Video Filters:

- Update XBRZ filters to v1.1 (thanks Zenju!) Addresses feature request #160 - https://sourceforge.net/p/desmume/feature-requests/160/
This commit is contained in:
rogerman 2014-11-19 23:00:19 +00:00
parent 16f9140960
commit 588744d323
2 changed files with 173 additions and 110 deletions

View File

@ -13,6 +13,8 @@
// * do so, delete this exception statement from your version. *
// ****************************************************************************
// 2014-11-18 (rogerman): Update to XBRZ 1.1.
//
// 2014-02-06 (rogerman): Modified for use in DeSmuME by removing C++11 code.
// Also add render functions compatible with filter.h.
@ -32,40 +34,37 @@ inline unsigned char getRed (uint32_t val) { return getByte<2>(val); }
inline unsigned char getGreen(uint32_t val) { return getByte<1>(val); }
inline unsigned char getBlue (uint32_t val) { return getByte<0>(val); }
template <class T> inline
T abs(T value)
{
//static_assert(std::is_signed<T>::value, "");
//static_assert(std::is_signed<T>::value, "abs() requires signed types");
return value < 0 ? -value : value;
}
static const uint32_t alphaMask = 0xFF000000;
static const uint32_t redMask = 0x00FF0000;
static const uint32_t greenMask = 0x0000FF00;
static const uint32_t blueMask = 0x000000FF;
template <unsigned int N, unsigned int M> inline
void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity N / M
template <unsigned int M, unsigned int N> inline
void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity M / N
{
//static_assert(N < 256, "possible overflow of (col & redMask) * N");
//static_assert(M < 256, "possible overflow of (col & redMask ) * N + (dst & redMask ) * (M - N)");
//static_assert(0 < N && N < M, "");
//dst = (redMask & ((col & redMask ) * N + (dst & redMask ) * (M - N)) / M) | //this works because 8 upper bits are free
// (greenMask & ((col & greenMask) * N + (dst & greenMask) * (M - N)) / M) |
// (blueMask & ((col & blueMask ) * N + (dst & blueMask ) * (M - N)) / M);
// 2014-02-06 (rogerman): Modified to take the alpha channel into account.
dst = ((((col >> 24) * N + (dst >> 24) * (M - N) ) / M) << 24) |
(redMask & (((col & redMask ) * N + (dst & redMask ) * (M - N)) / M)) |
(greenMask & (((col & greenMask) * N + (dst & greenMask) * (M - N)) / M)) |
(blueMask & (((col & blueMask ) * N + (dst & blueMask ) * (M - N)) / M));
//static_assert(0 < M && M < N && N <= 256, "possible overflow of (col & byte1Mask) * M + (dst & byte1Mask) * (N - M)");
const uint32_t byte1Mask = 0x000000ff;
const uint32_t byte2Mask = 0x0000ff00;
const uint32_t byte3Mask = 0x00ff0000;
const uint32_t byte4Mask = 0xff000000;
dst = (byte1Mask & (((col & byte1Mask) * M + (dst & byte1Mask) * (N - M)) / N)) | //
(byte2Mask & (((col & byte2Mask) * M + (dst & byte2Mask) * (N - M)) / N)) | //this works because next higher 8 bits are free
(byte3Mask & (((col & byte3Mask) * M + (dst & byte3Mask) * (N - M)) / N)) | //
(byte4Mask & (((((col & byte4Mask) >> 8) * M + ((dst & byte4Mask) >> 8) * (N - M)) / N) << 8)); //next 8 bits are not free, so shift
//the last row operating on a potential alpha channel costs only ~1% perf => negligible!
}
//inline
//double fastSqrt(double n)
//{
// __asm //speeds up xBRZ by about 9% compared to std::sqrt
// __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff"
// {
// fld n
// fsqrt
@ -74,17 +73,17 @@ void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with
//
inline
uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha)
{
return (redMask & static_cast<uint32_t>((pix1 & redMask ) * alpha + (pix2 & redMask ) * (1 - alpha))) |
(greenMask & static_cast<uint32_t>((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) |
(blueMask & static_cast<uint32_t>((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha)));
}
//inline
//uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha)
//{
// return (redMask & static_cast<uint32_t>((pix1 & redMask ) * alpha + (pix2 & redMask ) * (1 - alpha))) |
// (greenMask & static_cast<uint32_t>((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) |
// (blueMask & static_cast<uint32_t>((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha)));
//}
uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); }
const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast<const uint32_t*>(reinterpret_cast<const char*>(ptr) + bytes); }
uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); }
const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast<const uint32_t*>(reinterpret_cast<const char*>(ptr) + bytes); }
//fill block with the given color
@ -202,7 +201,7 @@ void rgbtoLuv(uint32_t c, double& L, double& u, double& v)
if ( var_Y > 0.008856 ) var_Y = std::pow(var_Y , 1.0/3 );
else var_Y = 7.787 * var_Y + 16.0 / 116;
const double ref_X = 95.047; //Observer= 2°, Illuminant= D65
const double ref_X = 95.047; //Observer= 2°, Illuminant= D65
const double ref_Y = 100.000;
const double ref_Z = 108.883;
@ -238,7 +237,7 @@ void rgbtoLab(uint32_t c, unsigned char& L, signed char& A, signed char& B)
double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b;
//------XYZ to Lab------
const double refX = 95.047; //
const double refY = 100.000; //Observer= 2°, Illuminant= D65
const double refY = 100.000; //Observer= 2°, Illuminant= D65
const double refZ = 108.883; //
double var_X = x / refX;
double var_Y = y / refY;
@ -393,8 +392,10 @@ double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); //
const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double!
const double k_b = 0.0722; //ITU-R BT.709 conversion
const double k_r = 0.2126; //
//const double k_b = 0.0722; //ITU-R BT.709 conversion
//const double k_r = 0.2126; //
const double k_b = 0.0593; //ITU-R BT.2020 conversion
const double k_r = 0.2627; //
const double k_g = 1 - k_b - k_r;
const double scale_b = 0.5 / (1 - k_b);
@ -405,8 +406,24 @@ double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
const double c_r = scale_r * (r_diff - y);
//we skip division by 255 to have similar range like other distance functions
//return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r)+ square(static_cast<int>(getAlpha(pix1)) - getAlpha(pix2)));
return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
}
inline
double distYCbCrAlpha(uint32_t pix1, uint32_t pix2, double lumaWeight)
{
const double a1 = getAlpha(pix1) / 255.0 ;
const double a2 = getAlpha(pix2) / 255.0 ;
/*
Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
1. if a1 = a2, distance should be: a1 * distYCbCr()
2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255
3. if a1 = 1, distance should be: 255 * (1 - a2) + a2 * distYCbCr()
*/
return std::min(a1, a2) * distYCbCr(pix1, pix2, lumaWeight) + 255 * abs(a1 - a2);
}
@ -437,30 +454,14 @@ double distYUV(uint32_t pix1, uint32_t pix2, double luminanceWeight)
#ifndef NDEBUG
const double eps = 0.5;
#endif
assert(std::abs(y) <= 255 + eps);
assert(std::abs(u) <= 255 * 2 * u_max + eps);
assert(std::abs(v) <= 255 * 2 * v_max + eps);
assert(abs(y) <= 255 + eps);
assert(abs(u) <= 255 * 2 * u_max + eps);
assert(abs(v) <= 255 * 2 * v_max + eps);
return std::sqrt(square(luminanceWeight * y) + square(u) + square(v));
}
inline
double colorDist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
{
if (pix1 == pix2) //about 8% perf boost
return 0;
//return distHSL(pix1, pix2, luminanceWeight);
//return distRGB(pix1, pix2);
//return distLAB(pix1, pix2);
//return distNonLinearRGB(pix1, pix2);
//return distYUV(pix1, pix2, luminanceWeight);
return distYCbCr(pix1, pix2, luminanceWeight);
}
enum BlendType
{
BLEND_NONE = 0,
@ -486,10 +487,11 @@ struct Kernel_4x4 //kernel for preprocessing step
/**/m, n, o, p;
};
template <class ColorDistance>
FORCE_INLINE
double ppCornerDist(uint32_t col1, uint32_t col2, const xbrz::ScalerCfg& cfg)
double ppCornerDist(uint32_t col1, uint32_t col2, const double lumWeight)
{
return colorDist(col1, col2, cfg.luminanceWeight_);
return ColorDistance::dist(col1, col2, lumWeight);
}
/*
@ -504,6 +506,7 @@ input kernel area naming convention:
| M | N | O | P |
-----------------
*/
template <class ColorDistance>
FORCE_INLINE //detect blend direction
BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType"
{
@ -515,11 +518,11 @@ BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg)
ker.g == ker.k))
return result;
//auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); };
//auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); };
const int weight = 4;
double jg = ppCornerDist(ker.i, ker.f, cfg) + ppCornerDist(ker.f, ker.c, cfg) + ppCornerDist(ker.n, ker.k, cfg) + ppCornerDist(ker.k, ker.h, cfg) + weight * ppCornerDist(ker.j, ker.g, cfg);
double fk = ppCornerDist(ker.e, ker.j, cfg) + ppCornerDist(ker.j, ker.o, cfg) + ppCornerDist(ker.b, ker.g, cfg) + ppCornerDist(ker.g, ker.l, cfg) + weight * ppCornerDist(ker.f, ker.k, cfg);
double jg = ppCornerDist<ColorDistance>(ker.i, ker.f, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.f, ker.c, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.n, ker.k, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.k, ker.h, cfg.luminanceWeight_) + weight * ppCornerDist<ColorDistance>(ker.j, ker.g, cfg.luminanceWeight_);
double fk = ppCornerDist<ColorDistance>(ker.e, ker.j, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.j, ker.o, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.b, ker.g, cfg.luminanceWeight_) + ppCornerDist<ColorDistance>(ker.g, ker.l, cfg.luminanceWeight_) + weight * ppCornerDist<ColorDistance>(ker.f, ker.k, cfg.luminanceWeight_);
if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
{
@ -602,19 +605,21 @@ int debugPixelY = 84;
bool breakIntoDebugger = false;
#endif
template <class ColorDistance>
FORCE_INLINE
double sPixEQ(uint32_t col1, uint32_t col2, const xbrz::ScalerCfg& cfg)
{
return colorDist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_;
return ColorDistance::dist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_;
}
template <class ColorDistance>
FORCE_INLINE
double sPixDist(uint32_t col1, uint32_t col2, const xbrz::ScalerCfg& cfg)
double sPixDist(uint32_t col1, uint32_t col2, const double lumWeight)
{
return colorDist(col1, col2, cfg.luminanceWeight_);
return ColorDistance::dist(col1, col2, lumWeight);
}
template <RotationDegree rotDeg>
template <RotationDegree rotDeg, class ColorDistance>
FORCE_INLINE
const bool sPixDoLineBlend(const Kernel_3x3& ker, const char blend, const xbrz::ScalerCfg& cfg)
{
@ -632,15 +637,17 @@ const bool sPixDoLineBlend(const Kernel_3x3& ker, const char blend, const xbrz::
return true;
//make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
if (getTopR(blend) != BLEND_NONE && !sPixEQ(e, g, cfg)) //but support double-blending for 90° corners
if (getTopR(blend) != BLEND_NONE && !sPixEQ<ColorDistance>(e, g, cfg)) //but support double-blending for 90° corners
return false;
if (getBottomL(blend) != BLEND_NONE && !sPixEQ(e, c, cfg))
if (getBottomL(blend) != BLEND_NONE && !sPixEQ<ColorDistance>(e, c, cfg))
return false;
//no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
if (sPixEQ(g, h, cfg) && sPixEQ(h , i, cfg) && sPixEQ(i, f, cfg) && sPixEQ(f, c, cfg) && !sPixEQ(e, i, cfg))
if (sPixEQ<ColorDistance>(g, h, cfg) && sPixEQ<ColorDistance>(h , i, cfg) && sPixEQ<ColorDistance>(i, f, cfg) && sPixEQ<ColorDistance>(f, c, cfg) && !sPixEQ<ColorDistance>(e, i, cfg))
return false;
return true;
#undef a
#undef b
#undef c
@ -664,7 +671,7 @@ input kernel area naming convention:
| G | H | I |
-------------
*/
template <class Scaler, RotationDegree rotDeg>
template <class Scaler, class ColorDistance, RotationDegree rotDeg>
FORCE_INLINE //perf: quite worth it!
void scalePixel(const Kernel_3x3& ker,
uint32_t* target, int trgWidth,
@ -690,8 +697,8 @@ void scalePixel(const Kernel_3x3& ker,
if (getBottomR(blend) >= BLEND_NORMAL)
{/*
auto eq = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; };
auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); };
auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; };
auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); };
const bool doLineBlend = [&]() -> bool
{
@ -699,7 +706,7 @@ void scalePixel(const Kernel_3x3& ker,
return true;
//make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners
if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners
return false;
if (getBottomL(blend) != BLEND_NONE && !eq(e, c))
return false;
@ -711,14 +718,14 @@ void scalePixel(const Kernel_3x3& ker,
return true;
}();
*/
const uint32_t px = sPixDist(e, f, cfg) <= sPixDist(e, h, cfg) ? f : h; //choose most similar color
const uint32_t px = sPixDist<ColorDistance>(e, f, cfg.luminanceWeight_) <= sPixDist<ColorDistance>(e, h, cfg.luminanceWeight_) ? f : h; //choose most similar color
OutputMatrix<Scaler::scale, rotDeg> out(target, trgWidth);
if (sPixDoLineBlend<rotDeg>(ker, blend, cfg))
if (sPixDoLineBlend<rotDeg, ColorDistance>(ker, blend, cfg))
{
const double fg = sPixDist(f, g, cfg); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
const double hc = sPixDist(h, c, cfg); //
const double fg = sPixDist<ColorDistance>(f, g, cfg.luminanceWeight_); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
const double hc = sPixDist<ColorDistance>(h, c, cfg.luminanceWeight_); //
const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g;
const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c;
@ -753,7 +760,8 @@ void scalePixel(const Kernel_3x3& ker,
#undef i
}
template <class Scaler> //scaler policy: see "Scaler2x" reference implementation
template <class Scaler, class ColorDistance> //scaler policy: see "Scaler2x" reference implementation
void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
{
yFirst = std::max(yFirst, 0);
@ -787,7 +795,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
const int x_p1 = std::min(x + 1, srcWidth - 1);
const int x_p2 = std::min(x + 2, srcWidth - 1);
Kernel_4x4 ker = {}; //perf: initialization is negligable
Kernel_4x4 ker = {}; //perf: initialization is negligible
ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
ker.b = s_m1[x];
ker.c = s_m1[x_p1];
@ -808,7 +816,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
ker.o = s_p2[x_p1];
ker.p = s_p2[x_p2];
const BlendResult res = preProcessCorners(ker, cfg);
const BlendResult res = preProcessCorners<ColorDistance>(ker, cfg);
/*
preprocessing blend result:
---------
@ -849,7 +857,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
//evaluate the four corners on bottom-right of current pixel
unsigned char blend_xy = 0; //for current (x, y) position
{
Kernel_4x4 ker = {}; //perf: initialization is negligable
Kernel_4x4 ker = {}; //perf: initialization is negligible
ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
ker.b = s_m1[x];
ker.c = s_m1[x_p1];
@ -870,7 +878,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
ker.o = s_p2[x_p1];
ker.p = s_p2[x_p2];
const BlendResult res = preProcessCorners(ker, cfg);
const BlendResult res = preProcessCorners<ColorDistance>(ker, cfg);
/*
preprocessing blend result:
---------
@ -898,7 +906,7 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
//blend four corners of current pixel
if (blendingNeeded(blend_xy)) //good 20% perf-improvement
{
Kernel_3x3 ker = {}; //perf: initialization is negligable
Kernel_3x3 ker = {}; //perf: initialization is negligible
ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
ker.b = s_m1[x];
@ -912,15 +920,16 @@ void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
ker.h = s_p1[x];
ker.i = s_p1[x_p1];
scalePixel<Scaler, ROT_0 >(ker, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ROT_90 >(ker, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ROT_180>(ker, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ROT_270>(ker, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ColorDistance, ROT_0 >(ker, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ColorDistance, ROT_90 >(ker, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ColorDistance, ROT_180>(ker, out, trgWidth, blend_xy, cfg);
scalePixel<Scaler, ColorDistance, ROT_270>(ker, out, trgWidth, blend_xy, cfg);
}
}
}
}
//------------------------------------------------------------------------------------
struct Scaler2x
{
@ -1010,7 +1019,7 @@ struct Scaler3x
{
//model a round corner
alphaBlend<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598
//alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligable
//alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligible
//alphaBlend<14, 1000>(out.template ref<1, 2>(), col); //0.01413008627
}
};
@ -1154,33 +1163,80 @@ struct Scaler5x
alphaBlend<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088
alphaBlend<23, 100>(out.template ref<4, 3>(), col); //0.2306749731
alphaBlend<23, 100>(out.template ref<3, 4>(), col); //0.2306749731
//alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligable
//alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligible
//alphaBlend<8, 1000>(out.template ref<2, 4>(), col); //0.008384061834
}
};
//------------------------------------------------------------------------------------
struct ColorDistanceRGB
{
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
{
if (pix1 == pix2) //about 8% perf boost
return 0;
return distYCbCr(pix1, pix2, luminanceWeight);
}
};
struct ColorDistanceARGB
{
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
{
if (pix1 == pix2)
return 0;
return distYCbCrAlpha(pix1, pix2, luminanceWeight);
}
};
}
void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
{
switch (factor)
switch (colFmt)
{
case 2:
return scaleImage<Scaler2x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 3:
return scaleImage<Scaler3x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 4:
return scaleImage<Scaler4x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 5:
return scaleImage<Scaler5x>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case ColorFormatARGB:
switch (factor)
{
case 2:
return scaleImage<Scaler2x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 3:
return scaleImage<Scaler3x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 4:
return scaleImage<Scaler4x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 5:
return scaleImage<Scaler5x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
}
case ColorFormatRGB:
switch (factor)
{
case 2:
return scaleImage<Scaler2x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 3:
return scaleImage<Scaler3x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 4:
return scaleImage<Scaler4x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
case 5:
return scaleImage<Scaler5x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
}
}
assert(false);
}
bool xbrz::equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance)
{
return colorDist(col1, col2, luminanceWeight) < equalColorTolerance;
switch (colFmt)
{
case ColorFormatARGB:
return ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
case ColorFormatRGB:
return ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
}
assert(false);
return false;
}
@ -1257,20 +1313,20 @@ void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight
void Render2xBRZ(SSurface Src, SSurface Dst)
{
xbrz::scale(2, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height);
xbrz::scale(2, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height, xbrz::ColorFormatRGB);
}
void Render3xBRZ(SSurface Src, SSurface Dst)
{
xbrz::scale(3, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height);
xbrz::scale(3, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height, xbrz::ColorFormatRGB);
}
void Render4xBRZ(SSurface Src, SSurface Dst)
{
xbrz::scale(4, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height);
xbrz::scale(4, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height, xbrz::ColorFormatRGB);
}
void Render5xBRZ(SSurface Src, SSurface Dst)
{
xbrz::scale(5, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height);
xbrz::scale(5, (const uint32_t *)Src.Surface, (uint32_t *)Dst.Surface, Src.Width, Src.Height, xbrz::ColorFormatRGB);
}

View File

@ -13,6 +13,8 @@
// * do so, delete this exception statement from your version. *
// ****************************************************************************
// 2014-11-18 (rogerman): Update to XBRZ 1.1.
//
// 2014-02-06 (rogerman): Modified for use in DeSmuME by removing C++11 code.
// Also integrate xbrz's config.h file into this one.
@ -38,24 +40,28 @@ namespace xbrz
using a modified approach of xBR:
http://board.byuu.org/viewtopic.php?f=10&t=2248
- new rule set preserving small image features
- support alpha channel
- support multithreading
- support 64 bit architectures
- support 64-bit architectures
- support processing image slices
*/
enum ColorFormat //from high bits -> low bits, 8 bit per channel
{
ColorFormatARGB, //including alpha channel, BGRA byte order on little-endian machines
ColorFormatRGB, //8 bit for each red, green, blue, upper 8 bits unused
};
/*
-> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only
-> color format: ARGB (BGRA byte order), alpha channel unused
-> support for source/target pitch in bytes!
-> if your emulator changes only a few image slices during each cycle (e.g. Dosbox) then there's no need to run xBRZ on the complete image:
-> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image:
Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis)
Caveat: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition
if you are using multiple threads for processing each enlarged slice!
Caveat: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition
in the target image data if you are using multiple threads for processing each enlarged slice!
THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap!
- there is a minor inefficiency for the first row of a slice, so avoid processing single rows only
*/
struct ScalerCfg
{
@ -75,6 +81,7 @@ struct ScalerCfg
void scale(size_t factor, //valid range: 2 - 5
const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight,
ColorFormat colFmt,
const ScalerCfg& cfg = ScalerCfg(),
int yFirst = 0, int yLast = std::numeric_limits<int>::max()); //slice of source image
@ -91,7 +98,7 @@ void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int
SliceType st, int yFirst, int yLast);
//parameter tuning
bool equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance);
bool equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance);