Video Filters:
- Update XBRZ filters to v1.1 (thanks Zenju!) Addresses feature request #160 - https://sourceforge.net/p/desmume/feature-requests/160/
This commit is contained in:
parent
16f9140960
commit
588744d323
|
@ -13,6 +13,8 @@
|
|||
// * do so, delete this exception statement from your version. *
|
||||
// ****************************************************************************
|
||||
|
||||
// 2014-11-18 (rogerman): Update to XBRZ 1.1.
|
||||
//
|
||||
// 2014-02-06 (rogerman): Modified for use in DeSmuME by removing C++11 code.
|
||||
// Also add render functions compatible with filter.h.
|
||||
|
||||
|
@ -32,40 +34,37 @@ inline unsigned char getRed (uint32_t val) { return getByte<2>(val); }
|
|||
inline unsigned char getGreen(uint32_t val) { return getByte<1>(val); }
|
||||
inline unsigned char getBlue (uint32_t val) { return getByte<0>(val); }
|
||||
|
||||
|
||||
template <class T> inline
|
||||
T abs(T value)
|
||||
{
|
||||
//static_assert(std::is_signed<T>::value, "");
|
||||
//static_assert(std::is_signed<T>::value, "abs() requires signed types");
|
||||
return value < 0 ? -value : value;
|
||||
}
|
||||
|
||||
static const uint32_t alphaMask = 0xFF000000;
|
||||
static const uint32_t redMask = 0x00FF0000;
|
||||
static const uint32_t greenMask = 0x0000FF00;
|
||||
static const uint32_t blueMask = 0x000000FF;
|
||||
|
||||
template <unsigned int N, unsigned int M> inline
|
||||
void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity N / M
|
||||
template <unsigned int M, unsigned int N> inline
|
||||
void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity M / N
|
||||
{
|
||||
//static_assert(N < 256, "possible overflow of (col & redMask) * N");
|
||||
//static_assert(M < 256, "possible overflow of (col & redMask ) * N + (dst & redMask ) * (M - N)");
|
||||
//static_assert(0 < N && N < M, "");
|
||||
//dst = (redMask & ((col & redMask ) * N + (dst & redMask ) * (M - N)) / M) | //this works because 8 upper bits are free
|
||||
// (greenMask & ((col & greenMask) * N + (dst & greenMask) * (M - N)) / M) |
|
||||
// (blueMask & ((col & blueMask ) * N + (dst & blueMask ) * (M - N)) / M);
|
||||
//static_assert(0 < M && M < N && N <= 256, "possible overflow of (col & byte1Mask) * M + (dst & byte1Mask) * (N - M)");
|
||||
|
||||
// 2014-02-06 (rogerman): Modified to take the alpha channel into account.
|
||||
dst = ((((col >> 24) * N + (dst >> 24) * (M - N) ) / M) << 24) |
|
||||
(redMask & (((col & redMask ) * N + (dst & redMask ) * (M - N)) / M)) |
|
||||
(greenMask & (((col & greenMask) * N + (dst & greenMask) * (M - N)) / M)) |
|
||||
(blueMask & (((col & blueMask ) * N + (dst & blueMask ) * (M - N)) / M));
|
||||
const uint32_t byte1Mask = 0x000000ff;
|
||||
const uint32_t byte2Mask = 0x0000ff00;
|
||||
const uint32_t byte3Mask = 0x00ff0000;
|
||||
const uint32_t byte4Mask = 0xff000000;
|
||||
|
||||
dst = (byte1Mask & (((col & byte1Mask) * M + (dst & byte1Mask) * (N - M)) / N)) | //
|
||||
(byte2Mask & (((col & byte2Mask) * M + (dst & byte2Mask) * (N - M)) / N)) | //this works because next higher 8 bits are free
|
||||
(byte3Mask & (((col & byte3Mask) * M + (dst & byte3Mask) * (N - M)) / N)) | //
|
||||
(byte4Mask & (((((col & byte4Mask) >> 8) * M + ((dst & byte4Mask) >> 8) * (N - M)) / N) << 8)); //next 8 bits are not free, so shift
|
||||
//the last row operating on a potential alpha channel costs only ~1% perf => negligible!
|
||||
}
|
||||
|
||||
|
||||
//inline
|
||||
//double fastSqrt(double n)
|
||||
//{
|
||||
// __asm //speeds up xBRZ by about 9% compared to std::sqrt
|
||||
// __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff"
|
||||
// {
|
||||
// fld n
|
||||
// fsqrt
|
||||
|
@ -74,17 +73,17 @@ void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with
|
|||
//
|
||||
|
||||
|
||||
inline
|
||||
uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha)
|
||||
{
|
||||
return (redMask & static_cast<uint32_t>((pix1 & redMask ) * alpha + (pix2 & redMask ) * (1 - alpha))) |
|
||||
(greenMask & static_cast<uint32_t>((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) |
|
||||
(blueMask & static_cast<uint32_t>((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha)));
|
||||
}
|
||||
//inline
|
||||
//uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha)
|
||||
//{
|
||||
// return (redMask & static_cast<uint32_t>((pix1 & redMask ) * alpha + (pix2 & redMask ) * (1 - alpha))) |
|
||||
// (greenMask & static_cast<uint32_t>((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) |
|
||||
// (blueMask & static_cast<uint32_t>((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha)));
|
||||
//}
|
||||
|
||||
|
||||
uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); }
|
||||
const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast<const uint32_t*>(reinterpret_cast<const char*>(ptr) + bytes); }
|
||||
uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); }
|
||||
const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast<const uint32_t*>(reinterpret_cast<const char*>(ptr) + bytes); }
|
||||
|
||||
|
||||
//fill block with the given color
|
||||
|
@ -202,7 +201,7 @@ void rgbtoLuv(uint32_t c, double& L, double& u, double& v)
|
|||
if ( var_Y > 0.008856 ) var_Y = std::pow(var_Y , 1.0/3 );
|
||||
else var_Y = 7.787 * var_Y + 16.0 / 116;
|
||||
|
||||
const double ref_X = 95.047; //Observer= 2°, Illuminant= D65
|
||||
const double ref_X = 95.047; //Observer= 2°, Illuminant= D65
|
||||
const double ref_Y = 100.000;
|
||||
const double ref_Z = 108.883;
|
||||
|
||||
|
@ -238,7 +237,7 @@ void rgbtoLab(uint32_t c, unsigned char& L, signed char& A, signed char& B)
|
|||
double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b;
|
||||
//------XYZ to Lab------
|
||||
const double refX = 95.047; //
|
||||
const double refY = 100.000; //Observer= 2°, Illuminant= D65
|
||||
const double refY = 100.000; //Observer= 2°, Illuminant= D65
|
||||
const double refZ = 108.883; //
|
||||
double var_X = x / refX;
|
||||
double var_Y = y / refY;
|
||||
|
@ -393,8 +392,10 @@ double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
|
|||
const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); //
|
||||
const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double!
|
||||
|
||||
const double k_b = 0.0722; //ITU-R BT.709 conversion
|
||||
const double k_r = 0.2126; //
|
||||
//const double k_b = 0.0722; //ITU-R BT.709 conversion
|
||||
//const double k_r = 0.2126; //
|
||||
const double k_b = 0.0593; //ITU-R BT.2020 conversion
|
||||
const double k_r = 0.2627; //
|
||||
const double k_g = 1 - k_b - k_r;
|
||||
|
||||
const double scale_b = 0.5 / (1 - k_b);
|
||||
|
@ -405,8 +406,24 @@ double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
|
|||
const double c_r = scale_r * (r_diff - y);
|
||||
|
||||
//we skip division by 255 to have similar range like other distance functions
|
||||
//return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
|
||||
return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r)+ square(static_cast<int>(getAlpha(pix1)) - getAlpha(pix2)));
|
||||
return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
double distYCbCrAlpha(uint32_t pix1, uint32_t pix2, double lumaWeight)
|
||||
{
|
||||
const double a1 = getAlpha(pix1) / 255.0 ;
|
||||
const double a2 = getAlpha(pix2) / 255.0 ;
|
||||
|
||||
/*
|
||||
Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
|
||||
|
||||
1. if a1 = a2, distance should be: a1 * distYCbCr()
|
||||
2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255
|
||||
3. if a1 = 1, distance should be: 255 * (1 - a2) + a2 * distYCbCr()
|
||||
*/
|
||||
return std::min(a1, a2) * distYCbCr(pix1, pix2, lumaWeight) + 255 * abs(a1 - a2);
|
||||
}
|
||||
|
||||
|
||||
|
@ -437,30 +454,14 @@ double distYUV(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
|||
#ifndef NDEBUG
|
||||
const double eps = 0.5;
|
||||
#endif
|
||||
assert(std::abs(y) <= 255 + eps);
|
||||
assert(std::abs(u) <= 255 * 2 * u_max + eps);
|
||||
assert(std::abs(v) <= 255 * 2 * v_max + eps);
|
||||
assert(abs(y) <= 255 + eps);
|
||||
assert(abs(u) <= 255 * 2 * u_max + eps);
|
||||
assert(abs(v) <= 255 * 2 * v_max + eps);
|
||||
|
||||
return std::sqrt(square(luminanceWeight * y) + square(u) + square(v));
|
||||
}
|
||||
|
||||
|
||||
inline
|
||||
double colorDist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
||||
{
|
||||
if (pix1 == pix2) //about 8% perf boost
|
||||
return 0;
|
||||
|
||||
//return distHSL(pix1, pix2, luminanceWeight);
|
||||
//return distRGB(pix1, pix2);
|
||||
//return distLAB(pix1, pix2);
|
||||
//return distNonLinearRGB(pix1, pix2);
|
||||
//return distYUV(pix1, pix2, luminanceWeight);
|
||||
|
||||
return distYCbCr(pix1, pix2, luminanceWeight);
|
||||
}
|
||||
|
||||
|
||||
enum BlendType
|
||||
{
|
||||
BLEND_NONE = 0,
|
||||
|
@ -486,10 +487,11 @@ struct Kernel_4x4 //kernel for preprocessing step
|
|||
/**/m, n, o, p;
|
||||
};
|
||||
|
||||
template <class ColorDistance>
|
||||
FORCE_INLINE
|
||||
double ppCornerDist(uint32_t col1, uint32_t col2, const xbrz::ScalerCfg& cfg)
|
||||
double ppCornerDist(uint32_t col1, uint32_t col2, const double lumWeight)
|
||||
{
|
||||
return colorDist(col1, col2, cfg.luminanceWeight_);
|
||||
return ColorDistance::dist(col1, col2, lumWeight);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -504,6 +506,7 @@ input kernel area naming convention:
|
|||
| M | N | O | P |
|
||||
-----------------
|
||||
*/
|
||||
template <class ColorDistance>
|
||||
FORCE_INLINE //detect blend direction
|
||||
BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType"
|
||||
{
|
||||
|
@ -515,11 +518,11 @@ BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg)
|
|||
ker.g == ker.k))
|
||||
return result;
|
||||
|
||||
//auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); };
|
||||
//auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); };
|
||||
|
||||
const int weight = 4;
|
||||
double jg = ppCornerDist(ker.i, ker.f, cfg) + ppCornerDist(ker.f, ker.c, cfg) + ppCornerDist(ker.n, ker.k, cfg) + ppCornerDist(ker.k, ker.h, cfg) + weight * ppCornerDist(ker.j, ker.g, cfg);
|
||||
double fk = ppCornerDist(ker.e, ker.j, cfg) + ppCornerDist(ker.j, ker.o, cfg) + ppCornerDist(ker.b, ker.g, cfg) + ppCornerDist(ker.g, ker.l, cfg) + weight * ppCornerDist(ker.f, ker.k, cfg);
|
||||
double jg = ppCornerDist<ColorDistance>(ker.i, ker.f, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.f, ker.c, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.n, ker.k, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.k, ker.h, cfg.luminanceWeight_) + weight * ppCornerDist<ColorDistance>(ker.j, ker.g, cfg.luminanceWeight_);
|
||||
double fk = ppCornerDist<ColorDistance>(ker.e, ker.j, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.j, ker.o, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.b, ker.g, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.g, ker.l, cfg.luminanceWeight_) + weight * ppCornerDist<ColorDistance>(ker.f, ker.k, cfg.luminanceWeight_);
|
||||
|
||||
if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
|
||||
{
|
||||
|
@ -602,19 +605,21 @@ int debugPixelY = 84;
|
|||
bool breakIntoDebugger = false;
|
||||
#endif
|
||||
|
||||
template <class ColorDistance>
|
||||
FORCE_INLINE
|
||||
double sPixEQ(uint32_t col1, uint32_t col2, const xbrz::ScalerCfg& cfg)
|
||||
{
|
||||
return colorDist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_;
|
||||
return ColorDistance::dist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_;
|
||||
}
|
||||
|
||||
template <class ColorDistance>
|
||||
FORCE_INLINE
|
||||
double sPixDist(uint32_t col1, uint32_t col2, const xbrz::ScalerCfg& cfg)
|
||||
double sPixDist(uint32_t col1, uint32_t col2, const double lumWeight)
|
||||
{
|
||||
return colorDist(col1, col2, cfg.luminanceWeight_);
|
||||
return ColorDistance::dist(col1, col2, lumWeight);
|
||||
}
|
||||
|
||||
template <RotationDegree rotDeg>
|
||||
template <RotationDegree rotDeg, class ColorDistance>
|
||||
FORCE_INLINE
|
||||
const bool sPixDoLineBlend(const Kernel_3x3& ker, const char blend, const xbrz::ScalerCfg& cfg)
|
||||
{
|
||||
|
@ -632,15 +637,17 @@ const bool sPixDoLineBlend(const Kernel_3x3& ker, const char blend, const xbrz::
|
|||
return true;
|
||||
|
||||
//make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
|
||||
if (getTopR(blend) != BLEND_NONE && !sPixEQ(e, g, cfg)) //but support double-blending for 90° corners
|
||||
if (getTopR(blend) != BLEND_NONE && !sPixEQ<ColorDistance>(e, g, cfg)) //but support double-blending for 90° corners
|
||||
return false;
|
||||
if (getBottomL(blend) != BLEND_NONE && !sPixEQ(e, c, cfg))
|
||||
if (getBottomL(blend) != BLEND_NONE && !sPixEQ<ColorDistance>(e, c, cfg))
|
||||
return false;
|
||||
|
||||
//no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
|
||||
if (sPixEQ(g, h, cfg) && sPixEQ(h , i, cfg) && sPixEQ(i, f, cfg) && sPixEQ(f, c, cfg) && !sPixEQ(e, i, cfg))
|
||||
if (sPixEQ<ColorDistance>(g, h, cfg) && sPixEQ<ColorDistance>(h , i, cfg) && sPixEQ<ColorDistance>(i, f, cfg) && sPixEQ<ColorDistance>(f, c, cfg) && !sPixEQ<ColorDistance>(e, i, cfg))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
|
||||
#undef a
|
||||
#undef b
|
||||
#undef c
|
||||
|
@ -664,7 +671,7 @@ input kernel area naming convention:
|
|||
| G | H | I |
|
||||
-------------
|
||||
*/
|
||||
template <class Scaler, RotationDegree rotDeg>
|
||||
template <class Scaler, class ColorDistance, RotationDegree rotDeg>
|
||||
FORCE_INLINE //perf: quite worth it!
|
||||
void scalePixel(const Kernel_3x3& ker,
|
||||
uint32_t* target, int trgWidth,
|
||||
|
@ -690,8 +697,8 @@ void scalePixel(const Kernel_3x3& ker,
|
|||
|
||||
if (getBottomR(blend) >= BLEND_NORMAL)
|
||||
{/*
|
||||
auto eq = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; };
|
||||
auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); };
|
||||
auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; };
|
||||
auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); };
|
||||
|
||||
const bool doLineBlend = [&]() -> bool
|
||||
{
|
||||
|
@ -699,7 +706,7 @@ void scalePixel(const Kernel_3x3& ker,
|
|||
return true;
|
||||
|
||||
//make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
|
||||
if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners
|
||||
if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners
|
||||
return false;
|
||||
if (getBottomL(blend) != BLEND_NONE && !eq(e, c))
|
||||
return false;
|
||||
|
@ -711,14 +718,14 @@ void scalePixel(const Kernel_3x3& ker,
|
|||
return true;
|
||||
}();
|
||||
*/
|
||||
const uint32_t px = sPixDist(e, f, cfg) <= sPixDist(e, h, cfg) ? f : h; //choose most similar color
|
||||
const uint32_t px = sPixDist<ColorDistance>(e, f, cfg.luminanceWeight_) <= sPixDist<ColorDistance>(e, h, cfg.luminanceWeight_) ? f : h; //choose most similar color
|
||||
|
||||
OutputMatrix<Scaler::scale, rotDeg> out(target, trgWidth);
|
||||
|
||||
if (sPixDoLineBlend<rotDeg>(ker, blend, cfg))
|
||||
if (sPixDoLineBlend<rotDeg, ColorDistance>(ker, blend, cfg))
|
||||
{
|
||||
const double fg = sPixDist(f, g, cfg); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
|
||||
const double hc = sPixDist(h, c, cfg); //
|
||||
const double fg = sPixDist<ColorDistance>(f, g, cfg.luminanceWeight_); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
|
||||
const double hc = sPixDist<ColorDistance>(h, c, cfg.luminanceWeight_); //
|
||||
|
||||
const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g;
|
||||
const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c;
|
||||
|
@ -753,7 +760,8 @@ void scalePixel(const Kernel_3x3& ker,
|
|||
#undef i
|
||||
}
|
||||
|
||||
template <class Scaler> //scaler policy: see "Scaler2x" reference implementation
|
||||
|
||||
template <class Scaler, class ColorDistance> //scaler policy: see "Scaler2x" reference implementation
|
||||
void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
|
||||
{
|
||||
yFirst = std::max(yFirst, 0);
|
||||
|
@ -787,7 +795,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
|
|||
const int x_p1 = std::min(x + 1, srcWidth - 1);
|
||||
const int x_p2 = std::min(x + 2, srcWidth - 1);
|
||||
|
||||
Kernel_4x4 ker = {}; //perf: initialization is negligable
|
||||
Kernel_4x4 ker = {}; //perf: initialization is negligible
|
||||
ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
|
||||
ker.b = s_m1[x];
|
||||
ker.c = s_m1[x_p1];
|
||||
|
@ -808,7 +816,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
|
|||
ker.o = s_p2[x_p1];
|
||||
ker.p = s_p2[x_p2];
|
||||
|
||||
const BlendResult res = preProcessCorners(ker, cfg);
|
||||
const BlendResult res = preProcessCorners<ColorDistance>(ker, cfg);
|
||||
/*
|
||||
preprocessing blend result:
|
||||
---------
|
||||
|
@ -849,7 +857,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
|
|||
//evaluate the four corners on bottom-right of current pixel
|
||||
unsigned char blend_xy = 0; //for current (x, y) position
|
||||
{
|
||||
Kernel_4x4 ker = {}; //perf: initialization is negligable
|
||||
Kernel_4x4 ker = {}; //perf: initialization is negligible
|
||||
ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
|
||||
ker.b = s_m1[x];
|
||||
ker.c = s_m1[x_p1];
|
||||
|
@ -870,7 +878,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
|
|||
ker.o = s_p2[x_p1];
|
||||
ker.p = s_p2[x_p2];
|
||||
|
||||
const BlendResult res = preProcessCorners(ker, cfg);
|
||||
const BlendResult res = preProcessCorners<ColorDistance>(ker, cfg);
|
||||
/*
|
||||
preprocessing blend result:
|
||||
---------
|
||||
|
@ -898,7 +906,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
|
|||
//blend four corners of current pixel
|
||||
if (blendingNeeded(blend_xy)) //good 20% perf-improvement
|
||||
{
|
||||
Kernel_3x3 ker = {}; //perf: initialization is negligable
|
||||
Kernel_3x3 ker = {}; //perf: initialization is negligible
|
||||
|
||||
ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
|
||||
ker.b = s_m1[x];
|
||||
|
@ -912,15 +920,16 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
|
|||
ker.h = s_p1[x];
|
||||
ker.i = s_p1[x_p1];
|
||||
|
||||
scalePixel<Scaler, ROT_0 >(ker, out, trgWidth, blend_xy, cfg);
|
||||
scalePixel<Scaler, ROT_90 >(ker, out, trgWidth, blend_xy, cfg);
|
||||
scalePixel<Scaler, ROT_180>(ker, out, trgWidth, blend_xy, cfg);
|
||||
scalePixel<Scaler, ROT_270>(ker, out, trgWidth, blend_xy, cfg);
|
||||
scalePixel<Scaler, ColorDistance, ROT_0 >(ker, out, trgWidth, blend_xy, cfg);
|
||||
scalePixel<Scaler, ColorDistance, ROT_90 >(ker, out, trgWidth, blend_xy, cfg);
|
||||
scalePixel<Scaler, ColorDistance, ROT_180>(ker, out, trgWidth, blend_xy, cfg);
|
||||
scalePixel<Scaler, ColorDistance, ROT_270>(ker, out, trgWidth, blend_xy, cfg);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------------
|
||||
|
||||
struct Scaler2x
|
||||
{
|
||||
|
@ -1010,7 +1019,7 @@ struct Scaler3x
|
|||
{
|
||||
//model a round corner
|
||||
alphaBlend<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598
|
||||
//alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligable
|
||||
//alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligible
|
||||
//alphaBlend<14, 1000>(out.template ref<1, 2>(), col); //0.01413008627
|
||||
}
|
||||
};
|
||||
|
@ -1154,33 +1163,80 @@ struct Scaler5x
|
|||
alphaBlend<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088
|
||||
alphaBlend<23, 100>(out.template ref<4, 3>(), col); //0.2306749731
|
||||
alphaBlend<23, 100>(out.template ref<3, 4>(), col); //0.2306749731
|
||||
//alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligable
|
||||
//alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligible
|
||||
//alphaBlend<8, 1000>(out.template ref<2, 4>(), col); //0.008384061834
|
||||
}
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------------
|
||||
|
||||
struct ColorDistanceRGB
|
||||
{
|
||||
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
||||
{
|
||||
if (pix1 == pix2) //about 8% perf boost
|
||||
return 0;
|
||||
return distYCbCr(pix1, pix2, luminanceWeight);
|
||||
}
|
||||
};
|
||||
|
||||
struct ColorDistanceARGB
|
||||
{
|
||||
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
||||
{
|
||||
if (pix1 == pix2)
|
||||
return 0;
|
||||
return distYCbCrAlpha(pix1, pix2, luminanceWeight);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
|
||||
void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
|
||||
{
|
||||
switch (factor)
|
||||
switch (colFmt)
|
||||
{
|
||||
case 2:
|
||||
return scaleImage<Scaler2x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 3:
|
||||
return scaleImage<Scaler3x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 4:
|
||||
return scaleImage<Scaler4x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 5:
|
||||
return scaleImage<Scaler5x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case ColorFormatARGB:
|
||||
switch (factor)
|
||||
{
|
||||
case 2:
|
||||
return scaleImage<Scaler2x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 3:
|
||||
return scaleImage<Scaler3x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 4:
|
||||
return scaleImage<Scaler4x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 5:
|
||||
return scaleImage<Scaler5x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
}
|
||||
case ColorFormatRGB:
|
||||
switch (factor)
|
||||
{
|
||||
case 2:
|
||||
return scaleImage<Scaler2x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 3:
|
||||
return scaleImage<Scaler3x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 4:
|
||||
return scaleImage<Scaler4x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
case 5:
|
||||
return scaleImage<Scaler5x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||||
}
|
||||
}
|
||||
assert(false);
|
||||
}
|
||||
|
||||
|
||||
bool xbrz::equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
|
||||
bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance)
|
||||
{
|
||||
return colorDist(col1, col2, luminanceWeight) < equalColorTolerance;
|
||||
switch (colFmt)
|
||||
{
|
||||
case ColorFormatARGB:
|
||||
return ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
|
||||
|
||||
case ColorFormatRGB:
|
||||
return ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
|
||||
}
|
||||
assert(false);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
@ -1257,20 +1313,20 @@ void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight
|
|||
|
||||
void Render2xBRZ(SSurface Src, SSurface Dst)
|
||||
{
|
||||
xbrz::scale(2, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height);
|
||||
xbrz::scale(2, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height, xbrz::ColorFormatRGB);
|
||||
}
|
||||
|
||||
void Render3xBRZ(SSurface Src, SSurface Dst)
|
||||
{
|
||||
xbrz::scale(3, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height);
|
||||
xbrz::scale(3, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height, xbrz::ColorFormatRGB);
|
||||
}
|
||||
|
||||
void Render4xBRZ(SSurface Src, SSurface Dst)
|
||||
{
|
||||
xbrz::scale(4, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height);
|
||||
xbrz::scale(4, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height, xbrz::ColorFormatRGB);
|
||||
}
|
||||
|
||||
void Render5xBRZ(SSurface Src, SSurface Dst)
|
||||
{
|
||||
xbrz::scale(5, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height);
|
||||
xbrz::scale(5, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height, xbrz::ColorFormatRGB);
|
||||
}
|
||||
|
|
|
@ -13,6 +13,8 @@
|
|||
// * do so, delete this exception statement from your version. *
|
||||
// ****************************************************************************
|
||||
|
||||
// 2014-11-18 (rogerman): Update to XBRZ 1.1.
|
||||
//
|
||||
// 2014-02-06 (rogerman): Modified for use in DeSmuME by removing C++11 code.
|
||||
// Also integrate xbrz's config.h file into this one.
|
||||
|
||||
|
@ -38,24 +40,28 @@ namespace xbrz
|
|||
using a modified approach of xBR:
|
||||
http://board.byuu.org/viewtopic.php?f=10&t=2248
|
||||
- new rule set preserving small image features
|
||||
- support alpha channel
|
||||
- support multithreading
|
||||
- support 64 bit architectures
|
||||
- support 64-bit architectures
|
||||
- support processing image slices
|
||||
*/
|
||||
|
||||
enum ColorFormat //from high bits -> low bits, 8 bit per channel
|
||||
{
|
||||
ColorFormatARGB, //including alpha channel, BGRA byte order on little-endian machines
|
||||
ColorFormatRGB, //8 bit for each red, green, blue, upper 8 bits unused
|
||||
};
|
||||
|
||||
/*
|
||||
-> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only
|
||||
-> color format: ARGB (BGRA byte order), alpha channel unused
|
||||
-> support for source/target pitch in bytes!
|
||||
-> if your emulator changes only a few image slices during each cycle (e.g. Dosbox) then there's no need to run xBRZ on the complete image:
|
||||
-> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image:
|
||||
Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis)
|
||||
Caveat: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition
|
||||
if you are using multiple threads for processing each enlarged slice!
|
||||
in the target image data if you are using multiple threads for processing each enlarged slice!
|
||||
|
||||
THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap!
|
||||
- there is a minor inefficiency for the first row of a slice, so avoid processing single rows only
|
||||
|
||||
|
||||
*/
|
||||
struct ScalerCfg
|
||||
{
|
||||
|
@ -75,6 +81,7 @@ struct ScalerCfg
|
|||
|
||||
void scale(size_t factor, //valid range: 2 - 5
|
||||
const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
|
||||
ColorFormat colFmt,
|
||||
const ScalerCfg& cfg = ScalerCfg(),
|
||||
int yFirst = 0, int yLast = std::numeric_limits<int>::max()); //slice of source image
|
||||
|
||||
|
@ -91,7 +98,7 @@ void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int
|
|||
SliceType st, int yFirst, int yLast);
|
||||
|
||||
//parameter tuning
|
||||
bool equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance);
|
||||
bool equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance);
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue