bsnes/higan/processor/huc6280/instructions.cpp

549 lines
10 KiB
C++

auto HuC6280::ADC(uint8 i) -> uint8 {
int16 o;
if(!D) {
o = A + i + C;
V = ~(A ^ i) & (A ^ o) & 0x80;
} else {
o = (A & 0x0f) + (i & 0x0f) + (C << 0);
if(o > 0x09) o += 0x06;
C = o > 0x0f;
o = (A & 0xf0) + (i & 0xf0) + (C << 4) + (o & 0x0f);
V = ~(A ^ i) & (A ^ o) & 0x80;
if(o > 0x9f) o += 0x60;
}
C = o.bit(8);
Z = uint8(o) == 0;
N = o.bit(7);
return o;
}
auto HuC6280::AND(uint8 i) -> uint8 {
uint8 o = A & i;
Z = o == 0;
N = o.bit(7);
return o;
}
auto HuC6280::ASL(uint8 i) -> uint8 {
C = i.bit(7);
i <<= 1;
Z = i == 0;
N = i.bit(7);
return i;
}
auto HuC6280::BIT(uint8 i) -> uint8 {
Z = (A & i) == 0;
V = i.bit(6);
N = i.bit(7);
return A;
}
auto HuC6280::CMP(uint8 i) -> uint8 {
uint9 o = A - i;
C = !o.bit(8);
Z = uint8(o) == 0;
N = o.bit(7);
return A;
}
auto HuC6280::CPX(uint8 i) -> uint8 {
uint9 o = X - i;
C = !o.bit(8);
Z = uint8(o) == 0;
N = o.bit(7);
return X;
}
auto HuC6280::CPY(uint8 i) -> uint8 {
uint9 o = Y - i;
C = !o.bit(8);
Z = uint8(o) == 0;
N = o.bit(7);
return Y;
}
auto HuC6280::DEC(uint8 i) -> uint8 {
i--;
Z = i == 0;
N = i.bit(7);
return i;
}
auto HuC6280::EOR(uint8 i) -> uint8 {
uint8 o = A ^ i;
Z = o == 0;
N = o.bit(7);
return o;
}
auto HuC6280::INC(uint8 i) -> uint8 {
i++;
Z = i == 0;
N = i.bit(7);
return i;
}
auto HuC6280::LD(uint8 i) -> uint8 {
Z = i == 0;
N = i.bit(7);
return i;
}
auto HuC6280::LSR(uint8 i) -> uint8 {
C = i.bit(0);
i >>= 1;
Z = i == 0;
N = i.bit(7);
return i;
}
auto HuC6280::ORA(uint8 i) -> uint8 {
uint8 o = A | i;
Z = o == 0;
N = o.bit(7);
return o;
}
auto HuC6280::ROL(uint8 i) -> uint8 {
bool c = C;
C = i.bit(7);
i = i << 1 | c;
Z = i == 0;
N = i.bit(7);
return i;
}
auto HuC6280::ROR(uint8 i) -> uint8 {
bool c = C;
C = i.bit(0);
i = c << 7 | i >> 1;
Z = i == 0;
N = i.bit(7);
return i;
}
auto HuC6280::SBC(uint8 i) -> uint8 {
i ^= 0xff;
int16 o;
if(!D) {
o = A + i + C;
V = ~(A ^ i) & (A ^ o) & 0x80;
} else {
o = (A & 0x0f) + (i & 0x0f) + (C << 0);
if(o <= 0x0f) o -= 0x06;
C = o > 0x0f;
o = (A & 0xf0) + (i & 0xf0) + (C << 4) + (o & 0x0f);
V = ~(A ^ i) & (A ^ o) & 0x80;
if(o <= 0xff) o -= 0x60;
}
C = o.bit(8);
Z = uint8(o) == 0;
N = o.bit(7);
return o;
}
auto HuC6280::TRB(uint8 i) -> uint8 {
Z = (A & i) == 0;
V = i.bit(6);
N = i.bit(7);
return ~A & i;
}
auto HuC6280::TSB(uint8 i) -> uint8 {
Z = (A & i) == 0;
V = i.bit(6);
N = i.bit(7);
return A | i;
}
//
auto HuC6280::TAI(uint16& source, uint16& target, bool alternate) -> void {
!alternate ? source++ : source--;
target++;
}
auto HuC6280::TDD(uint16& source, uint16& target, bool) -> void {
source--;
target--;
}
auto HuC6280::TIA(uint16& source, uint16& target, bool alternate) -> void {
source++;
!alternate ? target++ : target--;
}
auto HuC6280::TII(uint16& source, uint16& target, bool) -> void {
source++;
target++;
}
auto HuC6280::TIN(uint16& source, uint16& target, bool) -> void {
source++;
}
//
auto HuC6280::instruction_absoluteLoad(fp alu, uint8& data, uint8 index) -> void {
uint16 absolute = operand();
absolute |= operand() << 8;
io();
L data = ALU(load16(absolute + index));
}
auto HuC6280::instruction_absoluteModify(fp alu, uint8 index) -> void {
uint16 absolute = operand();
absolute |= operand() << 8;
io();
io();
auto data = ALU(load16(absolute + index));
L store16(absolute + index, data);
}
auto HuC6280::instruction_absoluteStore(uint8 data, uint8 index) -> void {
uint16 absolute = operand();
absolute |= operand() << 8;
io();
L store16(absolute + index, data);
}
auto HuC6280::instruction_blockmove(bp alu) -> void {
uint16 source = operand();
source |= operand() << 8;
uint16 target = operand();
target |= operand() << 8;
uint16 length = operand();
length |= operand() << 8;
push(Y);
push(A);
push(X);
io();
io();
io();
io();
io();
bool alternate = 0;
do {
auto data = load16(source);
store16(target, data);
ALU(source, target, alternate);
alternate ^= 1;
io();
io();
io();
io();
} while(--length);
X = pull();
A = pull();
L Y = pull();
}
auto HuC6280::instruction_branch(bool take) -> void {
if(!take) {
L operand();
} else {
auto displacement = operand();
io();
L io();
PC += (int8)displacement;
}
}
auto HuC6280::instruction_clear(uint8& data) -> void {
L io();
data = 0;
}
auto HuC6280::instruction_clear(bool& flag) -> void {
L io();
flag = 0;
}
auto HuC6280::instruction_immediate(fp alu, uint8& data) -> void {
L data = ALU(operand());
}
auto HuC6280::instruction_implied(fp alu, uint8& data) -> void {
L io();
data = ALU(data);
}
auto HuC6280::instruction_indirectLoad(fp alu, uint8& data, uint8 index) -> void {
auto zeropage = operand();
io();
uint16 absolute = load8(zeropage + index + 0);
absolute |= load8(zeropage + index + 1) << 8;
io();
L data = ALU(load16(absolute));
}
auto HuC6280::instruction_indirectStore(uint8 data, uint8 index) -> void {
auto zeropage = operand();
io();
uint16 absolute = load8(zeropage + index + 0);
absolute |= load8(zeropage + index + 1) << 8;
L store16(absolute, data);
}
auto HuC6280::instruction_indirectYLoad(fp alu, uint8& data) -> void {
auto zeropage = operand();
io();
uint16 absolute = load8(zeropage + 0);
absolute |= load8(zeropage + 1) << 8;
io();
L data = ALU(load16(absolute + Y));
}
auto HuC6280::instruction_indirectYStore(uint8 data) -> void {
auto zeropage = operand();
io();
uint16 absolute = load8(zeropage + 0);
absolute |= load8(zeropage + 1) << 8;
L store16(absolute + Y, data);
}
auto HuC6280::instruction_memory(fp alu) -> void {
auto a = A;
A = ALU(load8(X));
L store8(X, A);
A = a;
}
auto HuC6280::instruction_pull(uint8& data) -> void {
io();
io();
L data = pull();
}
auto HuC6280::instruction_pullP() -> void {
io();
io();
L P = pull();
}
auto HuC6280::instruction_push(uint8 data) -> void {
io();
L push(data);
}
auto HuC6280::instruction_set(bool& flag) -> void {
L io();
flag = 1;
}
auto HuC6280::instruction_swap(uint8& lhs, uint8& rhs) -> void {
io();
L io();
swap(lhs, rhs);
}
auto HuC6280::instruction_transfer(uint8& source, uint8& target) -> void {
L io();
target = source;
Z = target == 0;
N = target.bit(7);
}
auto HuC6280::instruction_zeropageLoad(fp alu, uint8& data, uint8 index) -> void {
auto zeropage = operand();
io();
L data = ALU(load8(zeropage + index));
}
auto HuC6280::instruction_zeropageModify(fp alu, uint8 index) -> void {
auto zeropage = operand();
io();
io();
auto data = ALU(load8(zeropage + index));
L store8(zeropage + index, data);
}
auto HuC6280::instruction_zeropageStore(uint8 data, uint8 index) -> void {
auto zeropage = operand();
io();
L store8(zeropage + index, data);
}
//
auto HuC6280::instruction_BBR(uint3 index) -> void {
auto zeropage = operand();
auto displacement = operand();
io();
io();
L auto data = load8(zeropage);
if(data.bit(index) == 0) {
PC += (int8)displacement;
}
}
auto HuC6280::instruction_BBS(uint3 index) -> void {
auto zeropage = operand();
auto displacement = operand();
io();
io();
L auto data = load8(zeropage);
if(data.bit(index) == 1) {
PC += (int8)displacement;
}
}
auto HuC6280::instruction_BRK() -> void {
operand();
io();
push(PC >> 8);
push(PC >> 0);
uint8 p = P;
push(p | 0x10); //B flag set on push
D = 0;
I = 1;
PC.byte(0) = load16(0xfff6);
L PC.byte(1) = load16(0xfff7);
}
auto HuC6280::instruction_BSR() -> void {
auto displacement = operand();
io();
io();
io();
io();
push((PC - 1) >> 8);
L push((PC - 1) >> 0);
PC += (int8)displacement;
}
auto HuC6280::instruction_CSL() -> void {
L io();
r.cs = 4;
}
auto HuC6280::instruction_CSH() -> void {
L io();
r.cs = 1;
}
auto HuC6280::instruction_JMP_absolute() -> void {
uint16 address = operand();
address |= operand() << 8;
L io();
PC = address;
}
auto HuC6280::instruction_JMP_indirect(uint8 index) -> void {
uint16 address = operand();
address |= operand() << 8;
io();
io();
PC.byte(0) = load16(address + index + 0);
L PC.byte(1) = load16(address + index + 1);
}
auto HuC6280::instruction_JSR() -> void {
uint16 address = operand();
address |= operand() << 8;
io();
io();
push((PC - 1) >> 8);
L push((PC - 1) >> 0);
PC = address;
}
auto HuC6280::instruction_NOP() -> void {
L io();
}
auto HuC6280::instruction_RMB(uint3 index) -> void {
auto zeropage = operand();
io();
io();
io();
auto data = load8(zeropage);
data.bit(index) = 0;
L store8(zeropage, data);
}
auto HuC6280::instruction_RTI() -> void {
io();
io();
io();
P = pull();
PC.byte(0) = pull();
L PC.byte(1) = pull();
}
auto HuC6280::instruction_RTS() -> void {
io();
io();
io();
PC.byte(0) = pull();
PC.byte(1) = pull();
L io();
PC++;
}
auto HuC6280::instruction_SMB(uint3 index) -> void {
auto zeropage = operand();
io();
io();
io();
auto data = load8(zeropage);
data.bit(index) = 1;
L store8(zeropage, data);
}
auto HuC6280::instruction_ST(uint2 index) -> void {
auto data = operand();
io();
L store21(0x1fe000 + index, data);
}
auto HuC6280::instruction_TAM() -> void {
auto mask = operand();
io();
io();
L io();
for(uint index : range(8)) {
if(mask.bit(index)) r.mpr[index] = A;
}
}
auto HuC6280::instruction_TMA() -> void {
auto mask = operand();
io();
L io();
for(uint index : range(8)) {
if(mask.bit(index)) { A = r.mpr[index]; break; }
}
}
auto HuC6280::instruction_TST_absolute(uint8 index) -> void {
auto mask = operand();
uint16 absolute = operand();
absolute |= operand() << 8;
io();
io();
io();
L uint8 data = load16(absolute + index);
Z = (data & mask) == 0;
V = data.bit(6);
N = data.bit(7);
}
auto HuC6280::instruction_TST_zeropage(uint8 index) -> void {
auto mask = operand();
auto zeropage = operand();
io();
io();
io();
L uint8 data = load8(zeropage + index);
Z = (data & mask) == 0;
V = data.bit(6);
N = data.bit(7);
}
auto HuC6280::instruction_TXS() -> void {
L io();
S = X;
}