 0, -1, 0 };
|
||||
MatrixMultVec4x4 (mtxCurrent[0], lineOfSight);
|
||||
|
||||
if (texCoordinateTransform == 2)
|
||||
{
|
||||
last_s =( (normal[0] *mtxCurrent[3][0] + normal[1] *mtxCurrent[3][4] +
|
||||
|
@ -799,9 +807,6 @@ void gfx3d_glNormal(unsigned long v)
|
|||
|
||||
int vertexColor[3] = { emission[0], emission[1], emission[2] };
|
||||
|
||||
//do we need to normalize lineOfSight?
|
||||
Vector3Normalize(lineOfSight);
|
||||
|
||||
for(i=0;i<4;i++) {
|
||||
if(!((lightMask>>i)&1))
|
||||
continue;
|
||||
|
@ -812,43 +817,22 @@ void gfx3d_glNormal(unsigned long v)
|
|||
(lightColor[i]>>5)&0x1F,
|
||||
(lightColor[i]>>10)&0x1F };
|
||||
|
||||
float dot = Vector3Dot(cacheLightDirection[i],normal);
|
||||
float diffuseComponent = std::max(0.f,dot);
|
||||
float specularComponent;
|
||||
/* This formula is the one used by the DS */
|
||||
/* Reference : http://nocash.emubase.de/gbatek.htm#ds3dpolygonlightparameters */
|
||||
|
||||
//a specular formula which I couldnt get working
|
||||
//float halfAngle[3] = {
|
||||
// (lineOfSight[0] + g_lightInfo[i].floatDirection[0])/2,
|
||||
// (lineOfSight[1] + g_lightInfo[i].floatDirection[1])/2,
|
||||
// (lineOfSight[2] + g_lightInfo[i].floatDirection[2])/2};
|
||||
//float halfAngleLength = sqrt(halfAngle[0]*halfAngle[0]+halfAngle[1]*halfAngle[1]+halfAngle[2]*halfAngle[2]);
|
||||
//float halfAngleNormalized[3] = {
|
||||
// halfAngle[0]/halfAngleLength,
|
||||
// halfAngle[1]/halfAngleLength,
|
||||
// halfAngle[2]/halfAngleLength
|
||||
//};
|
||||
//
|
||||
//float specularAngle = -Vector3Dot(halfAngleNormalized,normal);
|
||||
//specularComponent = max(0,cos(specularAngle));
|
||||
float diffuseLevel = std::max(0.0f, -vec3dot(cacheLightDirection[i], normal));
|
||||
float shininessLevel = pow(std::max(0.0f, vec3dot(-cacheHalfVector[i], normal)), 2);
|
||||
|
||||
//a specular formula which seems to work
|
||||
float temp[4];
|
||||
float diff = Vector3Dot(normal,cacheLightDirection[i]);
|
||||
Vector3Copy(temp,normal);
|
||||
Vector3Scale(temp,-2*diff);
|
||||
Vector3Add(temp,cacheLightDirection[i]);
|
||||
Vector3Scale(temp,-1);
|
||||
specularComponent = std::max(0.f,Vector3Dot(lineOfSight,temp));
|
||||
if(dsSpecular & 0x8000)
|
||||
{
|
||||
shininessLevel = shininessTable[(int)(shininessLevel * 128)];
|
||||
}
|
||||
|
||||
//if the game isnt producing unit normals, then we can accidentally out of range components. so lets saturate them here
|
||||
//so we can at least keep for crashing. we're not sure what the hardware does in this case, but the game shouldnt be doing this.
|
||||
specularComponent = std::max(0.f,std::min(1.f,specularComponent));
|
||||
diffuseComponent = std::max(0.f,std::min(1.f,diffuseComponent));
|
||||
|
||||
for(c=0;c<3;c++) {
|
||||
vertexColor[c] += (diffuseComponent*_lightColor[c]*diffuse[c])/31;
|
||||
vertexColor[c] += (specularComponent*_lightColor[c]*specular[c])/31;
|
||||
vertexColor[c] += ((float)_lightColor[c]*ambient[c])/31;
|
||||
for(c = 0; c < 3; c++)
|
||||
{
|
||||
vertexColor[c] += ((specular[c] * _lightColor[c] * shininessLevel) / 31.0f);
|
||||
vertexColor[c] += ((diffuse[c] * _lightColor[c] * diffuseLevel) / 31.0f);
|
||||
vertexColor[c] += ((ambient[c] * _lightColor[c]) / 31.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -870,9 +854,9 @@ signed long gfx3d_GetClipMatrix (unsigned int index)
|
|||
|
||||
signed long gfx3d_GetDirectionalMatrix (unsigned int index)
|
||||
{
|
||||
index += (index/3);
|
||||
int _index = (((index / 3) * 4) + (index % 3));
|
||||
|
||||
return (signed long)(mtxCurrent[2][(index)*(1<<12)]);
|
||||
return (signed long)(mtxCurrent[2][_index]*(1<<12));
|
||||
}
|
||||
|
||||
static void gfx3d_glLightDirection_cache(int index)
|
||||
|
@ -880,10 +864,20 @@ static void gfx3d_glLightDirection_cache(int index)
|
|||
u32 v = lightDirection[index];
|
||||
|
||||
// Convert format into floating point value
|
||||
cacheLightDirection[index][0] = -normalTable[v&1023];
|
||||
cacheLightDirection[index][1] = -normalTable[(v>>10)&1023];
|
||||
cacheLightDirection[index][2] = -normalTable[(v>>20)&1023];
|
||||
cacheLightDirection[index][0] = normalTable[v&1023];
|
||||
cacheLightDirection[index][1] = normalTable[(v>>10)&1023];
|
||||
cacheLightDirection[index][2] = normalTable[(v>>20)&1023];
|
||||
cacheLightDirection[index][3] = 0;
|
||||
|
||||
/* Multiply the vector by the directional matrix */
|
||||
MatrixMultVec3x3(mtxCurrent[2], cacheLightDirection[index]);
|
||||
|
||||
/* Calculate the half vector */
|
||||
float lineOfSight[4] = {0.0f, 0.0f, -1.0f, 0.0f};
|
||||
for(int i = 0; i < 4; i++)
|
||||
{
|
||||
cacheHalfVector[index][i] = ((cacheLightDirection[index][i] + lineOfSight[i]) / 2.0f);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
Loading…
Reference in New Issue