bsnes/nall/random.hpp

147 lines
3.7 KiB
C++

#pragma once
#include <nall/arithmetic.hpp>
#include <nall/chrono.hpp>
#include <nall/range.hpp>
#include <nall/serializer.hpp>
#include <nall/stdint.hpp>
#include <nall/cipher/chacha20.hpp>
#if defined(PLATFORM_LINUX)
#include <sys/random.h>
#elif defined(PLATFORM_WINDOWS)
#include <wincrypt.h>
#endif
namespace nall {
template<typename Base> struct RNG {
template<typename T = uint64_t> auto random() -> T {
T value = 0;
for(uint n : range((sizeof(T) + 3) / 4)) {
value = value << 32 | (uint32_t)static_cast<Base*>(this)->read();
}
return value;
}
template<typename T = uint64_t> auto bound(T range) -> T {
T threshold = -range % range;
while(true) {
T value = random<T>();
if(value >= threshold) return value % range;
}
}
protected:
auto randomSeed() -> uint256_t {
uint256_t seed = 0;
#if defined(PLATFORM_BSD) || defined(PLATFORM_MACOS)
for(uint n : range(8)) seed = seed << 32 | (uint32_t)arc4random();
#elif defined(PLATFORM_LINUX)
getrandom(&seed, 32, GRND_NONBLOCK);
#elif defined(PLATFORM_WINDOWS)
HCRYPTPROV provider;
if(CryptAcquireContext(&provider, nullptr, MS_STRONG_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
CryptGenRandom(provider, 32, (BYTE*)&seed);
CryptReleaseContext(provider, 0);
}
#else
//it's ... better than nothing ...
srand(time(nullptr));
for(uint n : range(32)) seed = seed << 8 | (uint8_t)rand();
#endif
return seed;
}
};
//Galois linear feedback shift register using CRC64 polynomials
struct PRNG_LFSR : RNG<PRNG_LFSR> {
auto seed(maybe<uint64_t> seed = {}) -> void {
lfsr = seed ? seed() : (uint64_t)randomSeed();
for(uint n : range(8)) read(); //hide the CRC64 polynomial from initial output
}
auto serialize(serializer& s) -> void {
s.integer(lfsr);
}
private:
auto read() -> uint64_t {
return lfsr = (lfsr >> 1) ^ (-(lfsr & 1) & crc64);
}
static const uint64_t crc64 = 0xc96c'5795'd787'0f42;
uint64_t lfsr = crc64;
friend class RNG<PRNG_LFSR>;
};
struct PRNG_PCG : RNG<PRNG_PCG> {
auto seed(maybe<uint32_t> seed = {}, maybe<uint32_t> sequence = {}) -> void {
if(!seed) seed = (uint32_t)randomSeed();
if(!sequence) sequence = 0;
state = 0;
increment = sequence() << 1 | 1;
read();
state += seed();
read();
}
auto serialize(serializer& s) -> void {
s.integer(state);
s.integer(increment);
}
private:
auto read() -> uint32_t {
uint64_t state = this->state;
this->state = state * 6'364'136'223'846'793'005ull + increment;
uint32_t xorshift = (state >> 18 ^ state) >> 27;
uint32_t rotate = state >> 59;
return xorshift >> rotate | xorshift << (-rotate & 31);
}
uint64_t state = 0;
uint64_t increment = 0;
friend class RNG<PRNG_PCG>;
};
//XChaCha20 cryptographically secure pseudo-random number generator
struct CSPRNG_XChaCha20 : RNG<CSPRNG_XChaCha20> {
CSPRNG_XChaCha20() { seed(); }
auto seed(maybe<uint256_t> key = {}, maybe<uint192_t> nonce = {}) -> void {
//the randomness comes from the key; the nonce just adds a bit of added entropy
if(!key) key = randomSeed();
if(!nonce) nonce = (uint192_t)clock() << 64 | chrono::nanosecond();
context = {key(), nonce()};
}
private:
auto read() -> uint32_t {
if(!counter) { context.cipher(); context.increment(); }
uint32_t value = context.block[counter++];
if(counter == 16) counter = 0; //64-bytes per block; 4 bytes per read
return value;
}
Cipher::XChaCha20 context{0, 0};
uint counter = 0;
friend class RNG<CSPRNG_XChaCha20>;
};
//
using PRNG = PRNG_PCG;
using CSPRNG = CSPRNG_XChaCha20;
template<typename T = uint64_t> inline auto random() -> T {
static PRNG_PCG pcg; //note: unseeded
return pcg.random<T>();
}
}